74 research outputs found

    An Improved Distributed Algorithm for Maximal Independent Set

    Full text link
    The Maximal Independent Set (MIS) problem is one of the basics in the study of locality in distributed graph algorithms. This paper presents an extremely simple randomized algorithm providing a near-optimal local complexity for this problem, which incidentally, when combined with some recent techniques, also leads to a near-optimal global complexity. Classical algorithms of Luby [STOC'85] and Alon, Babai and Itai [JALG'86] provide the global complexity guarantee that, with high probability, all nodes terminate after O(logn)O(\log n) rounds. In contrast, our initial focus is on the local complexity, and our main contribution is to provide a very simple algorithm guaranteeing that each particular node vv terminates after O(logdeg(v)+log1/ϵ)O(\log \mathsf{deg}(v)+\log 1/\epsilon) rounds, with probability at least 1ϵ1-\epsilon. The guarantee holds even if the randomness outside 22-hops neighborhood of vv is determined adversarially. This degree-dependency is optimal, due to a lower bound of Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Interestingly, this local complexity smoothly transitions to a global complexity: by adding techniques of Barenboim, Elkin, Pettie, and Schneider [FOCS'12, arXiv: 1202.1983v3], we get a randomized MIS algorithm with a high probability global complexity of O(logΔ)+2O(loglogn)O(\log \Delta) + 2^{O(\sqrt{\log \log n})}, where Δ\Delta denotes the maximum degree. This improves over the O(log2Δ)+2O(loglogn)O(\log^2 \Delta) + 2^{O(\sqrt{\log \log n})} result of Barenboim et al., and gets close to the Ω(min{logΔ,logn})\Omega(\min\{\log \Delta, \sqrt{\log n}\}) lower bound of Kuhn et al. Corollaries include improved algorithms for MIS in graphs of upper-bounded arboricity, or lower-bounded girth, for Ruling Sets, for MIS in the Local Computation Algorithms (LCA) model, and a faster distributed algorithm for the Lov\'asz Local Lemma

    Brief Announcement: Local Distributed Algorithms in Highly Dynamic Networks

    Get PDF
    We define a generalization of local distributed graph problems to (synchronous round-based) dynamic networks and present a framework for developing algorithms for these problems. We require two properties from our algorithms: (1) They should satisfy non-trivial guarantees in every round. The guarantees should be stronger the more stable the graph has been during the last few rounds and they coincide with the definition of the static graph problem if no topological change appeared recently. (2) If a constant neighborhood around some part of the graph is stable during an interval, the algorithms quickly converge to a solution for this part of the graph that remains unchanged throughout the interval. We demonstrate our generic framework with two classic distributed graph, namely (degree+1)-vertex coloring and maximal independent set (MIS)

    Optimal Distributed Covering Algorithms

    Get PDF
    We present a time-optimal deterministic distributed algorithm for approximating a minimum weight vertex cover in hypergraphs of rank f. This problem is equivalent to the Minimum Weight Set Cover problem in which the frequency of every element is bounded by f. The approximation factor of our algorithm is (f+epsilon). Let Delta denote the maximum degree in the hypergraph. Our algorithm runs in the congest model and requires O(log{Delta} / log log Delta) rounds, for constants epsilon in (0,1] and f in N^+. This is the first distributed algorithm for this problem whose running time does not depend on the vertex weights nor the number of vertices. Thus adding another member to the exclusive family of provably optimal distributed algorithms. For constant values of f and epsilon, our algorithm improves over the (f+epsilon)-approximation algorithm of [Fabian Kuhn et al., 2006] whose running time is O(log Delta + log W), where W is the ratio between the largest and smallest vertex weights in the graph. Our algorithm also achieves an f-approximation for the problem in O(f log n) rounds, improving over the classical result of [Samir Khuller et al., 1994] that achieves a running time of O(f log^2 n). Finally, for weighted vertex cover (f=2) our algorithm achieves a deterministic running time of O(log n), matching the randomized previously best result of [Koufogiannakis and Young, 2011]. We also show that integer covering-programs can be reduced to the Minimum Weight Set Cover problem in the distributed setting. This allows us to achieve an (f+epsilon)-approximate integral solution in O((1+f/log n)* ((log Delta)/(log log Delta) + (f * log M)^{1.01}* log epsilon^{-1}* (log Delta)^{0.01})) rounds, where f bounds the number of variables in a constraint, Delta bounds the number of constraints a variable appears in, and M=max {1, ceil[1/a_{min}]}, where a_{min} is the smallest normalized constraint coefficient. This improves over the results of [Fabian Kuhn et al., 2006] for the integral case, which combined with rounding achieves the same guarantees in O(epsilon^{-4}* f^4 * log f * log(M * Delta)) rounds

    New Classes of Distributed Time Complexity

    Full text link
    A number of recent papers -- e.g. Brandt et al. (STOC 2016), Chang et al. (FOCS 2016), Ghaffari & Su (SODA 2017), Brandt et al. (PODC 2017), and Chang & Pettie (FOCS 2017) -- have advanced our understanding of one of the most fundamental questions in theory of distributed computing: what are the possible time complexity classes of LCL problems in the LOCAL model? In essence, we have a graph problem Π\Pi in which a solution can be verified by checking all radius-O(1)O(1) neighbourhoods, and the question is what is the smallest TT such that a solution can be computed so that each node chooses its own output based on its radius-TT neighbourhood. Here TT is the distributed time complexity of Π\Pi. The time complexity classes for deterministic algorithms in bounded-degree graphs that are known to exist by prior work are Θ(1)\Theta(1), Θ(logn)\Theta(\log^* n), Θ(logn)\Theta(\log n), Θ(n1/k)\Theta(n^{1/k}), and Θ(n)\Theta(n). It is also known that there are two gaps: one between ω(1)\omega(1) and o(loglogn)o(\log \log^* n), and another between ω(logn)\omega(\log^* n) and o(logn)o(\log n). It has been conjectured that many more gaps exist, and that the overall time hierarchy is relatively simple -- indeed, this is known to be the case in restricted graph families such as cycles and grids. We show that the picture is much more diverse than previously expected. We present a general technique for engineering LCL problems with numerous different deterministic time complexities, including Θ(logαn)\Theta(\log^{\alpha}n) for any α1\alpha\ge1, 2Θ(logαn)2^{\Theta(\log^{\alpha}n)} for any α1\alpha\le 1, and Θ(nα)\Theta(n^{\alpha}) for any α<1/2\alpha <1/2 in the high end of the complexity spectrum, and Θ(logαlogn)\Theta(\log^{\alpha}\log^* n) for any α1\alpha\ge 1, 2Θ(logαlogn)\smash{2^{\Theta(\log^{\alpha}\log^* n)}} for any α1\alpha\le 1, and Θ((logn)α)\Theta((\log^* n)^{\alpha}) for any α1\alpha \le 1 in the low end; here α\alpha is a positive rational number
    corecore