research

New Classes of Distributed Time Complexity

Abstract

A number of recent papers -- e.g. Brandt et al. (STOC 2016), Chang et al. (FOCS 2016), Ghaffari & Su (SODA 2017), Brandt et al. (PODC 2017), and Chang & Pettie (FOCS 2017) -- have advanced our understanding of one of the most fundamental questions in theory of distributed computing: what are the possible time complexity classes of LCL problems in the LOCAL model? In essence, we have a graph problem Π\Pi in which a solution can be verified by checking all radius-O(1)O(1) neighbourhoods, and the question is what is the smallest TT such that a solution can be computed so that each node chooses its own output based on its radius-TT neighbourhood. Here TT is the distributed time complexity of Π\Pi. The time complexity classes for deterministic algorithms in bounded-degree graphs that are known to exist by prior work are Θ(1)\Theta(1), Θ(logn)\Theta(\log^* n), Θ(logn)\Theta(\log n), Θ(n1/k)\Theta(n^{1/k}), and Θ(n)\Theta(n). It is also known that there are two gaps: one between ω(1)\omega(1) and o(loglogn)o(\log \log^* n), and another between ω(logn)\omega(\log^* n) and o(logn)o(\log n). It has been conjectured that many more gaps exist, and that the overall time hierarchy is relatively simple -- indeed, this is known to be the case in restricted graph families such as cycles and grids. We show that the picture is much more diverse than previously expected. We present a general technique for engineering LCL problems with numerous different deterministic time complexities, including Θ(logαn)\Theta(\log^{\alpha}n) for any α1\alpha\ge1, 2Θ(logαn)2^{\Theta(\log^{\alpha}n)} for any α1\alpha\le 1, and Θ(nα)\Theta(n^{\alpha}) for any α<1/2\alpha <1/2 in the high end of the complexity spectrum, and Θ(logαlogn)\Theta(\log^{\alpha}\log^* n) for any α1\alpha\ge 1, 2Θ(logαlogn)\smash{2^{\Theta(\log^{\alpha}\log^* n)}} for any α1\alpha\le 1, and Θ((logn)α)\Theta((\log^* n)^{\alpha}) for any α1\alpha \le 1 in the low end; here α\alpha is a positive rational number

    Similar works