210 research outputs found

    DOWNSTREAM RESOURCE ALLOCATION IN DOCSIS 3.0 CHANNEL BONDED NETWORKS

    Get PDF
    Modern broadband internet access cable systems follow the Data Over Cable System Interface Specification (DOCSIS) for data transfer between the individual cable modem (CM) and the Internet. The newest version of DOCSIS, version 3.0, provides an abstraction referred to as bonding groups to help manage bandwidth and to increase bandwidth to each user beyond that available within a single 6MHz. television channel. Channel bonding allows more than one channel to be used by a CM to provide a virtual channel of much greater bandwidth. This combining of channels into bonding groups, especially when channels overlap between more than one bonding group, complicates the resource allocation problem within these networks. The goal of resource allocation in this research is twofold, to provide for fairness among users while at the same time making maximum possible utilization of the available system bandwidth. The problem of resource allocation in computer networks has been widely studied by the academic community. Past work has studied resource allocation in many network types, however application in a DOCSIS channel bonded network has not been explored. This research begins by first developing a definition of fairness in a channel bonded system. After providing a theoretical definition of fairness we implement simulations of different scheduling disciplines and evaluate their performance against this theoretical ideal. The complexity caused by overlapped channels requires even the simplest scheduling algorithms to be modified to work correctly. We then develop an algorithm to maximize the use of the available system bandwidth. The approach involves using competitive analysis techniques and an online algorithm to dynamically reassign flows among the available channels. Bandwidth usage and demand requests are monitored for bandwidth that is underutilized, and demand that is unsatisfied, and real time changes are made to the flow-to-channel mappings to improve the utilization of the total available bandwidth. The contribution of this research is to provide a working definition of fairness in a channel bonded environment, the implementation of several scheduling disciplines and evaluation of their adherence to that definition, and development of an algorithm to improve overall bandwidth utilization of the system

    Traffic Management for Next Generation Transport Networks

    Get PDF

    Worst-case Delay Analysis of Time-Sensitive Networks with Deficit Round-Robin

    Full text link
    In feed-forward time-sensitive networks with Deficit Round-Robin (DRR), worst-case delay bounds were obtained by combining Total Flow Analysis (TFA) with the strict service curve characterization of DRR by Tabatabaee et al. The latter is the best-known single server analysis of DRR, however the former is dominated by Polynomial-size Linear Programming (PLP), which improves the TFA bounds and stability region, but was never applied to DRR networks. We first perform the necessary adaptation of PLP to DRR by computing burstiness bounds per-class and per-output aggregate and by enabling PLP to support non-convex service curves. Second, we extend the methodology to support networks with cyclic dependencies: This raises further dependency loops, as, on one hand, DRR strict service curves rely on traffic characteristics inside the network, which comes as output of the network analysis, and on the other hand, TFA or PLP requires prior knowledge of the DRR service curves. This can be solved by iterative methods, however PLP itself requires making cuts, which imposes other levels of iteration, and it is not clear how to combine them. We propose a generic method, called PLP-DRR, for combining all the iterations sequentially or in parallel. We show that the obtained bounds are always valid even before convergence; furthermore, at convergence, the bounds are the same regardless of how the iterations are combined. This provides the best-known worst-case bounds for time-sensitive networks, with general topology, with DRR. We apply the method to an industrial network, where we find significant improvements compared to the state-of-the-art

    WiMAX Scheduling Algorithm Key Issue and Design Challenges: Survey

    Get PDF
    In recent time to satisfy the growing demand of broadband wireless access by using scare Resource of bandwidth is a biggest challenge for Researchers, in this time WiMAX (Worldwide Interopretability for Microwave Access) emerged as a better solution to fulfill that demand. WiMAX provides faster internet connectivity in Urban Areas as well as remote areas also where to deploy the DSL (Digital Subscriber Line) or other wired technology is difficult task. WiMAX structure is based on IEEE 802.16 OSI standard and defines the PMP (Point to Multipoint) and Mesh modes for transmission of information. To provide authentic services for voice, data and videos WiMAX define the various QoS parameters at Media Access Control (MAC) layer. In order to meet the QoS requirement Novel scheduling approach are required. In these papers efforts are made to examine and compare the various scheduling algorithm and its design challenges to implement the effective scheduling algorithm. It also discusses the various QoS parameters associated with scheduling approaches. DOI: 10.17762/ijritcc2321-8169.15083

    Modeling And Dynamic Resource Allocation For High Definition And Mobile Video Streams

    Get PDF
    Video streaming traffic has been surging in the last few years, which has resulted in an increase of its Internet traffic share on a daily basis. The importance of video streaming management has been emphasized with the advent of High Definition: HD) video streaming, as it requires by its nature more network resources. In this dissertation, we provide a better support for managing HD video traffic over both wireless and wired networks through several contributions. We present a simple, general and accurate video source model: Simplified Seasonal ARIMA Model: SAM). SAM is capable of capturing the statistical characteristics of video traces with less than 5% difference from their calculated optimal models. SAM is shown to be capable of modeling video traces encoded with MPEG-4 Part2, MPEG-4 Part10, and Scalable Video Codec: SVC) standards, using various encoding settings. We also provide a large and publicly-available collection of HD video traces along with their analyses results. These analyses include a full statistical analysis of HD videos, in addition to modeling, factor and cluster analyses. These results show that by using SAM, we can achieve up to 50% improvement in video traffic prediction accuracy. In addition, we developed several video tools, including an HD video traffic generator based on our model. Finally, to improve HD video streaming resource management, we present a SAM-based delay-guaranteed dynamic resource allocation: DRA) scheme that can provide up to 32.4% improvement in bandwidth utilization

    Scheduling algorithms in broadband wireless networks

    Get PDF
    Scheduling algorithms that support quality of service (QoS) differentiation and guarantees for wireless data networks are crucial to the development of broadband wireless networks. Wireless communication poses special problems that do not exist in wireline networks, such as time-varying channel capacity and location-dependent errors. Although many mature scheduling algorithms are available for wireline networks, they are not directly applicable in wireless networks because of these special problems. This paper provides a comprehensive and in-depth survey on recent research in wireless scheduling. The problems and difficulties in wireless scheduling are discussed. Various representative algorithms are examined. Their themes of thoughts and pros and cons are compared and analyzed. At the end of the paper, some open questions and future research directions are addressed.published_or_final_versio
    • …
    corecore