1,257 research outputs found

    UNDERWATER COMMUNICATIONS WITH ACOUSTIC STEGANOGRAPHY: RECOVERY ANALYSIS AND MODELING

    Get PDF
    In the modern warfare environment, communication is a cornerstone of combat competence. However, the increasing threat of communications-denied environments highlights the need for communications systems with low probability of intercept and detection. This is doubly true in the subsurface environment, where communications and sonar systems can reveal the tactical location of platforms and capabilities, subverting their covert mission set. A steganographic communication scheme that leverages existing technologies and unexpected data carriers is a feasible means of increasing assurance of communications, even in denied environments. This research works toward a covert communication system by determining and comparing novel symbol recovery schemes to extract data from a signal transmitted under a steganographic technique and interfered with by a simulated underwater acoustic channel. We apply techniques for reliably extracting imperceptible information from unremarkable acoustic events robust to the variability of the hostile operating environment. The system is evaluated based on performance metrics, such as transmission rate and bit error rate, and we show that our scheme is sufficient to conduct covert communications through acoustic transmissions, though we do not solve the problems of synchronization or equalization.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    ACOUSTIC LOCALIZATION TECHNIQUES FOR APPLICATION IN NEAR-SHORE ARCTIC ENVIRONMENTS

    Get PDF
    The Arctic environment has undergone significant change in recent years. Multi-year ice is no longer prevalent in the Arctic. Instead, Arctic ice melts during summer months and re-freezes each winter. First-year ice, in comparison to multi-year ice, is different in terms of its acoustic properties. Therefore, acoustic propagation models of the Arctic may no longer be valid. The open water in the Arctic for longer time periods during the year invites anthropogenic traffic such as civilian tourism, industrial shipping, natural resource exploration, and military exercises. It is important to understand sound propagation in the first-year ice environment, especially in near-shore and shallow-water regions, where anthropogenic sources may be prevalent. It is also important to understand how to detect, identify, and track the anthropogenic sources in these environments in the absence of large acoustic sensory arrays. The goals of this dissertation are twofold: 1) Provide experimental transmission loss (TL) data for the Arctic environment as it now exists, that it may be used to validate new propagation models, and 2) Develop improved understanding of acoustic vector sensor (AVS) performance in real-world applications such as the first-year Arctic environment. Underwater and atmospheric acoustic TL have been measured in the Arctic environment. Ray tracing and parabolic equation simulations have been used for comparison to the TL data. Generally good agreement is observed between the experimental data and simulations, with some discrepancies. These discrepancies may be eliminated in the future with the development of improved models. Experiments have been conducted with underwater pa and atmospheric pp AVS to track mechanical noise sources in real-world environments with various frequency content and signal to noise ratio (SNR). A moving standard deviation (MSD) processing routine has been developed for use with AVS. The MSD processing routine is shown to be superior to direct integration or averaging of intensity spectra for direction of arrival (DOA) estimation. DOA error has been shown to be dependent on ground-reflected paths for pp AVS with analytical models. Underwater AVS have been shown to be feasible to track on-ice sources and atmospheric AVS have been shown feasible to track ground vehicle sources

    The perceptual flow of phonetic feature processing

    Get PDF

    Modelling, Simulation and Data Analysis in Acoustical Problems

    Get PDF
    Modelling and simulation in acoustics is currently gaining importance. In fact, with the development and improvement of innovative computational techniques and with the growing need for predictive models, an impressive boost has been observed in several research and application areas, such as noise control, indoor acoustics, and industrial applications. This led us to the proposal of a special issue about “Modelling, Simulation and Data Analysis in Acoustical Problems”, as we believe in the importance of these topics in modern acoustics’ studies. In total, 81 papers were submitted and 33 of them were published, with an acceptance rate of 37.5%. According to the number of papers submitted, it can be affirmed that this is a trending topic in the scientific and academic community and this special issue will try to provide a future reference for the research that will be developed in coming years
    • …
    corecore