317 research outputs found

    Biometric identity-based cryptography for e-Government environment

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    Modelling and simulation of a biometric identity-based cryptography

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    Implicit Smartphone User Authentication with Sensors and Contextual Machine Learning

    Full text link
    Authentication of smartphone users is important because a lot of sensitive data is stored in the smartphone and the smartphone is also used to access various cloud data and services. However, smartphones are easily stolen or co-opted by an attacker. Beyond the initial login, it is highly desirable to re-authenticate end-users who are continuing to access security-critical services and data. Hence, this paper proposes a novel authentication system for implicit, continuous authentication of the smartphone user based on behavioral characteristics, by leveraging the sensors already ubiquitously built into smartphones. We propose novel context-based authentication models to differentiate the legitimate smartphone owner versus other users. We systematically show how to achieve high authentication accuracy with different design alternatives in sensor and feature selection, machine learning techniques, context detection and multiple devices. Our system can achieve excellent authentication performance with 98.1% accuracy with negligible system overhead and less than 2.4% battery consumption.Comment: Published on the IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) 2017. arXiv admin note: substantial text overlap with arXiv:1703.0352

    Revocable and non-invertible multibiometric template protection based on matrix transformation

    Get PDF
    Biometric authentication refers to the use of measurable characteristics (or features) of the human body to provide secure, reliable and convenient access to a computer system or physical environment. These features (physiological or behavioural) are unique to individual subjects because they are usually obtained directly from their owner's body. Multibiometric authentication systems use a combination of two or more biometric modalities to provide improved performance accuracy without offering adequate protection against security and privacy attacks. This paper proposes a multibiometric matrix transformation based technique, which protects users of multibiometric systems from security and privacy attacks. The results of security and privacy analyses show that the approach provides high-level template security and user privacy compared to previous one-way transformation techniques

    A Cryptanalysis of Two Cancelable Biometric Schemes based on Index-of-Max Hashing

    Full text link
    Cancelable biometric schemes generate secure biometric templates by combining user specific tokens and biometric data. The main objective is to create irreversible, unlinkable, and revocable templates, with high accuracy in matching. In this paper, we cryptanalyze two recent cancelable biometric schemes based on a particular locality sensitive hashing function, index-of-max (IoM): Gaussian Random Projection-IoM (GRP-IoM) and Uniformly Random Permutation-IoM (URP-IoM). As originally proposed, these schemes were claimed to be resistant against reversibility, authentication, and linkability attacks under the stolen token scenario. We propose several attacks against GRP-IoM and URP-IoM, and argue that both schemes are severely vulnerable against authentication and linkability attacks. We also propose better, but not yet practical, reversibility attacks against GRP-IoM. The correctness and practical impact of our attacks are verified over the same dataset provided by the authors of these two schemes.Comment: Some revisions and addition of acknowledgement

    Authentication Protocol for Cloud Databases Using Blockchain Mechanism

    Get PDF
    Cloud computing has made the software development process fast and flexible but on the other hand it has contributed to increasing security attacks. Employees who manage the data in cloud companies may face insider attack, affecting their reputation. They have the advantage of accessing the user data by interacting with the authentication mechanism. The primary aim of this research paper is to provide a novel secure authentication mechanism by using Blockchain technology for cloud databases. Blockchain makes it difficult to change user login credentials details in the user authentication process by an insider. The insider is not able to access the user authentication data due to the distributed ledger-based authentication scheme. Activity of insider can be traced and cannot be changed. Both insider and outsider user’s are authenticated using individual IDs and signatures. Furthermore, the user access control on the cloud database is also authenticated. The algorithm and theorem of the proposed mechanism have been given to demonstrate the applicability and correctness.The proposed mechanism is tested on the Scyther formal system tool against denial of service, impersonation, offline guessing, and no replay attacks. Scyther results show that the proposed methodology is secure cum robust

    Survey on encode biometric data for transmission in wireless communication networks

    Get PDF
    The aim of this research survey is to review an enhanced model supported by artificial intelligence to encode biometric data for transmission in wireless communication networks can be tricky as performance decreases with increasing size due to interference, especially if channels and network topology are not selected carefully beforehand. Additionally, network dissociations may occur easily if crucial links fail as redundancy is neglected for signal transmission. Therefore, we present several algorithms and its implementation which addresses this problem by finding a network topology and channel assignment that minimizes interference and thus allows a deployment to increase its throughput performance by utilizing more bandwidth in the local spectrum by reducing coverage as well as connectivity issues in multiple AI-based techniques. Our evaluation survey shows an increase in throughput performance of up to multiple times or more compared to a baseline scenario where an optimization has not taken place and only one channel for the whole network is used with AI-based techniques. Furthermore, our solution also provides a robust signal transmission which tackles the issue of network partition for coverage and for single link failures by using airborne wireless network. The highest end-to-end connectivity stands at 10 Mbps data rate with a maximum propagation distance of several kilometers. The transmission in wireless network coverage depicted with several signal transmission data rate with 10 Mbps as it has lowest coverage issue with moderate range of propagation distance using enhanced model to encode biometric data for transmission in wireless communication

    A generic framework for process execution and secure multi-party transaction authorization

    Get PDF
    Process execution engines are not only an integral part of workflow and business process management systems but are increasingly used to build process-driven applications. In other words, they are potentially used in all kinds of software across all application domains. However, contemporary process engines and workflow systems are unsuitable for use in such diverse application scenarios for several reasons. The main shortcomings can be observed in the areas of interoperability, versatility, and programmability. Therefore, this thesis makes a step away from domain specific, monolithic workflow engines towards generic and versatile process runtime frameworks, which enable integration of process technology into all kinds of software. To achieve this, the idea and corresponding architecture of a generic and embeddable process virtual machine (ePVM), which supports defining process flows along the theoretical foundation of communicating extended finite state machines, are presented. The architecture focuses on the core process functionality such as control flow and state management, monitoring, persistence, and communication, while using JavaScript as a process definition language. This approach leads to a very generic yet easily programmable process framework. A fully functional prototype implementation of the proposed framework is provided along with multiple example applications. Despite the fact that business processes are increasingly automated and controlled by information systems, humans are still involved, directly or indirectly, in many of them. Thus, for process flows involving sensitive transactions, a highly secure authorization scheme supporting asynchronous multi-party transaction authorization must be available within process management systems. Therefore, along with the ePVM framework, this thesis presents a novel approach for secure remote multi-party transaction authentication - the zone trusted information channel (ZTIC). The ZTIC approach uniquely combines multiple desirable properties such as the highest level of security, ease-of-use, mobility, remote administration, and smooth integration with existing infrastructures into one device and method. Extensively evaluating both, the ePVM framework and the ZTIC, this thesis shows that ePVM in combination with the ZTIC approach represents a unique and very powerful framework for building workflow systems and process-driven applications including support for secure multi-party transaction authorization
    corecore