269 research outputs found

    Warehouse Layout Method Based on Ant Colony and Backtracking Algorithm

    Full text link
    Warehouse is one of the important aspects of a company. Therefore, it is necessary to improve Warehouse Management System (WMS) to have a simple function that can determine the layout of the storage goods. In this paper we propose an improved warehouse layout method based on ant colony algorithm and backtracking algorithm. The method works on two steps. First, it generates a solutions parameter tree from backtracking algorithm. Then second, it deducts the solutions parameter by using a combination of ant colony algorithm and backtracking algorithm. This method was tested by measuring the time needed to build the tree and to fill up the space using two scenarios. The method needs 0.294 to 33.15 seconds to construct the tree and 3.23 seconds (best case) to 61.41 minutes (worst case) to fill up the warehouse. This method is proved to be an attractive alternative solution for warehouse layout system.Comment: 5 pages, published in proceeding of the 14th IAPR International Conference on Quality in Research (QIR

    Solving Sudoku with Ant Colony Optimization

    Get PDF
    In this paper we present a new algorithm for the well-known and computationally-challenging Sudoku puzzle game. Our Ant Colony Optimization-based method significantly out-performs the state-of-the-art algorithm on the hardest, large instances of Sudoku. We provide evidence that – compared to traditional backtracking methods – our algorithm offers a much more efficient search of the solution space, and demonstrate the utility of a novel anti-stagnation operator. This work lays the foundation for future work on a general-purpose puzzle solver, and establishes Japanese pencil puzzles as a suitable platform for benchmarking a wide range of algorithms

    Ant colonies using arc consistency techniques for the set partitioning problem

    Get PDF
    In this paper, we solve some benchmarks of Set Covering Problem and Equality Constrained Set Covering or Set Partitioning Problem. The resolution techniques used to solve them were Ant Colony Optimization algorithms and Hybridizations of Ant Colony Optimization with Constraint Programming techniques based on Arc Consistency. The concept of Arc Consistency plays an essential role in constraint satisfaction as a problem simplification operation and as a tree pruning technique during search through the detection of local inconsistencies with the uninstantiated variables. In the proposed hybrid algorithms, we explore the addition of this mechanism in the construction phase of the ants so they can generate only feasible partial solutions. Computational results are presented showing the advantages to use this kind of additional mechanisms to Ant Colony Optimization in strongly constrained problems where pure Ant Algorithms are not successful.Applications in Artificial Intelligence - ApplicationsRed de Universidades con Carreras en Informática (RedUNCI

    Improving the efficiency of photovoltaic cells embedded in floating buoys

    Get PDF
    Solar cells are used to power floating buoys, which is one of their applications. Floating buoys are devices that are placed on the sea and ocean surfaces to provide various information to the floats. Because these cells are subjected to varying environmental conditions, modeling and simulating photovoltaic cells enables us to install cells with higher efficiency and performance in them. The parameters of the single diode model are examined in this article so that the I-V, P-V diagrams, and characteristics of the cadmium telluride (CdTe) photovoltaic cell designed with three layers (CdTe, CdS, and SnOx) can be extracted using A solar cell capacitance simulator (SCAPS) software, and we obtain the parameters of the single diode model using the ant colony optimization (ACO) algorithm. In this paper, the objective function is root mean square error (RMSE), and the best value obtained after 30 runs is 5.2217×10-5 in 2.46 seconds per iteration, indicating a good agreement between the simulated model and the real model and outperforms many other algorithms that have been developed thus far. The above optimization with 200 iterations, a population of 30, and 84 points was completed on a server with 32 gigabytes of random-access memory (RAM) and 30 processing cores

    An Ant-based Approach for Dynamic RWA in Optical WDM Networks

    Get PDF

    Ant Colony Optimization for Network Aggregation in a Fully Connected Network

    Get PDF
    Ants Colony exhibit complex structure called ant streets. We were observed in several situations such as highway or may have placed some obstacle in the way and see ant’s reaction to such disturbances. One of the most surprising behavioral patterns by ants is the ability to find shortest path which is the challenge of today’s computer scientists. Ant Colony Optimization is a probabilistic technique for solving computational problems. This paper explains Ant Colony Optimization is an effective approach for finding a shortest path between two nodes on a network. DOI: 10.17762/ijritcc2321-8169.15067

    Ant Colony Search Algorithm for Optimal Generators Startup during Power System Restoration

    Get PDF
    Generators startup sequence plays a significant role in achieving a suitable and effective restoration strategy. This paper outlines an ant colony search algorithm in order to determine the generator starting times during the bulk power system restoration. The algorithm attempts to maximize the system generation capability over a restoration period, where the dynamic characteristics of different types of units and system constraints are considered. Applying this method for the 39-bus New England test system, and comparing the results with backtracking-search and P/t methods, it is found that proposed algorithm improved generation capability

    Optimization of intersatellite routing for real-time data download

    Get PDF
    The objective of this study is to develop a strategy to maximise the available bandwidth to Earth of a satellite constellation through inter-satellite links. Optimal signal routing is achieved by mimicking the way in which ant colonies locate food sources, where the 'ants' are explorative data packets aiming to find a near-optimal route to Earth. Demonstrating the method on a case-study of a space weather monitoring constellation; we show the real-time downloadable rate to Earth

    ACODV : Ant Colony Optimisation Distance Vector routing in ad hoc networks

    Get PDF
    A mobile ad hoc network is a collection of wireless mobile devices which dynamically form a temporary network, without using any existing network infrastructure or centralised administration. Each node in the network effectively becomes a router, and forwards packets towards the packet’s destination node. Ad hoc networks are characterized by frequently changing network topology, multi-hop wireless connections and the need for dynamic, efficient routing protocols. The overarching requirement for low power consumption, as battery powered sensors may be required to operate for years without battery replacement; An emphasis on reliable communication as opposed to real-time communication, it is more important for packets to arrive reliably than to arrive quickly; and Very scarce processing and memory resources, as these sensors are often implemented on small low-power microprocessors. This work provides overviews of routing protocols in ad hoc networks, swarm intelligence, and swarm intelligence applied to ad hoc routing. Various mechanisms that are commonly encountered in ad hoc routing are experimentally evaluated under situations as close to real-life as possible. Where possible, enhancements to the mechanisms are suggested and evaluated. Finally, a routing protocol suitable for such low-power sensor networks is defined and benchmarked in various scenarios against the Ad hoc On-Demand Distance Vector (AODV) algorithm.Dissertation (MSc)--University of Pretoria, 2005.Computer ScienceUnrestricte
    corecore