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 Solar cells are used to power floating buoys, which is one of their applications. 

Floating buoys are devices that are placed on the sea and ocean surfaces to 

provide various information to the floats. Because these cells are subjected to 

varying environmental conditions, modeling and simulating photovoltaic cells 

enables us to install cells with higher efficiency and performance in them. The 

parameters of the single diode model are examined in this article so that the 

I-V, P-V diagrams, and characteristics of the cadmium telluride (CdTe) 

photovoltaic cell designed with three layers (CdTe, CdS, and SnOx) can be 

extracted using a solar cell capacitance simulator (SCAPS) software, and we 

obtain the parameters of the single diode model using the ant colony 

optimization (ACO) algorithm. In this paper, the objective function is root 

mean square error (RMSE), and the best value obtained after 30 runs is 

5.2217×10-5 in 2.46 seconds per iteration, indicating a good agreement 

between the simulated model and the real model and outperforms many other 

algorithms that have been developed thus far. The above optimization with 

200 iterations, a population of 30, and 84 points was completed on a server 

with 32 gigabytes of random-access memory (RAM) and 30 processing cores. 
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1. INTRODUCTION 

Floating buoys are navigational aids that specify information such as waterways, borders, signs, and 

ocean states [1]. These vessels collect the necessary information from the seas and their surroundings using 

sensors embedded in them, and send it to the control center via a communication antenna after processing the 

data [2]–[4]. This data can be used for ocean monitoring, climate change research, and marine science [3]. The 

buoys' equipment requires a power source to function, and because they are located far from the coast and on 

the water surface, renewable energy is the best option for them. 

Solar energy is a type of renewable energy that is free and available everywhere [5]. Floating buoys 

use one to several solar cells to supply their required electricity, depending on their type and application  

[1], [6]. When these photovoltaic (PV) cells are placed on the surface of the oceans and waters, the temperature 

of the modules drops due to surface evaporation as well as wind and sea storms, and their radiation angle may 

also change, resulting in a decrease in cell performance and efficiency [4]. These cells are manufactured using 

various technologies such as monocrystal, polycrystal, and thin film [7]–[9], so it is necessary to use efficient 

methods to simulate and model them so that we can select an optimal cell with high performance and weather 

resistance. The single-diode model is one of the simulation models, and many researchers extracted its 

https://creativecommons.org/licenses/by-sa/4.0/
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parameters using various algorithms [10]–[16]. The more accurate the algorithm's results, the more accurate 

the orbital model parameters will be. As a result, we investigate the efficiency and optimization of the ant 

colony algorithm (ACO) to extract the characteristics of the single diode model in this article. 

Dorigo proposed the ant colony optimization algorithm, as a doctoral thesis. The behavior of ants to 

find the shortest path between the nest and the food source inspired this algorithm. When moving around, many 

types of ants secrete a substance called pheromone, which is understandable and appealing to other ants. The 

amount of pheromone in the shortest path between the nest and the food increases over time, and as a result, 

the number of ants drawn to this shorter path increases. This cycle is repeated until the majority of ants take 

the shorter route. Because none of the ants were able to find the shortest path on their own and this was the 

result of agent cooperation, this algorithm can be classified as a swarm intelligence algorithm  

[17]–[20]. Figure 1 depicts the equipment and various parts of one type of floating buoy [21]. 

 

 

 
 

Figure 1. Different parts of a smart buoy 

 

 

2. MODELLING A SOLAR CELL AND THE GOVERNING EQUATIONS 

The purpose of this work is to match the characteristic curve (P-V, I-V) of the simulation model with 

the characteristic curve of the real cell under different environmental conditions [22]. The most common 

method is using an electrical equivalent circuit based on the diode model and simulates the cell's p-n junction 

[14], [15]. Many researchers have presented many models, the simplest of which is the single diode model, 

which we will examine in the following circuit model. When not exposed to radiation, the solar cell behaves 

like a diode, with the current-voltage equation as in (1): 

 

𝐼𝐷 = 𝐼𝑆 [𝑒
𝑉𝐷
𝜂𝑉𝑇 − 1]

 𝑉𝑇=
𝑘𝑇

𝑞
 

→       𝐼𝐷 = 𝐼𝑆 [𝑒
𝑞𝑉𝐷
𝜂𝑘𝑇 − 1] (1) 

 

where k=1.38064×10-23 J/k is Boltzmann's constant, q=1.602176634×10-19 (in Coulombs) is the electric charge 

of an electron, η is the diode’s ideal coefficient, 𝑉𝑇  (mV) is the thermal voltage, 𝑉𝐷  (V) is the diode voltage, 

𝐼𝑆 (A) is the reverse saturation current, 𝐼𝐷 is the diode current [23], [24]. Figure 2 depicts the current-voltage 

density diagram of a solar cell in the absence of radiation. When exposed to radiation, however, a current 

appears in the cell as a result of the photovoltaic phenomenon, which is referred to as the radiation current and 

is represented by the symbol 𝐼𝑃ℎ. In circuit models, this current is considered a dependent current source, and 

its current size is directly proportional to the light irradiated to the cell, changing as a linear coefficient with 

the light [14], [25]. 
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Figure 2. I-V curve without irradiation 

 

 

2.1.  Single-diode model 

A cell can be modeled using a light-dependent current source in parallel with a diode, as shown in 

Figure 3. It has the current-voltage equation as in (2) and (3) [10], [13], [14], [23], [25]–[29]. 

 

𝐼 = 𝐼𝑃ℎ − 𝐼𝐷1 − 𝐼𝑃  (2) 

 

𝐼 = 𝐼𝑃ℎ − 𝐼𝑆1 [𝑒
𝑞(𝑉+𝑅𝑆𝐼)

𝜂1𝑘𝑇 − 1] −
𝑉+𝑅𝑆𝐼

𝑅𝑃
 (3) 

 

In this model, there are two parasitic resistances, Rs and Rp, where:  

− The series resistance is the result of the semiconductor resistance, the resistance between the contacts and 

the cell, and the internal resistance of the metal contacts. The series resistance is a challenge at high current 

densities.  

− The parallel resistance is the result of leakage currents, particularly at the cell edges [10], [14], [30]. Also, in 

(2), 𝐼𝑃 (A) is the parallel resistance’s current, 𝐼𝑃ℎ  (A) is the PV current and I is the output current of the model.  

In the single-diode model, 5 parameters, including 𝜂1, 𝐼𝑆1 , 𝐼𝑃ℎ  , 𝑅𝑃, 𝑅𝑆 are required to complete the I-V 

characteristic. 

 

 

 
 

Figure 3. Equivalent circuit of the single-diode model 

 

 

2.2.  Cost function of root mean square error 

Root mean square error (RMSE), as an essential tool, serves to evaluate the performance quality of 

predictive models and is widely used for model assessment and comparison. It is simplicity and interpretability 

make it a valuable metric for reporting in research papers, enabling readers to assess the accuracy and reliability 

of the discussed models. RMSE measures the error between two sets of data and typically compares the 

predicted values with the observed or measured values. In this article, this parameter serves as our objective 

function, and its relationships are described as (4). 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐼𝑖 − 𝐼(𝑉𝑖))

2𝑁−1
𝑖=0  (4) 

 

In which 𝑁 is the number of measure currents, 𝐼i is the experimental current, and 𝐼𝑉𝑖 is the current obtained 

using the algorithm and RMSE is the root mean square error [14], [23], [29], [31], [32]. 

 

2.3.  Fill factor  

The short-circuit current (𝐼𝑆𝐶) and open-circuit voltage (𝑉𝑂𝐶) represents the maximum current and 

voltage that a cell can generate, respectively. However, at these two points, the output power is zero. The fill 

factor, denoted as FF, quantifies the conversion efficiency of a solar cell in terms of how effectively it can 

convert solar radiation into usable energy. This parameter is defined as the ratio of the maximum power output 

of the solar cell to the product of ISC and VOC [10]:  

 

𝐹𝐹 =
𝑃𝑀𝑃

𝑉𝑂𝐶×𝐼𝑆𝐶
=
𝑉𝑀𝑃×𝐼𝑀𝑃

𝑉𝑂𝐶×𝐼𝑆𝐶
 (5) 

 

Also, 𝐼𝑀𝑃  (A) and 𝑉𝑀𝑃 (V) represent the voltage and current of the maximum point.  

 

 

3. ANT COLONY OPTIMIZATION ALGORITHM  

The ACO, also known as ant colony optimization, is based on the natural behavior of ant colonies and 

the worker ants who live in them. In an ant colony, the process of locating food sources is highly optimized. 

When ants begin to search for food, they will naturally find a “logical” and “optimal” path from their nest to 

food sources. In other words, the ant population is always able to find the best path to provide the necessary 

food resources. Ant colony optimization is based on simulating such optimal behavior [33]. It should be noted 

that the exact name of this algorithm is ant colony optimization, which most people refer to as ant algorithm 

or ant colony algorithm. Consider two ants traveling from their nest to a food source in opposite directions. 

Ants secrete a trace of pheromone into the environment as they move towards a food source, which naturally 

decays over time. The ant that takes the shortest path to the food source begins the return journey to the nest 

before the other ants. In such a case, on the way back to the nest, this ant begins releasing pheromone into the 

environment again, thereby strengthening the pheromone trail left in the shortest path. Other ants follow the 

strongest pheromone trail in the environment instinctively and reinforce the pheromone trail in this path. After 

a certain period of time, not only does the pheromone trail in the shortest path disintegrate, but it is also 

strengthened by the accumulation of pheromone trails from other ants. The path with the strongest pheromone 

trace becomes the default path for ants to travel from the colony to the food source [34], [35].  

Figure 4 depicts how to find the shortest path. Pseudo-code of the ACO is given in the following:  

a) Parameters of the ACO are adjusted and the pheromone traces are initialized.  

b) Until the termination condition is not met:  

Firstly, it generates candidate solutions and then, using local search, determines which pheromones need to 

be updated. This step is optional and not present in some implementations using ant colony algorithms. 

Finally, the pheromones are updated. 

c) If the termination condition is met, stop the algorithm; otherwise, repeat the above steps.  

Figure 5 shows the ACO flowchart [36], [37]. In the following, we will provide a brief explanation of 

each of these stages. Initially, in the candidate solution generation stage, a set of m artificial ants generate 

candidate solutions for the optimization problem using elements from a finite set of available candidate solution 

components 𝐶 = {𝑐𝑖𝑗}, 𝑖 = 1, . . . , 𝑛 , 𝑗 = 1, . . , |𝐷𝑖|. This stage begins with the generation of a partial candidate 

solution 𝑠𝑝 = ∅. Subsequently, in the following steps, the generated 𝑠𝑝 is expanded by adding a component 

from the set of feasible neighbors 𝑁(𝑠𝑝) ⊆ 𝐶. 

 

 

 
 

Figure 4. Pheromone evaporation after multiple iterations of ACO 
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Figure 5. ACO flowchart 

 

 

The process of generating candidate solutions can be viewed as a path in the structural graph 𝐺𝐶(𝑉, 𝐸). 
In other words, expanding the optimal solution refers to determining possible movement paths for the artificial 

ant in the pheromone model's structural graph. Through this approach, the neighborhoods of the partial candidate 

solution are explored to identify the best path toward the global optimal solution. The permissible paths in the 

graph 𝐺𝐶  are implicitly defined by the candidate solution generation mechanism. The candidate solution 

generation mechanism defines the set of feasible neighbors 𝑁(𝑠𝑝) ⊆ 𝐶 for each partial solution separately. The 

rules for selecting a component from the set of feasible neighbors, in different implementations of ant colony 

algorithms, may vary. However, the most well-known rule is associated with the ant system algorithm [20], [33]. 

 

𝑃(𝑐𝑖𝑗|𝑠
𝑝) =

𝜏𝑖𝑗
𝛼×𝜂(𝑐𝑖𝑗)

𝛽

∑ 𝜏𝑖𝑙
𝛼×𝜂(𝑐𝑖𝑙)

𝛽
𝑐𝑖𝑙∈𝑁(𝑠

𝑝)
∀𝑐𝑖𝑗 ∈ 𝑁(𝑠

𝑝) (6)   

 

In this regard, 𝜏𝑖𝑗  represents the pheromone values associated with the component 𝑐𝑖𝑗 , and 𝜂(. ) is a 

function that assigns a so-called heuristic value to each candidate solution 𝑐𝑖𝑗 ∈ 𝑁(𝑠
𝑝) at each stage of 

candidate solution generation. The heuristic values generated by the function 𝜂(. ) are referred to as Heuristic 

Information. Additionally, the parameters α and β are positive-valued parameters that determine the relative 

importance (weight) of the pheromone information (values of candidate solution variables) and the heuristic 

information in determining the probability value of the above-mentioned relationship [17]–[20]. 

In the local search stage, depending on the implemented ant colony algorithm, additional processes 

may be necessary to ensure optimal algorithm performance after candidate solutions are generated but before 

pheromones are updated. Therefore, this stage is optional. The nature of these processes is intensive, meaning 

they cannot be performed by just one artificial ant. These processes are referred to as auxiliary operations or 

daemon actions. The most common background operation in ant colony algorithm-based algorithms is the 

deployment of local search on the generated candidate solutions. For example, locally optimized solutions can 

be used to make decisions about updating pheromone values [18], [19]. 

In the final stage, the objective of updating pheromones is to increase the pheromone values associated 

with good and optimal candidate solutions while decreasing the pheromone values associated with bad 

solutions. This is achieved through two major processes: i) decreasing the pheromone values associated with 

all candidate solutions through the process of pheromone evaporation and ii) increasing the pheromone values 

associated with candidate solutions belonging to the set of good solutions, denoted as Supd. These two processes 

are controlled by the following relationship, referred to as the pheromone updating rule. 
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(1 − 𝜌) × 𝜏𝑖𝑗 + 𝜌∑ 𝐹(𝑠)𝑠∈𝑆𝑢𝑝𝑑|𝑐𝑖𝑗∈𝑠
→ 𝜏𝑖𝑗 (7) 

 

The first part of this relationship controls the process of pheromone evaporation, which decreases the 

pheromone values of all candidate solutions. The second part increases the pheromone values only for the 

candidate solutions belonging to the set of good solutions, 𝑆𝑢𝑝𝑑. In this context, 𝑆𝑢𝑝𝑑 includes the candidate 

solutions that have high fitness, meaning they are closer to the global optimal solution. The parameter ρ ∈ 

(0,1), known as the evaporation rate, and 𝐹: 𝑆 → 𝑅0
+, known as the fitness function, are involved. In simpler 

terms, this process leads to an increase in the pheromone values associated with the ants that are on the best 

available paths towards the optimal solution (i.e., closer to the optimal solution) and have higher fitness (lower 

cost or higher benefit). As a result, other ants also converge towards these paths. 

The presence of the pheromone evaporation parameter is essential in ant colony algorithm 

implementations to prevent rapid and premature convergence. The evaporation parameter provides a type of 

forgetting mechanism in the optimization process, emphasizing more on exploring and searching new areas in 

the search space of the implemented ant colony algorithms [19], [20], [33], [36], [37]. The advantages of the 

ant colony algorithm method can be summarized as follows [18], [20], [34]: 

a) Cooperative group collaboration among ants for generating optimal solutions demonstrates the inherent 

nature of parallelism and solidarity in this method. 

b) Positive feedback created through pheromone dissemination in the environment leads to rapid convergence 

to good solutions for the optimization problem. 

c) It is suitable for dynamic applications that require quick adaptation to environmental changes. 

d) Convergence to the optimal solution is guaranteed. 

This algorithm is rewritten as in Figure 6 to extract the components of the single-diode model. 

 

 

 
 

Figure 6. ACO flowchart for extracting the single-diode model components 
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4. RESULTS AND DISCUSSION 

In this section of the article, we first explain how to use the ACO algorithm to obtain the characteristics 

of a single diode equivalent circuit, and then describe the test conditions, data, and results obtained according 

to the categories listed below. To find the parameters of the equivalent circuit, we first extract the graphs and 

data of the desired cell under specific laboratory conditions (such as radiation, temperature, and so on), then 

we go to the optimization algorithm and define a range for the diode model components. 

 

4.1.  Experimental conditions and characteristics 

 The desired algorithm obtains the currents using the defined formulas and puts them in the objective 

function. The objective function applies a specific mathematical operation between the laboratory data and the 

algorithmic data and a number is extracted. This process continues until the number obtained from the objective 

function is the smallest available value, this value will be our final solution and the parameters that produced 

this number are the characteristics of our single diode model. The categories mentioned above are: 

a) The employed solar cell is a Cadmium Telluride (CdTe) with an area of 1 cm2.  

b) The currents and powers are obtained in 1 cm2 of the cell of interest (current density=A/cm2).  

c) Irradiation is constant equal to 1000 W/m2 and temperature is 33 °C (306.15 K).  

d) The processing server has 30 processing cores and 32 GB RAM Intel Xeon E5-2650 v4 2.20 GHz x64, 

RAM EDO 32 GB.  

e) The employed algorithm for simulation is ACO with a population of 30 ants, 200 iterations, and 30 runs.  

f) 84 points are measured with 0.01 steps. 

g) ISC and VOC of the cell are 0.02413144 (A) and 0.857103 (V).  

h) The experimental data is extracted using SCAPS, where its selected cell is CdTe comprising three layers 

of SnOx, CdS, and CdTe [38]. Table 1 represents the characteristics of the PV cell.  

 

 

Table 1. Characteristics of the cell of interest in SCAPS 
Layer name Layer1 Layer2 Layer3 

Name CdTe CdS SnOx 

Thickness (µm) 4.000 0.025 0.500 

The layer is pure A: 𝒚 = 𝟎, uniform 0.000 0.000 0.000 

Semiconductor property P of the pure material Pure A (𝑦 = 0) Pure A (𝑦 = 0) Pure A (𝑦 = 0) 

Bandgap (eV) 1.500 2.400 3.600 

Electron affinity (eV) 3.900 4.000 4.000 
Dielectric permittivity (relative) 9.400 10.000 9.000 

CB effective density of states (1/ cm3) 8 × 10+17 2.200 × 10+18 2.200 × 10+18 
VB effective density of states (1/ cm3) 1.8 × 10+19 1.8 × 10+19 1.8 × 10+19 
Electron thermal velocity (cm/s) 1 × 10+7 1 × 10+7 1 × 10+7 

Hole thermal velocity (cm/s) 1 × 10+7 1 × 10+7 1 × 10+7 

Electron mobility (cm²/Vs) 3.2 × 10+2 1 × 10+2 1 × 10+2 

Hole mobility (cm²/Vs) 4 × 10+1 2.5 × 10+1 2.5 × 10+1 

Shallow uniform donor density ND (1/cm3) 0.000 1.1 × 10+18 1 × 10+17 
Shallow uniform acceptor density NA (1/cm3) 2.4 × 10+14 0.000 0.000 

Layer contact Left contact (back) Right contact (front) 

Thermionic emission/surface recombination velocity (cm/s):   

Electrons 1 × 10+7 1 × 10+7 

Holes 1 × 10+7 1 × 10+7 

Metal work function (eV) 5.000 4.100 

Majority carrier barrier height (eV):   

Relative to EF 0.400 0.100 
Relative to EV or EC 0.1045 0.0199 

Optical filter: Transmission 

(80% mirror) 

Reflection 

(10% mirror) Filter mode 
Illuminated from Right (n-Side) or front 

***Other parameters that are not in the table were considered zero. 

 

 

4.2.  Results and diagrams  

Table 2 specifies the estimation range of the parameters for optimization where the minimum value 

of most elements is 10-12, which is considered to be zero. Most of these ranges are defined based on international 

publications [12], [23], [27], [29]. Also, the maximum PV current is 1.5 times the short circuit current of the 

tested cell. Following an extensive optimization process involving 200 iterations, utilizing 30 ants and 

conducting 30 runs, a clear conclusion was drawn. It was determined that the desired results were achieved 

precisely during the 199th iteration, utilizing the 8th ant, and in the first run. The corresponding RMSE values 

associated with these outcomes have been documented in Table 3 for reference and analysis. 
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Table 4 showcases the current, voltage, and maximum power values acquired at the point of interest, 

and these figures are compared to the corresponding values from the experimental case. The findings reveal a 

remarkable level of accuracy, as the obtained results exhibit minimal deviation from the actual measurements. 

This outcome reinforces the reliability and precision of the conducted analysis, affirming the validity of the 

acquired data. In the following, we examine other experimental and algorithmic curves. 

 

 

Table 2. Results and range of 7 unknown parameters using ACO 
Range RS (Ω) η

1
 IPh (Α) IS1 (μΑ) RP (Ω) 

Min value 0 1 0 0 0 
Max value 1 2.5 0.03619716615 2 1000 

results 2.9765 × 10-4 2.0307 0.024265 2.4489×10-3 994.6844 
∗∗ 𝐼𝑃ℎ = (1.5) × (𝐼𝑆𝐶) → 𝐼𝑆𝐶 = 0.02413144410 → 𝐼𝑃ℎ = 0.03619716615 

**10-12 ≅ 0 → lower boundaries 

 

 

Table 3. RMSE, population and desired iteration 
Parameter Iteration number Population number RMSE 

Value 199 8 5.2217×10-5 

 

 

Table 4. Maximum experimental and algorithmic current, voltage, and power 
Parameter VMPP IMPP(A) PMPP(w) 

Algorithmic values 0.72 0.0218611 0.01574 
Experimental values 0.715420 0.0219611711 0.015711461028 

 

 

4.2.1. I-V and P-V curves 

The high compatibility between the curves is prominently demonstrated in Figures 7 and 8, which 

showcase their exceptional alignment. This compatibility is attributed to the remarkably low RMSE value, 

indicating the minimal deviation between the curves. Additionally, the superior accuracy achieved through 

optimization using the ACO algorithm further enhances the robustness and reliability of the curves' alignment. 

 

 

  
 

Figure 7. Agreement of experimental and 

algorithmic I-V 

 

Figure 8. Agreement of experimental and 

algorithmic P-V 

 

 

4.2.2. RMSE-iteration curve  

Figure 9 depicts the value of RMSE in each iteration round. As shown in the figure, as the iteration 

round increases, the quantity of RMSE should decrease, and from the 190 th iteration onwards, it reaches a 

stability and stability in the solution with only slight variations. Increasing the iteration time beyond 200 has a 

negligible influence on the optimization results, roughly 1 ×10-5. 

 

4.2.3. Time iteration curve  

Figure 10 depicts the algorithm's run time during each iteration round. According to the graph, each 

iteration round takes roughly 2-3 seconds on average. The algorithm appears to be performing more difficult 

computations as the algorithm time has grown between the 80 to 110 iteration rounds. This rise in time can 

also be seen in the internal figure, and the chart is broken in the region of 80 to 110. The times of each round 
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of repetition are combined together in this figure, and the total duration of completing the algorithm in  

200 rounds of iterations is roughly 492.36 seconds. 

 

 

 
 

Figure 9. RMSE-iteration curve 

 

 

 
 

Figure 10. Time-iteration curve 

 

 

4.3.  Effect of algorithm components on the optimization results 

4.3.1. Increasing iteration round  

One of the parameters impacting the algorithm's findings is the iteration round. Figures 9 and 11 show 

that increasing the iterations increases the accuracy and agreement of the results and output graphs with the 

experimental values and graphs until the desired method has reached stability and stability in the results. 

However, once stability is achieved, extending the iteration round has no effect on the RMSE value. 

 

4.3.2. Increasing population 

Another component affecting our outcomes is the size of the population included in the optimization. 

Each ant, according to the ACO algorithm, produces a chemical known as a pheromone in the path it chooses 

and passes. Any path with a higher concentration of pheromone is a shorter path, and more ants pass through 

it. As a result, the more ants that engage in the optimization, the results would be more accurate, and the ensuing 

graphs are the most compatible with the cell's experimental conditions. Figure 12 depicts this. Another point 

that was investigated and should be considered is that, similar to the iteration round, an increase in population 

affects the optimization results up to a certain amount, and anything more than that amount not only has little 

effect, but also has an effect on the duration of the optimization of the result.  

The outcomes of the experiment involving 11 ants are presented in Table 5, revealing notably positive 

results. The data showcased in the table demonstrates the effectiveness of utilizing this particular number of ants 

in achieving favorable outcomes. These findings contribute valuable insights into the potential of optimizing the 

experiment by employing an adequate number of ants for enhanced performance and reliable results. 
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Figure 11. Comparing I-V curves of different iteration rounds with each other and experimental curve 

of the cell 

 

 

 
 

Figure 12. Comparing I-V curves of different populations with each other and the experimental curve of the cell 

 

 

Table 5. Results and ranges of 7 unknown parameters with 11 ants 
Parameter value Parameter value 

IPh (Α) 0.02428 Population number 6 

IS1 (μΑ) 4.6044×10-3 Total population 11 
RP (Ω) 999.9998 Iteration 200 
RS (Ω) 2.2499×10-7 RMSE 7.019×10-5 

η
1
 2.1189 Time 193.213 

Iteration number 200   

 

 

4.4.  Comparing the results with other algorithms  

The superiority of the ACO method over other algorithms in the single-diode model is clearly 

demonstrated by the results presented in Table 6. With its exceptional performance, the ACO method emerges 

as an ideal choice for modeling and simulations, offering a combination of efficiency and accuracy. 

Researchers can confidently utilize this algorithm to achieve reliable and precise outcomes in their studies and 

applications. 

 

4.5.  Sparsity of RMSE and time in 30 runs  

Based on the findings depicted in Figure 13 and Table 7, a substantial proportion of the RMSE values 

obtained from 30 runs fall within the range of 1.6×10-4 to 2.2×10-4, indicating a high level of consistency and 

accuracy. Additionally, it is noteworthy that approximately four runs yielded RMSE values as low as 10-5, 

further highlighting the exceptional performance of the algorithm. These impressive RMSE ranges clearly 

surpass the performance of alternative algorithms, demonstrating the superiority of the method in achieving 

precise and reliable results. 
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Table 6. Comparing RMSE of the algorithms with each other 
Algorithm Name Iteration/population RMSE Algorithm name Iteration/population RMSE 

ACO 200/30 5.2217 × 10−5 Performance-guided 
JAYA (PGJAYA) [39] 

50000/20 9.8602 × 10−4 

Artificial bee colony 

(ABC) [40] 

10000/150 9.862 × 10−4 Chaotic whale 

optimization algorithm 
(CWOA) [41] 

10000/150 9.98678 × 10−4 

Ensemble particle 

swarm optimizer 
(EPSO) [29] 

200/30 8.0621 × 10−4 GOFPANM [42] 10000/10 9.8602 × 10−4 

Fractional chaotic 

ensemble particle 
swarm optimizer  

(FC-EPSO1) [29] 

200/30 7.7301 × 10−4 Self-adaptive teaching-

learning-based 
optimization (SATLBO) 

[43] 

50000/40 9.8602 × 10−4 

FC-EPSO2 [29] 200/30 7.7339 × 10−4 Enhanced leader particle 
swarm optimization 

(ELPSO) [44] 

100/991 7.7301 × 10−4 

FC-EPSO3 [29] 200/30 7.7309 × 10−4 Hybrid firefly and pattern 
search (HFAPS) [45] 

5000/50 9.8602 × 10−4 

Multiple learning 

backtracking search 
algorithm (MLBSA) [46] 

50000/50 9.8602 × 10−4 Artificial bee swarm 

optimization (ABSO) 
[47] 

5000/30 9.9124 × 10−4 

Time varying 

acceleration coefficients 
PSO (TVACPSO) [48] 

100/1000 7.7301 × 10−4 Hybrid particle swarm 

optimization and 
simulated annealing 

(HPSOSA) [31] 

100/500 7.7301 × 10−4 

Coyote optimization 
algorithm (COA) [13] 

1000/5 packs 
with 20 coyotes 

in each group 

7.7547 × 10−4 Grey wolf optimizer and 
cuckoo search 

(GWOCS) [49] 

500/30 9.8607 × 10−4 

Tree growth algorithm 
(TGA) [27] 

500/500 9.75053 × 10−4 Logistic chaotic Rao-1 
optimization algorithm 

(LCROA) [23] 

1000/10 7.490069 × 10−4 

Enhanced Harris hawks 
optimization (EHHO) 

[50] 

2000/30 9.8602 × 10−4 Enhanced Lévy flight 
bat algorithm (ELBA) 

[51] 

50000/20 9.860219 × 10−4 

 

 

 
 

Figure 13. RMSE sparsity in single-diode model 

 

 

Table 7. RMSE of the single-diode ACO 
Type of equivalent circuit Min RMSE Max RMSE Avg RMSE 

Single diode 5.2217 e-05 2.199 e-04 1.6068 e-04 

https://www.sciencedirect.com/topics/engineering/particle-swarm
https://www.sciencedirect.com/topics/engineering/particle-swarm
https://www.sciencedirect.com/topics/engineering/particle-swarm
https://www.sciencedirect.com/topics/engineering/particle-swarm
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Figure 14 shows the time distribution of the algorithm execution in the single-diode model in 30 runs. 

Also, based on this figure, it can be seen that the running time of the algorithm varies from 440 to 480 seconds 

on average. The information presented in this figure provides researchers and practitioners with valuable 

insights into the amount of time required to run the algorithm. 

 

 

 
 

Figure 14. Time sparsity in the single-diode model 

 

 

5. CONCLUSION  

Floating buoys serve a significant role in ocean and sea navigation by transmitting vital information 

to vessels and their control centers. These buoys require a power supply to measure and transmit data so that 

the sensors, processing unit, communications antennae, warning lights, and other components can function. 

Because these buoys will stay on the water's surface for an extended period of time and will not have access to 

electric wires, they must use a transportable and inexhaustible source of energy, and solar panels are one of the 

best options for floating buoys. Temperature fluctuations affect the performance of photovoltaic cells, and 

because we have the phenomenon of surface evaporation on the surface of the oceans and lakes, this 

phenomenon affects the modules and frames of the solar cell and reduces its temperature. As a result, the 

panel's performance and efficiency suffer. As a result, modeling and simulation of cells prior to embedding 

them on floating buoys is critical. Using diode equivalent circuits is one of the most prevalent modeling 

methods, and as described in the article, we were able to achieve very precise and positive results by using the 

single diode model and the ACO algorithm, so that the RMSE was reduced. In 2.46 seconds per iteration, a 

value of 5.2217x10-5 was achieved after 30 runs. This modeling and its outcomes are the most consistent with 

real-world cell behaviors and graphs. According to the research, the ant colony algorithm employed in this 

article is superior and more accurate than most algorithms, making it one of the most efficient algorithms in 

the modeling of solar panels used in buoys. 
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