242,667 research outputs found

    Dynamic Parameterized Problems

    Get PDF
    In this work, we study the parameterized complexity of various classical graph-theoretic problems in the dynamic framework where the input graph is being updated by a sequence of edge additions and deletions. Vertex subset problems on graphs typically deal with finding a subset of vertices having certain properties that are of interest to us. In real-world applications, the graph under consideration often changes over time and due to this dynamics, the solution at hand might lose the desired properties. The goal in the area of dynamic graph algorithms is to efficiently maintain a solution under these changes. Recomputing a new solution on the new graph is an expensive task especially when the number of modifications made to the graph is significantly smaller than the size of the graph. In the context of parameterized algorithms, two natural parameters are the size k of the symmetric difference of the edge sets of the two graphs (on n vertices) and the size r of the symmetric difference of the two solutions. We study the Dynamic Pi-Deletion problem which is the dynamic variant of the Pi-Deletion problem and show NP-hardness, fixed-parameter tractability and kernelization results. For specific cases of Dynamic Pi-Deletion such as Dynamic Vertex Cover and Dynamic Feedback Vertex Set, we describe improved FPT algorithms and give linear kernels. Specifically, we show that Dynamic Vertex Cover admits algorithms with running times 1.1740^k*n^{O(1)} (polynomial space) and 1.1277^k*n^{O(1)} (exponential space). Then, we show that Dynamic Feedback Vertex Set admits a randomized algorithm with 1.6667^k*n^{O(1)} running time. Finally, we consider Dynamic Connected Vertex Cover, Dynamic Dominating Set and Dynamic Connected Dominating Set and describe algorithms with 2^k*n^{O(1)} running time improving over the known running time bounds for these problems. Additionally, for Dynamic Dominating Set and Dynamic Connected Dominating Set, we show that this is the optimal running time (up to polynomial factors) assuming the Set Cover Conjecture

    Sparse Dynamic Programming on DAGs with Small Width

    Get PDF
    The minimum path cover problem asks us to find a minimum-cardinality set of paths that cover all the nodes of a directed acyclic graph (DAG). We study the case when the size k of a minimum path cover is small, that is, when the DAG has a small width. This case is motivated by applications in pan-genomics, where the genomic variation of a population is expressed as a DAG. We observe that classical alignment algorithms exploiting sparse dynamic programming can be extended to the sequence-against-DAG case by mimicking the algorithm for sequences on each path of a minimum path cover and handling an evaluation order anomaly with reachability queries. Namely, we introduce a general framework for DAG-extensions of sparse dynamic programming. This framework produces algorithms that are slower than their counterparts on sequences only by a factor k. We illustrate this on two classical problems extended to DAGs: longest increasing subsequence and longest common subsequence. For the former, we obtain an algorithm with running time O(k vertical bar E vertical bar log vertical bar V vertical bar). This matches the optimal solution to the classical problem variant when the input sequence is modeled as a path. We obtain an analogous result for the longest common subsequence problem. We then apply this technique to the co-linear chaining problem, which is a generalization of the above two problems. The algorithm for this problem turns out to be more involved, needing further ingredients, such as an FM-index tailored for large alphabets and a two-dimensional range search tree modified to support range maximum queries. We also study a general sequence-to-DAG alignment formulation that allows affine gap costs in the sequence. The main ingredient of the proposed framework is a new algorithm for finding a minimum path cover of a DAG (V, E) in O(k vertical bar E vertical bar log vertical bar V vertical bar) time, improving all known time-bounds when k is small and the DAG is not too dense. In addition to boosting the sparse dynamic programming framework, an immediate consequence of this new minimum path cover algorithm is an improved space/time tradeoff for reachability queries in arbitrary directed graphs.Peer reviewe

    Dynamic Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and Derandomization

    Full text link
    We study dynamic (1+ϵ)(1+\epsilon)-approximation algorithms for the all-pairs shortest paths problem in unweighted undirected nn-node mm-edge graphs under edge deletions. The fastest algorithm for this problem is a randomized algorithm with a total update time of O~(mn/ϵ)\tilde O(mn/\epsilon) and constant query time by Roditty and Zwick [FOCS 2004]. The fastest deterministic algorithm is from a 1981 paper by Even and Shiloach [JACM 1981]; it has a total update time of O(mn2)O(mn^2) and constant query time. We improve these results as follows: (1) We present an algorithm with a total update time of O~(n5/2/ϵ)\tilde O(n^{5/2}/\epsilon) and constant query time that has an additive error of 22 in addition to the 1+ϵ1+\epsilon multiplicative error. This beats the previous O~(mn/ϵ)\tilde O(mn/\epsilon) time when m=Ω(n3/2)m=\Omega(n^{3/2}). Note that the additive error is unavoidable since, even in the static case, an O(n3δ)O(n^{3-\delta})-time (a so-called truly subcubic) combinatorial algorithm with 1+ϵ1+\epsilon multiplicative error cannot have an additive error less than 2ϵ2-\epsilon, unless we make a major breakthrough for Boolean matrix multiplication [Dor et al. FOCS 1996] and many other long-standing problems [Vassilevska Williams and Williams FOCS 2010]. The algorithm can also be turned into a (2+ϵ)(2+\epsilon)-approximation algorithm (without an additive error) with the same time guarantees, improving the recent (3+ϵ)(3+\epsilon)-approximation algorithm with O~(n5/2+O(log(1/ϵ)/logn))\tilde O(n^{5/2+O(\sqrt{\log{(1/\epsilon)}/\log n})}) running time of Bernstein and Roditty [SODA 2011] in terms of both approximation and time guarantees. (2) We present a deterministic algorithm with a total update time of O~(mn/ϵ)\tilde O(mn/\epsilon) and a query time of O(loglogn)O(\log\log n). The algorithm has a multiplicative error of 1+ϵ1+\epsilon and gives the first improved deterministic algorithm since 1981. It also answers an open question raised by Bernstein [STOC 2013].Comment: A preliminary version was presented at the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS 2013

    Faster exponential-time algorithms in graphs of bounded average degree

    Get PDF
    We first show that the Traveling Salesman Problem in an n-vertex graph with average degree bounded by d can be solved in O*(2^{(1-\eps_d)n}) time and exponential space for a constant \eps_d depending only on d, where the O*-notation suppresses factors polynomial in the input size. Thus, we generalize the recent results of Bjorklund et al. [TALG 2012] on graphs of bounded degree. Then, we move to the problem of counting perfect matchings in a graph. We first present a simple algorithm for counting perfect matchings in an n-vertex graph in O*(2^{n/2}) time and polynomial space; our algorithm matches the complexity bounds of the algorithm of Bjorklund [SODA 2012], but relies on inclusion-exclusion principle instead of algebraic transformations. Building upon this result, we show that the number of perfect matchings in an n-vertex graph with average degree bounded by d can be computed in O*(2^{(1-\eps_{2d})n/2}) time and exponential space, where \eps_{2d} is the constant obtained by us for the Traveling Salesman Problem in graphs of average degree at most 2d. Moreover we obtain a simple algorithm that counts the number of perfect matchings in an n-vertex bipartite graph of average degree at most d in O*(2^{(1-1/(3.55d))n/2}) time, improving and simplifying the recent result of Izumi and Wadayama [FOCS 2012].Comment: 10 page
    corecore