6 research outputs found

    An immune system paradigm for the assurance of dependability of collaborative self-organizing systems

    Get PDF
    In collaborative self-organizing computing systems a complex task is performed by relatively simple autonomous agents that act without centralized control. Disruption of a task can be caused by agents that produce harmful outputs due to internal failures or due to maliciously introduced alterations of their functions. The probability of such harmful outputs is minimized by the application of a design principle called ”the immune system paradigm” that provides individual agents with an all-hardware fault tolerance infrastructure. The paradigm and its application are described in this paper.1st IFIP International Conference on Biologically Inspired Cooperative Computing - Biological Inspiration: Just a dream?Red de Universidades con Carreras en Informática (RedUNCI

    An immune system paradigm for the assurance of dependability of collaborative self-organizing systems

    Get PDF
    In collaborative self-organizing computing systems a complex task is performed by relatively simple autonomous agents that act without centralized control. Disruption of a task can be caused by agents that produce harmful outputs due to internal failures or due to maliciously introduced alterations of their functions. The probability of such harmful outputs is minimized by the application of a design principle called ”the immune system paradigm” that provides individual agents with an all-hardware fault tolerance infrastructure. The paradigm and its application are described in this paper.1st IFIP International Conference on Biologically Inspired Cooperative Computing - Biological Inspiration: Just a dream?Red de Universidades con Carreras en Informática (RedUNCI

    An immune system paradigm for the assurance of dependability of collaborative self-organizing systems

    Get PDF
    In collaborative self-organizing computing systems a complex task is performed by relatively simple autonomous agents that act without centralized control. Disruption of a task can be caused by agents that produce harmful outputs due to internal failures or due to maliciously introduced alterations of their functions. The probability of such harmful outputs is minimized by the application of a design principle called ”the immune system paradigm” that provides individual agents with an all-hardware fault tolerance infrastructure. The paradigm and its application are described in this paper.1st IFIP International Conference on Biologically Inspired Cooperative Computing - Biological Inspiration: Just a dream?Red de Universidades con Carreras en Informática (RedUNCI

    An immune system paradigm for the assurance of dependability of collaborative self-organizing systems

    No full text
    In collaborative self-organizing computing systems a complex task is performed by relatively simple autonomous agents that act without centralized control. Disruption of a task can be caused by agents that produce harmful outputs due to internal failures or due to maliciously introduced alterations of their functions. The probability of such harmful outputs is minimized by the application of a design principle called "the immune system paradigm" that provides individual agents with an all-hardware fault tolerance infrastructure. The paradigm and its application are described in this paperVytauto Didžiojo universiteta

    Resilience-Building Technologies: State of Knowledge -- ReSIST NoE Deliverable D12

    Get PDF
    This document is the first product of work package WP2, "Resilience-building and -scaling technologies", in the programme of jointly executed research (JER) of the ReSIST Network of Excellenc
    corecore