82 research outputs found

    Current Studies and Applications of Krill Herd and Gravitational Search Algorithms in Healthcare

    Full text link
    Nature-Inspired Computing or NIC for short is a relatively young field that tries to discover fresh methods of computing by researching how natural phenomena function to find solutions to complicated issues in many contexts. As a consequence of this, ground-breaking research has been conducted in a variety of domains, including synthetic immune functions, neural networks, the intelligence of swarm, as well as computing of evolutionary. In the domains of biology, physics, engineering, economics, and management, NIC techniques are used. In real-world classification, optimization, forecasting, and clustering, as well as engineering and science issues, meta-heuristics algorithms are successful, efficient, and resilient. There are two active NIC patterns: the gravitational search algorithm and the Krill herd algorithm. The study on using the Krill Herd Algorithm (KH) and the Gravitational Search Algorithm (GSA) in medicine and healthcare is given a worldwide and historical review in this publication. Comprehensive surveys have been conducted on some other nature-inspired algorithms, including KH and GSA. The various versions of the KH and GSA algorithms and their applications in healthcare are thoroughly reviewed in the present article. Nonetheless, no survey research on KH and GSA in the healthcare field has been undertaken. As a result, this work conducts a thorough review of KH and GSA to assist researchers in using them in diverse domains or hybridizing them with other popular algorithms. It also provides an in-depth examination of the KH and GSA in terms of application, modification, and hybridization. It is important to note that the goal of the study is to offer a viewpoint on GSA with KH, particularly for academics interested in investigating the capabilities and performance of the algorithm in the healthcare and medical domains.Comment: 35 page

    An Intelligent Hybrid Optimization with Deep Learning model-based Schizophrenia Identification from Structural MRI

    Get PDF
    One of the fatal diseases that claim women while they are pregnant or nursing is schizophrenia. Despite several developments and symptoms, it can be challenging to discern between benign and malignant conditions. The main and most popular imaging method to predict Schizophrenia is MR Images. Furthermore, a few earlier models had a definite accuracy when diagnosing the condition. Stable MRI criteria must also be implemented immediately. Compared to other imaging technologies, the MRI imaging method is the simplest, safest, and most common for predicting Schizophrenia. The following factors are mostly involved in the subprocess for the initial MRI image. Before calculating the length between the sample point and the cluster center, the initial cluster center of the sample is identified. Classification is done according to how far the sample point is from the cluster center. The picture is then generated once the new cluster center has been derived using the classification history and verified to match the cluster convergence condition. A grey wolf optimization-based convolutional neural network approach is offered to get beyond the limitations and find schizophrenia, whether its hazardous or not. Many MRI images or datasets are analyzed in a short time, and the results show a more accurate or higher rate of schizophrenia recognition

    Advances in Meta-Heuristic Optimization Algorithms in Big Data Text Clustering

    Full text link
    This paper presents a comprehensive survey of the meta-heuristic optimization algorithms on the text clustering applications and highlights its main procedures. These Artificial Intelligence (AI) algorithms are recognized as promising swarm intelligence methods due to their successful ability to solve machine learning problems, especially text clustering problems. This paper reviews all of the relevant literature on meta-heuristic-based text clustering applications, including many variants, such as basic, modified, hybridized, and multi-objective methods. As well, the main procedures of text clustering and critical discussions are given. Hence, this review reports its advantages and disadvantages and recommends potential future research paths. The main keywords that have been considered in this paper are text, clustering, meta-heuristic, optimization, and algorithm

    A Generalized Enhanced Quantum Fuzzy Approach for Efficient Data Clustering

    Full text link
    © 2013 IEEE. Data clustering is a challenging task to gain insights into data in various fields. In this paper, an Enhanced Quantum-Inspired Evolutionary Fuzzy C-Means (EQIE-FCM) algorithm is proposed for data clustering. In the EQIE-FCM, quantum computing concept is utilized in combination with the FCM algorithm to improve the clustering process by evolving the clustering parameters. The improvement in the clustering process leads to improvement in the quality of clustering results. To validate the quality of clustering results achieved by the proposed EQIE-FCM approach, its performance is compared with the other quantum-based fuzzy clustering approaches and also with other evolutionary clustering approaches. To evaluate the performance of these approaches, extensive experiments are being carried out on various benchmark datasets and on the protein database that comprises of four superfamilies. The results indicate that the proposed EQIE-FCM approach finds the optimal value of fitness function and the fuzzifier parameter for the reported datasets. In addition to this, the proposed EQIE-FCM approach also finds the optimal number of clusters and more accurate location of initial cluster centers for these benchmark datasets. Thus, it can be regarded as a more efficient approach for data clustering

    A multilevel image thresholding based on Hybrid Salp Swarm algorithm and Fuzzy Entropy

    Get PDF
    The image segmentation techniques based on multi-level threshold value received lot of attention in recent years. It is because they can be used as a pre-processing step in complex image processing applications. The main problem in identifying the suitable threshold values occurs when classical image segmentation methods are employed. The swarm intelligence (SI) technique is used to improve multi-level threshold image (MTI) segmentation performance. SI technique simulates the social behaviors of swarm ecosystem, such as the behavior exhibited by different birds, animals etc. Based on SI techniques, we developed an alternative MTI segmentation method by using a modified version of the salp swarm algorithm (SSA). The modified algorithm improves the performance of various operators of the moth-flame optimization (MFO) algorithm to address the limitations of traditional SSA algorithm. This results in improved performance of SSA algorithm. In addition, the fuzzy entropy is used as objective function to determine the quality of the solutions. To evaluate the performance of the proposed methodology, we evaluated our techniques on CEC2005 benchmark and Berkeley dataset. Our evaluation results demonstrate that SSAMFO outperforms traditional SSA and MFO algorithms, in terms of PSNR, SSIM and fitness value

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    A Hybrid Chimp Optimization Algorithm and Generalized Normal Distribution Algorithm with Opposition-Based Learning Strategy for Solving Data Clustering Problems

    Full text link
    This paper is concerned with data clustering to separate clusters based on the connectivity principle for categorizing similar and dissimilar data into different groups. Although classical clustering algorithms such as K-means are efficient techniques, they often trap in local optima and have a slow convergence rate in solving high-dimensional problems. To address these issues, many successful meta-heuristic optimization algorithms and intelligence-based methods have been introduced to attain the optimal solution in a reasonable time. They are designed to escape from a local optimum problem by allowing flexible movements or random behaviors. In this study, we attempt to conceptualize a powerful approach using the three main components: Chimp Optimization Algorithm (ChOA), Generalized Normal Distribution Algorithm (GNDA), and Opposition-Based Learning (OBL) method. Firstly, two versions of ChOA with two different independent groups' strategies and seven chaotic maps, entitled ChOA(I) and ChOA(II), are presented to achieve the best possible result for data clustering purposes. Secondly, a novel combination of ChOA and GNDA algorithms with the OBL strategy is devised to solve the major shortcomings of the original algorithms. Lastly, the proposed ChOAGNDA method is a Selective Opposition (SO) algorithm based on ChOA and GNDA, which can be used to tackle large and complex real-world optimization problems, particularly data clustering applications. The results are evaluated against seven popular meta-heuristic optimization algorithms and eight recent state-of-the-art clustering techniques. Experimental results illustrate that the proposed work significantly outperforms other existing methods in terms of the achievement in minimizing the Sum of Intra-Cluster Distances (SICD), obtaining the lowest Error Rate (ER), accelerating the convergence speed, and finding the optimal cluster centers.Comment: 48 pages, 14 Tables, 12 Figure

    Lightning search algorithm: a comprehensive survey

    Full text link
    The lightning search algorithm (LSA) is a novel meta-heuristic optimization method, which is proposed in 2015 to solve constraint optimization problems. This paper presents a comprehensive survey of the applications, variants, and results of the so-called LSA. In LSA, the best-obtained solution is defined to improve the effectiveness of the fitness function through the optimization process by finding the minimum or maximum costs to solve a specific problem. Meta-heuristics have grown the focus of researches in the optimization domain, because of the foundation of decision-making and assessment in addressing various optimization problems. A review of LSA variants is displayed in this paper, such as the basic, binary, modification, hybridization, improved, and others. Moreover, the classes of the LSA’s applications include the benchmark functions, machine learning applications, network applications, engineering applications, and others. Finally, the results of the LSA is compared with other optimization algorithms published in the literature. Presenting a survey and reviewing the LSA applications is the chief aim of this survey paper

    Enhancing Medical Imaging with Swarm Intelligence Algorithms

    Get PDF
    Medical imaging serves as an indispensable tool for the diagnosis and continuous monitoring of a diverse array of health conditions. A recent and exciting development in this field is the integration of Swarm Intelligence (SI) algorithms, which draw inspiration from the collective behaviors observed in social insects. This collaborative effort between nature and technology is progressively transforming medical image analysis, elevating both its quality and efficiency. In this book chapter we have presented various SI optimization algorithms like ACO, BCO, FA, FSA and WOA in detail. By exploring these algorithms, we aim to provide an in-depth understanding of their respective benefits and limitations when applied to medical image analysis. This knowledge empowers practitioners to choose the most appropriate algorithm for specific tasks, ensuring optimal outcomes. Furthermore, we shed light on SI-Based Segmentation methodologies, elucidating the advantages and constraints associated with these approaches. The ability of SI algorithms to innovate in the realms of image segmentation, feature extraction, and classification is emphasized, with a focus on their potential to enhance diagnostic accuracy and elevate the quality of patient care. One of the most exciting prospects on the horizon is the amalgamation of SI with cutting-edge technologies like deep learning and big data analytics. This union has the potential to revolutionize medical imaging by providing solutions that are not only more accurate and efficient but also highly clinically relevant. As these developments continue to unfold, the synergy between SI and emerging technologies promises to reshape the medical imaging landscape, ultimately enhancing patient care and improving healthcare outcomes in unprecedented way
    • …
    corecore