739 research outputs found

    Review on Leakage Resilient Key Exchange Security Model

    Get PDF
    In leakage resilient cryptography, leakage resilient key exchange protocols are constructed to defend against leakage attacks. Then, the key exchange protocol is proved with leakage resilient security model to determine whether its security proof can provide the security properties it claimed or to find out any unexamined flaw during protocol building. It is an interesting work to review the meaningful security properties provided by these security models. This work review how a leakage resilient security model for a key exchange protocol has been evolved over years according to the increasing security requirement which covers a different range of attacks. The relationship on how an adversary capability in the leakage resilient security model can be related to real-world attack scenarios is studied. The analysis work for each leakage resilient security model here enables a better knowledge on how an adversary query addresses different leakage attacks setting, thereby understand the motive of design for a cryptographic primitive in the security model

    Identity-Based Key Agreement for Blockchain-Powered Intelligent Edge

    Get PDF

    Leakage-Resilient Authenticated Key Exchange for Edge Artificial Intelligence

    Get PDF

    Input-shrinking functions: theory and application

    Get PDF
    In this thesis, we contribute to the emerging field of the Leakage-Resilient Cryptography by studying the problem of secure data storage on hardware that may leak information, introducing a new primitive, a leakage-resilient storage, and showing two different constructions of such storage scheme provably secure against a class of leakage functions that can depend only on some restricted part of the memory and against a class of computationally weak leakage functions, e.g. functions computable by small circuits, respectively. Our results come with instantiations and analysis of concrete parameters. Furthermore, as second contribution, we present our implementation in C programming language, using the cryptographic library of the OpenSSL project, of a two-party Authenticated Key Exchange (AKE) protocol, which allows a client and a server, who share a huge secret file, to securely compute a shared key, providing client-to-server authentication, also in the presence of active attackers. Following the work of Cash et al. (TCC 2007), we based our construction on a Weak Key Exchange (WKE) protocol, developed in the BRM, and a Password-based Authenticated Key Exchange (PAKE) protocol secure in the Universally Composable (UC) framework. The WKE protocol showed by Cash et al. uses an explicit construction of averaging sampler, which uses less random bits than the random choice but does not seem to be efficiently implementable in practice. In this thesis, we propose a WKE protocol similar but simpler than that one of Cash et al.: our protocol uses more randomness than the Cash et al.'s one, as it simply uses random choice instead of averaging sampler, but we are able to show an efficient implementation of it. Moreover, we formally adapt the security analysis of the WKE protocol of Cash et al. to our WKE protocol. To complete our AKE protocol, we implement the PAKE protocol showed secure in the UC framework by Abdalla et al. (CT-RSA 2008), which is more efficient than the Canetti et al.'s UC-PAKE protocol (EuroCrypt 2005) used in Cash et al.'s work. In our implementation of the WKE protocol, to achieve small constant communication complexity and amount of randomness, we rely on the Random Oracle (RO) model. However, we would like to note that in our implementation of the AKE protocol we need also a UC-PAKE protocol which already relies on RO, as it is impossible to achieve UC-PAKE in the standard model. In our work we focus not only on the theoretical aspects of the area, providing formal models and proofs, but also on the practical ones, analyzing instantiations, concrete parameters and implementation of the proposed solutions, to contribute to bridge the gap between theory and practice in this field

    BAN-GZKP: Optimal Zero Knowledge Proof based Scheme for Wireless Body Area Networks

    Get PDF
    BANZKP is the best to date Zero Knowledge Proof (ZKP) based secure lightweight and energy efficient authentication scheme designed for Wireless Area Network (WBAN). It is vulnerable to several security attacks such as the replay attack, Distributed Denial-of-Service (DDoS) attacks at sink and redundancy information crack. However, BANZKP needs an end-to-end authentication which is not compliant with the human body postural mobility. We propose a new scheme BAN-GZKP. Our scheme improves both the security and postural mobility resilience of BANZKP. Moreover, BAN-GZKP uses only a three-phase authentication which is optimal in the class of ZKP protocols. To fix the security vulnerabilities of BANZKP, BAN-GZKP uses a novel random key allocation and a Hop-by-Hop authentication definition. We further prove the reliability of our scheme to various attacks including those to which BANZKP is vulnerable. Furthermore, via extensive simulations we prove that our scheme, BAN-GZKP, outperforms BANZKP in terms of reliability to human body postural mobility for various network parameters (end-to-end delay, number of packets exchanged in the network, number of transmissions). We compared both schemes using representative convergecast strategies with various transmission rates and human postural mobility. Finally, it is important to mention that BAN-GZKP has no additional cost compared to BANZKP in terms memory, computational complexity or energy consumption

    A Pairing-Free, One Round Identity Based Authenticated Key Exchange Protocol Secure Against Memory-Scrapers

    Get PDF
    Security of a key exchange protocol is formally established through an abstract game between a challenger and an adversary. In this game the adversary can get various information which are modeled by giving the adversary access to appropriate oracle queries. Empowered with all these information, the adversary will try to break the protocol. This is modeled by a test query which asks the adversary to distinguish between a session key of a fresh session from a random session key; properly guessing which correctly leads the adversary to win the game. In this traditional model of security the adversary sees nothing apart from the input/ output relationship of the algorithms. However, in recent past an adversary could obtain several additional information beyond what he gets to learn in these black box models of computation, thanks to the availability of powerful malwares. This data exfiltration due to the attacks of Memory Scraper/Ram-Scraper-type malwares is an emerging threat. In order to realistically capture these advanced classes of threats posed by such malwares we propose a new security model for identity-based authenticated key exchange (ID-AKE) which we call the Identity based Strong Extended Canetti Krawzyck (ID-seCK) model. Our security model captures leakages of intermediate values by appropriate oracle queries given to the adversary. Following this, we propose a round optimal (i.e., single round) ID-AKE protocol for two-party settings. Our design assumes a hybrid system equipped with a bare minimal Trusted Platform Module (TPM) that can only perform group exponentiations. One of the major advantages of our construction is that it does not involve any pairing operations, works in prime order group and have a tight security reduction to the Gap Diffie Hellman (GDH) problem under our new ID-seCK model. Our scheme also has the capability to handle active adversaries while most of the previous ID-AKE protocols are secure only against passive adversaries. The security of our protocol is proved in the Random Oracle (RO) model

    On the Leakage-Resilient Key Exchange

    Get PDF
    Typically, secure channels are constructed from an authenticated key exchange (AKE) protocol, which authenticates the communicating parties based on long-term public keys and establishes secret session keys. In this paper we address the partial leakage of long-term secret keys of key exchange protocol participants due to various side-channel attacks. Security models for two-party authenticated key exchange protocols have developed over time to provide security even when the adversary learns certain secret values. This paper combines and extends the advances of security modelling for AKE protocols addressing more granular partial leakage of long-term secrets of protocol participants

    New Approach to Practical Leakage-Resilient Public-Key Cryptography

    Get PDF
    We present a new approach to construct several leakage-resilient cryptographic primitives, including leakage-resilient public-key encryption (PKE) schemes, authenticated key exchange (AKE) protocols and low-latency key exchange (LLKE) protocols. To this end, we introduce a new primitive called leakage-resilient non-interactive key exchange (LR-NIKE) protocol. We introduce a generic security model for LR-NIKE protocols, which can be instantiated in both the bounded and continuous-memory leakage ((B/C)-ML) settings. We then show a secure construction of LR-NIKE protocol in the bounded- memory leakage (BML) setting, that achieves an optimal leakage rate, i.e., 1-o(1). Finally, we show how to construct the aforementioned leakage-resilient primitives from such a LR-NIKE protocol as summarized below. All the primitives also achieve the same (optimal) leakage rate as the underlying LR-NIKE protocol. We show how to construct a leakage-resilient IND-CCA-2-secure PKE scheme in the BML model generically from a LR-NIKE protocol. Our construction differs from the state-of-the-art constructions of leakage-resilient IND-CCA-2-secure PKE schemes, which use hash proof techniques to achieve leakage-resilience. Moreover, our transformation preserves the leakage-rate of the underlying LR- NIKE and admits more efficient construction than previous such PKE constructions. We introduce a new leakage model for AKE protocols, in the BML setting. We show how to construct a leakage-resilient AKE protocol starting from LR-NIKE protocol. We introduce the first-ever leakage model for LLKE protocols in the BML setting, and the first construction of such a leakage-resilient LLKE from LR-NIKE protocol

    Secure data storage and retrieval in cloud computing

    Get PDF
    Nowadays cloud computing has been widely recognised as one of the most inuential information technologies because of its unprecedented advantages. In spite of its widely recognised social and economic benefits, in cloud computing customers lose the direct control of their data and completely rely on the cloud to manage their data and computation, which raises significant security and privacy concerns and is one of the major barriers to the adoption of public cloud by many organisations and individuals. Therefore, it is desirable to apply practical security approaches to address the security risks for the wide adoption of cloud computing
    • …
    corecore