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1 Leakage-Resilient Authenticated Key
2 Exchange for Edge Artificial Intelligence
3 Jie Zhang , Futai Zhang , Xin Huang, and Xin Liu

4 Abstract—EdgeArtificial Intelligence (AI) is a timely complement of cloud-based AI. By introducing intelligence to the edge, it alleviates

5 privacy concerns of streaming and storing data to the cloud, enables real-time operations wheremillisecondsmatter, and brings AI

6 services to remote areas with poor networking infrastructures. Security is a significant problem in Edge AI applications such as self-driving

7 cars and intelligent healthcare. Since the edge devices are empowered to process data and take actions, attacking and compromising

8 them can cause serious damage. However, the wide deployment of computationally limited devices in edge environments and the

9 increasing happening of side-channel (or leakage) attacks pose critical challenges to security. This article thereby aims to enhance the

10 security for Edge AI by designing and developing lightweight and leakage-resilient authenticated key exchange (LRAKE) protocols.

11 Comparedwith available LRAKE protocols, the proposed protocols in this article can be effortless applied in somemainstreaming security

12 and communication standards.Moreover, this article realizes prototypes and presents implementation details; and a use case of applying

13 the proposed protocol in Bluetooth 5.0 is illustrated. The theoretical design and implementation details will provide a guidance of applying

14 the LRAKE protocols in Edge AI applications.

15 Index Terms—Leakage-resilience, key exchange, side-channel attacks, edge computing, Edge AI

Ç

16 1 INTRODUCTION

17 ARTIFICIAL Intelligence (AI) based on the powerful cloud
18 platform is playing a significant role in the current
19 information-based society [1], [2], [3]. However, issues such
20 as privacy concerns, network delays and communication
21 quality impede its application in a wide range of scenarios
22 where privacy is required, milliseconds matter or network
23 infrastructures are poor [4], [5], [6], [7]. The intelligent edge
24 computing or Edge AI [8], [9], [10] is a timely complement of
25 current AI supported by cloud computing. By introducing
26 intelligence to the edge, it alleviates privacy concerns of
27 streaming and storing data to the cloud, enables real-time
28 operations, and brings AI services to remote areas with poor
29 networking infrastructures. Edge AI is anticipated to facili-
30 tate a wide range of applications such as self-driving cars,
31 intelligent healthcare, deep-sea exploration andmilitary.
32 Security is a significant problem in Edge AI applications.
33 First, since the edge devices are empowered to make deci-
34 sions and take actions, compromising them can cause more
35 serious damage than ever before. Second, applications such
36 as self-driving cars directly and closely related to individu-
37 als’ lives; therefore, wrong decisions or actions caused by

38security attacks could lead to traffic accidents with serious
39injuries. Finally, in applications such as military and health-
40care, privacy concern is an essential requirement.
41However, providing adequate security in edge environ-
42ments is often challenging. Recently the situation becomes
43more severe due to the increasing happening of side-
44channel attacks (demonstrated by a number of work on
45side-channel attacks reported in 2018 and 2019 in top con-
46ferences [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
47[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
48[33]). In the edge environments there are many computa-
49tionally limited edge and end devices such as gateways,
50routers, sensors and so on. Most of these devices can only
51provide very basic security due to their limited computa-
52tional ability, and cannot resist the side-channel attacks
53which leak information from long-term secrets in side-chan-
54nel manners such as recording and analyzing the timing
55[34], power [35] or electromagnetic-emission [36].
56To guarantee security in EdgeAI, one of the necessary pro-
57cedures is to establish secure channels among devices by
58authenticated key exchange (AKE). Many AKE protocols are
59proposed so far; however, most of them cannot resist the
60side-channel attacks. Some leakage-resilient AKE (LRAKE)
61protocols that can resist side-channel attacks are proposed in
62recent years [37], [38], [39], [40], [41], but none of them are
63adopted in practice. This reflexes a gap between theoretical
64achievements and realworld applications. We investigated
65some of these theoretical work and identified two probable
66reasons. First, none of these work provides prototypes or
67implementation details. As a result, there is no specific guid-
68ance about how to implement LRAKE protocols in practice.
69Second, these available LRAKE protocols are very different
70from existing AKE protocols in somemainstreaming security
71and communication standards in use such as Transport Layer
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72 Security (TLS), Bluetooth and so on. For example, there is
73 an increasing adoption of Elliptic Curve Diffie-Hellman
74 (ECDH)-based AKE protocols in many of these standards;
75 however, no mature ECDH-based LRAKE protocols are pre-
76 sented in the literature. As a result, it is impractical to include
77 existing non-ECDH-based LRAKE protocols in the future
78 versions of these standards.
79 This paper aims to enhance security of Edge AI by pre-
80 senting and developing lightweight LRAKE protocols with
81 adequate security and reasonable computational cost. The
82 main contributions are summarized as follows. First, an
83 ECDH-based LRAKE protocol (named p2) is presented in
84 detail; and its security is proved in the continuous after-the-
85 fact leakage-resilient extended Canetti-Krawczyk (CAFLR
86 eCK) model which is the strongest security model available
87 for AKE protocols. Second, a lightweight method is intro-
88 duced and applied to Protocol p2 to construct its lightweight
89 variant which is more friendly to computationally limited
90 devices. Third, prototypes are realized to evaluate the perfor-
91 mance of these protocols; and implementation details are
92 presented. Finally, a use case of applying the proposed pro-
93 tocols in the Bluetooth communication specification is illus-
94 trated. This demonstrates in great detail how to implement
95 the protocols in practice, and thereby is critical to narrow the
96 gap between theoretical designs and realworld applications.
97 The rest of this paper is organized as follows. Section 2
98 investigates available work on ECDH-based AKE and
99 LRAKE in the literature. Section 3 introduces the closely

100 related fundamentals of cryptography. Sections 4, 5 and 6
101 present the security models, propose the LRAKE protocol
102 and prove its security respectively. Section 7 illustrates the
103 construction of a lightweight LRAKE protocol. Section 8
104 evaluates the performance and presents implementation
105 details. Section 9 demonstrates the application of the pro-
106 posed protocols through a use case. Finally, Section 10 briefly
107 summarizes the paper and discusses futurework.

108 2 RELATED WORK

109 This section reviews ECDH-based AKE protocols in some
110 mainstreaming security and communication standards, and
111 summarizes closely related work on LRAKE available in the
112 literature.

113 2.1 ECDH-Based AKE Protocols

114 Diffie-Hellman (DH) key exchange is the basis for a number of
115 AKE protocols adopted in many security or communication
116 standards. Its elliptic curve version, the Elliptic Curve Diffie-
117 Hellman key exchange [42], can provide stronger security
118 with short keys, and thereby has become one of themost pop-
119 ular technique to implement industrial-grade AKE protocols,
120 especially in edge networking environments where there
121 exists a large number of computationally limited devices.
122 Below we summarize ECDH-based AKE protocols in
123 some international standards.

124 2.1.1 TLS

125 TLS is the most widely used security standard in the Inter-
126 net. It underlies the security of many higher-level protocols
127 such as the Hyper Text Transfer Protocol over Secure Socket

128Layer (HTTPs) and the Message Queuing Telemetry Trans-
129port (MQTT) protocol. TLS uses the handshake protocol to
130establish a secure channel between two communicating par-
131ties. The latest version TLS 1.3 [43] includes an ECDH-based
132handshake protocol which is essentially an ECDH-based
133AKE protocol.

1342.1.2 Bluetooth

135Bluetooth is a wireless communicating technology for porta-
136ble and/or fixed electronic devices. It is featured with short-
137range, robustness and low cost, and thereby is suitable for
138edge networks. The latest version Bluetooth Specification
1395.0 [44] presents four secure simple pairing protocols based
140on ECDH. These protocols are ECDH-based AKE protocols
141with different authentication measures.

1422.1.3 IEEE 802.15.6

143IEEE 802.15.6 [45] is the international standard for wireless
144body area networks (WBANs). It includes a suite of authenti-
145cated association protocols that generate authenticated shared
146keys for a node and a hub: the public key hidden association,
147the password authenticated association and the display
148authenticated association. These protocols are essentially
149ECDH-based AKE protocols with different authentication
150measures.
151Although the aforementioned AKE protocols are widely
152used in practice, none of them resists side-channel attacks.
153One probable reason is that the leakage-resilient cryptogra-
154phy in particular the leakage-resilient AKE is a relatively
155new research. There is a reasonable gap between theoretical
156achievements and realworld applications. In the following
157subsection we summarize some excellent theoretical work
158to identify the key to narrowing the gap.

1592.2 LRAKE Protocols

1602.2.1 Related Work on Security Model

161Before side-channel attacks are studied, the strongest secu-
162rity model for AKE protocols is the eCK model [46].
163Moriyama and Okamoto propose the first leakage-resilient
164version of eCK model and name it �-LR eCK model [47]. It
165formalizes leakage from long-term secrets in the model, but
166does not consider the leakage after the test session is deter-
167mined. Alawatugoda et al. study the after-the-fact leakage-
168resilient (AFLR) eCK model that models the leakage attacks
169after the determination of the test session [48], [49], [50], [51].
170They propose the bounded AFLR (BAFLR) eCK model and
171the continuousAFLR (CAFLR) eCKmodel. The later is stron-
172ger since it assumes the overall leakage is not bounded. We
173highly appreciate these pioneering and outstandingwork. In
174this paper we apply the CAFLR eCK model to prove the
175security of the proposed protocol.

1762.2.2 Related Work on LRAKE Protocols

177Shin et al. [37] proposepassword-basedAKEprotocols between
178a client and a server. By dividing the password into shares
179using a secret sharing scheme, the protocols can tolerate leak-
180age of password or verification data stored in servers. How-
181ever, their design does not resist leakage from computations.
182Ruan et al. [38], [39] propose a leakage-resilient password-
183based AKE protocol that uses the Dziembowski-Faust scheme
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184 to split the password into two parts. The protocol assumes
185 passwords are stored in both the client and the server, while in
186 normal scenarios passwords arememorized and input by users
187 in every protocol run on the client side. In [40] Ruan et al.
188 propose a general framework for constructing identity-based
189 AKE protocols in the BAFLR eCK security model, and show a
190 formal proof in the standard model. Chen et al. [41] propose
191 challenge-dependent leakage-resilient eCK (CLR-eCK) model
192 and a framework of constructing provably secure AKE proto-
193 cols under thatmodel.
194 Although there are some LRAKE protocols available in
195 the literature by now, none of these work involves a proto-
196 type. In addition, there is few mature work on ECDH-based
197 LRAKE protocols. Probably due to the lacking of prototypes
198 or implementation details of LRAKE protocols, in particular
199 the ECDH-based ones, none of the aforementioned security
200 and communication standards includes LRAKE protocols
201 so far.

202 3 PRELIMINARIES

203 This section introduces cryptographic primitives, including
204 underlying difficult assumptions and the Dziembowski-
205 Faust leakage- resilient storage scheme.

206 3.1 Elliptic Curve Key Exchange

207 3.1.1 Elliptic Curve Cryptography

208 One type of elliptic curve E that is suitable for cryptography
209 is defined as follows:

y2 ¼ x3 þ axþ bmod p;

211211

212 with a; b 2 GF ðpÞ and 4a3 þ 27b2 6¼ 0, where GF ðpÞ is prime
213 finite field of order p [52].
214 We mainly use two operations

215 � Point Addition. Let P ¼ ðx1; y1Þ and Q ¼ ðx2; y2Þ be
216 two points on E. The point addition between P and
217 Q is denoted P þQ. The result is also a point on E.
218 � Scalar Multiplication. Let t be an integer and P be a
219 point on E. The scalar multiplication between t and
220 P is denoted by t � P . It is defined as

t � P ¼ P þ P þ � � � þ P|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
t

:
222222

223

224 When t is a large integer, computing a scalar mul-
225 tiplication is much more time-consuming than com-
226 puting a point addition.

227 3.1.2 ECDH-Based Key Exchange

228 In the basic ECDH key exchange protocol, the two parti-
229 cipants A and B have the common public parameters
230 ðE;G; n; pÞ where E is an ellptic curve defined in the prime
231 finite field GF ðpÞ, G is the base point of E, and n is the order
232 of G.
233 To agree a shared key, A generates a random integer xA,
234 computes XA ¼ xA �G, and sends XA to B. B generates a
235 random integer xB, computes XB ¼ xB �G, and sends XB to
236 A. A can compute the shared key as K ¼ xA �XB. B can
237 compute the shared key asK ¼ xB �XA.

2383.2 Difficult Assumptions

2393.2.1 ECDLOG Assumption

240Definition 1 (ECDLOG Problem). Let E be an elliptic curve
241defined over a finite field GFðpÞ, P be a point on E of order n.
242The elliptic curve discrete logarithm (ECDLOG) problem over E
243is to find x such thatX ¼ x � P given P and a randomly chosen
244X on E if such an x exists, denoted by x ¼ ECDLOGðP;XÞ.
245The ECDLOG assumption holds in E if for all probabilistic
246polynomial time (PPT) algorithm A, the probability of solv-
247ing the ECDLOG problem in E is negligible for a given secu-
248rity parameter k [53].

2493.2.2 ECGDH Assumption

250Definition 2 (ECCDH Problem). Let E be an elliptic curve
251defined over a finite field GFðpÞ, P be a point on E of order n,
252and X and Y be randomly chosen points on E such that
253X ¼ x � P and Y ¼ y � P for some unknown x; y 2 ½0; n� 1�.
254Given P , X and Y , the elliptic curve computational Diffie-Hell-
255man (ECCDH) problem is to find the point Z ¼ ECDLOG
256ðP;XÞ � ECDLOGðP;Y Þ � P , denoted byZ ¼ ECCDHðP;X;Y Þ.

257Definition 3 (ECDDH Problem). Let E be an elliptic curve
258defined over a finite field GF ðpÞ, P be a point on E of order n,
259and X, Y and Z be randomly chosen points on E such that
260X ¼ x � P , Y ¼ y � P and Z ¼ z � P for some unknown
261x; y; z 2 ½0; n� 1�. Given P , X, Y and Z, the elliptic curve
262decisional Diffie-Hellman (ECDDH) problem is to output 1
263if Z ¼ ECCDHðP;X; Y Þ and 0 otherwise. We use ECDDH
264ðP;X; Y; ZÞ to denote Z ¼ ECDDHðP;X; Y Þ.
265Definition 4 (ECGDH Problem). Let E be an elliptic curve
266defined over a finite field GFðpÞ, P be a point on E of order n,
267and X and Y be points on E such that X ¼ x � P and Y ¼ y �
268P for some unknown x; y 2 ½0; n� 1�. Given P , X, Y and an
269oracle access to ECDDHð�; �; �Þ, the elliptic curve gap Diffie-
270Hellman (ECGDH) problem is to output ECCDHðP;X;Y Þ.
271The ECGDH assumption holds in E if for all PPT algorithm
272A, the probability of solving the ECGDH problem in E is
273neglibible for a given security parameter k.

2743.3 Leakage-Resilient Storage With
275Refreshing Protocol

276The Dziembowski-Faust leakage-resilient storage [54] con-
277tains a storage scheme and a refreshing protocol. Wewill use
278it as a building block in our protocol to protect long-term
279secrets from side-channel attacks.

2803.3.1 ð�; �Þ-Secure Leakage-Resilient Storage Scheme

281The storage scheme contains a pair of encode and decode
282algorithms. The encode algorithm splits a secret key sk into
283two separated parts skL and skR such that sk can be recov-
284ered from skL and skR through a decode algorithm. For any
285m;n 2 N , the storage scheme Ln;m

Z�q ¼ ðEncode
n;m
Z�q ;Decoden;mZ�q Þ

286stores secret sk 2 ðZ�q Þm in the followingmanner

287� Encoden;mZ�q ðskÞ: skL  
R ðZ�q Þnnfð0nÞg, then skR  ðZ�q Þn�m

288such that skL � skR ¼ sk and output ðskL; skRÞ.
289� Decoden;mZ�q ðskL; skRÞ: output skL � skR.

ZHANG ET AL.: LEAKAGE-RESILIENT AUTHENTICATED KEY EXCHANGE FOR PLEASE PROVIDE THE ORCID OF THE CORRESPONDING... 3
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290 After the encode algorithm sk is destroyed while skL and
291 skR are stored separately and secretly. The decode algo-
292 rithm will not be used in practice.

293 Definition 5 (�-limited Adversary). An adversary is defined
294 as a �-limited adversary if the amount of leakage obtained
295 by him/her from skL and skR is limited to � ¼ ð�1; �2Þ bits
296 in total.

297 Definition 6 (ð�; �Þ-secure Leakage-resilience of a
298 Storage Scheme). A storage scheme L ¼ ðEncode;DecodeÞ
299 is ð�; �Þ-secure leakage-resilient if for any random secrets sk0
300 and sk1 and any �-limited adversary, the leakage from Encode
301 ðsk0Þ ¼ ðsk0L; sk0RÞ and Encodeðsk1Þ ¼ ðsk1L; sk1RÞ are sta-
302 tistically �-close.

303 Theorem 1 [54]. Given that n > 20 �m, the storage scheme
304 Ln;m

Z�q ¼ ðEncode
n;m
Z�q ;Decoden;mZ�q Þ is ð�; neglðnÞÞ-secure against

305 an �-limited adversary for some negligible function negl and
306 � ¼ ð0:3nlog q; 0:3nlog qÞ

307 3.3.2 ðl; �0; �0Þ-Secure Leakage-Resilient

308 Refreshing Protocol

309 The refresh protocol refreshes the encoding to defend against
310 a continuous leakage. It updates skL and skR into sk0L and
311 sk0R. The refresh protocolRefreshðskL; skRÞworks as follows.

312 � Refreshing skR.

313 – AL
�! R ðZ�q Þnnfð0nÞg and BL  ðZ�q Þn�m where BL

314 is full rank and AL
�! � BL ¼ ð0mÞ.

315 – ML  ðZ�q Þn�n where ML is non-singular and
316 skL �ML ¼ AL

�!
.

317 – Compute X ¼ML � BL and sk0R ¼ skR þ X.
318 � Refreshing skL.

319 – AR
�! R ðZ�q Þnnfð0nÞg and BR  ðZ�q Þn�m where BR

320 is full rank and AR
�! � BR ¼ ð0mÞ.

321 – MR  ðZ�q Þn�n where MR is non-singular and
322 MR � sk0R ¼ BR.

323 – Compute Y ¼ AR
�! �MR and sk0L ¼ skL þY.

324 The refresh protocol is run after per computation involv-
325 ing skL and skR.

326 Definition 7 (�Refresh-limited Adversary). An adversary
327 is defined as a �-limited adversary if the amount of leakage
328 obtained by him/her from skL and skR is limited to � ¼ ð�1;
329 �2Þ bits in total.

330 Definition 8 (ðl; �0; �0Þ-secure Leakage-resilience of a
331 Refreshing Protocol). For a ð�; �Þ-secure leakage-resilient
332 storage scheme L ¼ ðEncode;DecodeÞ, a refresh protocol
333 RefreshðskL; skRÞ is ðl; �0; �0Þ-secure leakage-resilient if for any
334 random secrets sk0 and sk1 and any �0Refresh-limited adversary

335 against the protocol up to l rounds, the leakages from Refresh

336 ðsk0L; sk0RÞ and Refreshðsk1L; sk1RÞ are statistically �0-close.

337 Theorem 2. [54] Given that n � m=3, n � 16, l 2 N andLn;m
Z�q is

338 a ð�; �Þ-secure leakage-resilient storage scheme, the refreshing
339 protocol Refreshn;mZ�q is ðl; �=2; �0Þ-secure leakage-resilient for
340 Ln;m

Z�q .

3414 SECURITY MODELS

342This section summarizes two security models for AKE pro-
343tocols: 1) the eCK model [46] which is the strongest model
344before the arising of side-channel attacks and 2) its leakage-
345resilient version [48] which models side-channel attacks
346and continuous after-the-fact leakage.

3474.1 eCK Model

3484.1.1 Notations and Definitions

349� Parties and long-term keys: U ¼ fU1; . . . ; UNP
g is a

350set of NP parties. Each Ui (i 2 ½1; NP �) has a pair of
351long-term public and secret keys ðPKUi

; skUi
Þ. Each

352Ui owns at mostNS protocol sessions.
353� Sessions: Pj

U;V represents the jth session at the owner
354U with intended partner V .
355� Partnering: Two sessions Pj

U;V and Pj0
V;U are partners

356if all the following hold:

357– both Pj
U;V and Pj0

V;U have computed session keys;
358– messages sent from Pj

U;V are identical with that
359received by Pj0

V;U ;

360– messages sent from Pj0
V;U are identical with that

361received by Pj
U;V ;

362– exactly one of U and V is the initiator and the
363other is the responder.

3644.1.2 Adversarial Power

365The adversary A is a probabilistic polynomial time algo-
366rithm that can adaptively ask the following queries

367� SendðU; V; j;mÞ query. This query allowsA to run the
368protocol by sending messagem to the sessionPj

U;V . It
369returns the next message according to the protocol
370conversation so far.
371� SessionKeyRevealðU; V; jÞ query. This query allows A
372to reveal the session key of the session Pj

U;V if Pj
U;V

373has accepted a session key. It returns the session key
374of Pj

U;V .

375� EphemeralKeyRevealðU; V; jÞ query. This query allows
376A to reveal all the ephemeral secrets of the session
377Pj

U;V . It returns ephemeral secrets ofPj
U;V .

378� CorruptðUÞ query. This query allows A to corrupt a
379party U . It returns the long-term secrets of U .

3804.1.3 Fresh Sessions

381Freshness of sessions is defined to exclude corruptions
382which allow the adversary to trivially break any AKE proto-
383col. A sessionPj

U;V is fresh if and only if adversaries have not

384asked the following queries

385� if partner session does not exist
386– SessionKeyRevealðU; V; jÞ
387– CorruptðUÞ and EphemeralKeyRevealðU; V; jÞ
388– CorruptðV Þ
389� if partner session Pj0

V;U exists

390– SessionKeyRevealðU; V; jÞ
391– SessionKeyRevealðV; U; j0Þ
392– CorruptðUÞ and EphemeralKeyRevealðU; V; jÞ
393– CorruptðV Þ and EphemeralKeyRevealðV; U; j0Þ
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394 4.1.4 eCK Security Game

395 The eCK game simulates the attacks conducted by a
396 PPT adversary given the adversarial power defined in
397 Section 4.1.2.

398 � Initialization. The challenger generates keys using
399 the security parameter k.
400 � Queries. The adversary asks any of Send,
401 SessionKeyReveal, EphemeralKeyReveal and Corrupt
402 queries to any session at will.
403 � Choosing test session. The adversary chooses a fresh
404 session as the test session. The challenger chooses a
405 random bit b 2 f0; 1g. If b ¼ 1 the actual session key of
406 the test session is returned to the adversary, other-
407 wise a random string is returned.
408 � Queries after choosing test session. The adversary asks
409 any of Send, SessionKeyReveal, EphemeralKeyReveal
410 andCorrupt to any session atwill.
411 � Guess. The adversary output the bit b0 2 f0; 1g. If b0 ¼
412 b then the adversary wins the game.

413 4.1.5 Security Definition

414 Definition 9 (eCK Security). A protocol p is secure in the
415 eCK model if for any PPT adversary A, the advantage of A in
416 winning the eCK game AdveCKp ðAÞ is negligible in the security
417 parameter k. AdveCKp ðAÞ ¼ j2PrðSuccAÞ � 1j and PrðSuccAÞ
418 is the probability of A winning the eCK game.

419 4.2 �-CAFL-eCK Model

420 4.2.1 Modelling Leakage

421 The continuous leakage is model by a binary tuple of leakage
422 functions f ¼ ðf1i; f2iÞ and a leakage parameter � ¼ ð�1; �2Þ.
423 � f ¼ ðf1i; f2iÞ leaks information from each split of the
424 long-term secrets at occurrence i
425 � � ¼ ð�1; �2Þ bounds the leakage of f1i and f2i to �1

426 and �2 respectively. The overall leakage of different
427 occurrences is not bound.

428 4.2.2 Adversarial Power

429 The adversary is a PPT algorithm that can adaptively issue
430 the following queries

431 � SendðU; V; j;m; fÞ query. This query returns the next
432 message according to the protocol conversation
433 along with the leakage fðskUÞ.
434 � Session�KeyrevealðU; V; jÞ query. This query returns

435 the session key of Pj
U;V .

436 � Ephemeral�KeyrevealðU; V; jÞ query. This query

437 returns ephemeral keys of Pj
U;V .

438 � CorruptðUÞ query. This query returns the long-term
439 secrets of U .

440 4.2.3 Fresh Sessions

441 A session is fresh if and only if all of the following hold

442 � if partner session does not exist, adversaries have not
443 issued the following queries
444 – SessionKeyRevealðU; V; jÞ
445 – CorruptðUÞ and EphemeralKeyRevealðU; V; jÞ
446 – CorruptðV Þ

447� if partner session Pj0
V;U exists, adversaries have not

448issued the following queries
449– SessionKeyRevealðU; V; jÞ
450– SessionKeyRevealðV; U; j0Þ
451– CorruptðUÞ and EphemeralKeyRevealðU; V; jÞ
452– CorruptðV Þ and EphemeralKeyRevealðV; U; j0Þ
453� for each SendðU; �; �; fÞ query, the leakage from
454each split of the long-term secrets at occurrence i
455is bounded by � ¼ ð�1; �2Þ, i.e., jf1iðskUL

Þj 	 �1 and
456jf2iðskUR

Þj 	 �2

457� for each SendðV; �; �; fÞ query, the leakage from
458each split of the long-term secrets at occurrence i
459is bounded by � ¼ ð�1; �2Þ, i.e., jf1iðskVLÞj 	 �1 and
460jf2iðskVRÞj 	 �2

4614.2.4 �-CAFL-eCK Security Game

462The �-CAFL-eCK security game simulates the attacks con-
463ducted by a PPT adversary given the adversarial power
464defined in Section 4.2.2. The procedure is similar as that of
465eCK secure game.

4664.2.5 Security Definition

467Definition 10 (�-CAFL-eCK Security). A protocol p is
468secure in the �-CAFL-eCK model if for any PPT adversary A,
469the advantage Adv��CAFL�eCKp ðAÞ of A in winning the
470�-CAFL-eCK game is negligible in the security parameter k.

471Adv��CAFL�eCKp ðAÞ ¼ j2PrðSuccAÞ � 1j and PrðSuccAÞ is the
472probability ofA winning the �-CAFL-eCK game.

473Theorem 3. [51] A key exchange protocol P2 is �-CAFL-eCK-
474secure if the underlying key exchange protocol P1 is eCK-secure,
475and the underlying leakage-resilient storage scheme Ln;1

Z�q
476is ð2�; �Þ-secure leakage-resilient and the refreshing protocol
477Refreshn;1Z�q is ðl; �; �0Þ-secure leakage-resilient for some leakage

478limit � ¼ ð�1; �2Þ, negligible values � and �0 and positive integer
479l. The advantage Adv��CAFL�eCKP2 ðAÞ of a PPT adversary A
480against P2 in the �-CAFL-eCK secure game is 	 NP ðAdveCKP1

481ðAÞ þ �0Þ.

4825 LEAKAGE-RESILIENT AKE PROTOCOLS

483In this section, we first present an underlying protocol p1

484and then construct the �-CAFL-eCK-secure protocol p2

485based on p1 and the leakage-resilient storage scheme.

4865.1 Protocol p1

487Our underlying protocol p1 is an enhanced version of the
488YS-ECDH key exchange protocol [55]. Suppose A is the ini-
489tiator and B is the responder. A and B have the common
490public parameters ðE;G; n; p;H1; H2Þ, where E is an elliptic
491curve defined over the prime finite field GF ðpÞ, G is a base
492point of E, n is the order of G, and H1 : Zn ! Zn and
493H2 : E �E �E ! Zn are two independent hash functions.
494We use the assumption that ECDLOG and ECGDH hold in
495E. Let skA and PKA be the private and public keys of A
496where PKA ¼ skA �G, and skB and PKB ¼ skB �G be the
497private and public keys of B. Initially, A and B hold their
498own private and public keys and the public key of each
499other. The protocol is presented as follows:
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500 � A generates a random integer rA, computes uA ¼
501 rA þ skA, hA ¼ H1ðuAÞ and HA ¼ hA �G, and sends
502 HA to B.
503 � B generates a random integer rB, computes uB ¼
504 rB þ skB, hB ¼ H1ðuBÞ and HB ¼ hB �G, and sends
505 HB to A.
506 � A computes the shared key as follows:

K1 ¼ skA �HB

508508

509

K2 ¼ hA � PKB

511511

512

K3 ¼ hA �HB

514514

515

k ¼ H2ðK1; K2; K3Þ:
517517

518 B computes the shared key as follows

K1 ¼ hB � PKA

520520

521

K2 ¼ skB �HA

523523

524

K3 ¼ hB �HA

526526

527

k ¼ H2ðK1; K2; K3Þ:529529

530

531 After the protocol, A and B hold the shared key k. Below
532 we briefly explain why the two k computed by A and B are
533 identical.
534 First, theK1 computed by A and B are identical since

K1 ¼ skA �HB

¼ skA � hB �G
¼ hB � skA �G
¼ hB � PKA:536536

537

538 Second, theK2 computed by A and B are identical since

K2 ¼ hA � PKB

¼ hA � skB �G
¼ skB � hA �G
¼ skB �HA:540540

541

542 Finally, theK3 computed by A and B are identical since

K3 ¼ hA �HB

¼ hA � hB �G
¼ hB � hA �G
¼ hB �HA:

544544

545

546 5.2 Protocol p2

547 Protocol p2 is based on p1 and applies the leakage-resilient
548 storage scheme to protect long-term secret keys skA and skB
549 by splitting them into two parts and refreshing them per
550 computation. It includes an initialization procedure which
551 splits the private keys into two shares, a key exchange pro-
552 cedure which exchanges messages and generates the shared
553 key, and a refreshing procedure which refreshes the private
554 key shares. Let the public parameters ðE;G; n; p;H1; H2Þ
555 have the same meaning as in Protocol p1. The protocol is
556 presented as follows.

5575.2.1 Initialization

558� A runs the encode algorithm Encoden;1Z�q to encode skA

559into two n-dimensional vectors skAL
��! ¼ ðskAL1

; . . . ;
560skALnÞ and skAR

���! ¼ ðskAR1
; . . . ; skARnÞ. Then A stores

561skAL
��!

and skAR
���!

independently and destroys skA.

562� B runs the encode algorithm Encoden;1Z�q to encode skB

563into two n-dimensional vectors skBL
��! ¼ ðskBL1

; . . . ;
564skBLnÞ and skBR

���! ¼ ðskBR1
; . . . ; skBRnÞ. Then B stores

565skBL
��!

and skBR
���!

independently and destroys skB.

5665.2.2 Key Exchange

567� A chooses a random value rA, sets

vA
�! ¼ ðrA; skAL1

; . . . ; skALnÞ
569569

570

wA
�! ¼ ð1; skAR1

; . . . ; skARnÞ; 572572

573

574and computes the following values

uA ¼ vA
�! � wA

�!> 576576

577

hA ¼ H1ðuAÞ
579579

580

HA ¼ hA �G: 582582

583

584Then A sendsHA to B.
585� B chooses a random value rB, sets

vB
�! ¼ ðrB; skBL1

; . . . ; skBLnÞ
587587

588

wB
�! ¼ ð1; skBR1

; . . . ; skBRnÞ; 590590

591

592and computes the following values

uB ¼ vB
�! � wB

�!> 594594

595

hB ¼ H1ðuBÞ
597597

598

HB ¼ hB �G: 600600

601

602Then B sendsHB to A.
603� A computes the shared key k as follows1

tempA  R Z�q
605605

606

k11
!¼ tempA � skAL

��! 608608

609

k21 ¼ k11
!� skAR

���!> 611611

612

K3
1 ¼ k21 �HB

614614

615

K1 ¼ 1

tempA
�K3

1

617617

618

K2 ¼ hA � PKB

620620

621

K3 ¼ hA �HB

623623

624

k ¼ H2ðK1; K2; K3Þ; 626626

1. We use a temporary random value tempA to hind skA in
compuations.
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627 B computes the shared key k as follows

K1 ¼ hB � PKA

629629

630

tempB  R Z�q
632632

633

k12
!¼ tempB � skBL

��!635635

636

k22 ¼ k12
!� skBR

���!>638638

639

K3
2 ¼ k22 �HA

641641

642

K2 ¼ 1

tempB
�K3

2

644644

645

K3 ¼ hB �HA

647647

648

k ¼ H2ðK1; K2; K3Þ:
650650

651

652 5.2.3 Refreshing

653 � A runs the refresh protocol Refreshn;1Z�q to refresh
654 ðskAL; skARÞ.
655 � B runs the refresh protocol Refreshn;1Z�q to refresh
656 ðskBL; skBRÞ.

657 5.2.4 Correctness of Protocol p2

658 The session keys computed by A and B are identical.
659 First,K1 computed by A and B are identical since

K1 ¼ 1

tempA
�K3

1

¼ 1

tempA
� k21 �HB

¼ 1

tempA
� k11
!� skAR

���!> �HB

¼ 1

tempA
� tempA � skAL

��! � skAR
���!> �HB

¼ skAL
��! � skAR

���!> �HB

¼ skA �HB

¼ skA � hB �G
¼ hB � PKA:661661

662

663 Second,K2 computed by A and B are identical since

K2 ¼ 1

tempB
�K3

2

¼ 1

tempB
� k22 �HA

¼ 1

tempB
� k12
!� skBR

���!> �HA

¼ 1

tempB
� tempB � skBL

��! � skBR
���!> �HA

¼ skBL
��! � skBR

���!> �HA

¼ skB �HA

¼ skB � hA �G
¼ hA � PKB:

665665

666

667Finally,K3 computed by A and B are identical since

K3 ¼ hA �HB

¼ hA � hB �G
¼ hB � hA �G
¼ hB �HA:

669669

670

6716 SECURITY PROOF

672This section proves the �-CAFL-eCK security of Protocol p2

673given that n > 20.

6746.1 eCK-Security of Protocol p1

675Here we claim the eCK security of Protocol p1 in Theorem 4
676and provide a proof sketch. The detailed proof is given in
677Appendix A, which can be found on the Computer Society
678Digital Library at http://doi.ieeecomputersociety.org/
67910.1109/TDSC.2020.2967703.

680Theorem 4. Protocol p1 is eCK-secure under the ECGDH
681assumption if H1 and H2 are modeled by independent random
682oracles.

683Proof. Let M be a PPT adversary against Protocol p1 that
684runs in time 	 t, involves 	 NP honest parties and actives
685	 NS sessions.
686First, to prove the eCK security of Protocol p1, we
687need to prove that the advantage ofM in the eCK secu-
688rity game (denoted as AdveCKp1

ðMÞ) is negligible.
689Second, to prove AdveCKp1

ðMÞ is negligible, we con-
690struct a ECGDH solver S using M as a subroutine and
691prove that the advantage of S in solving the ECGDH
692problem is

AdvECGDHðSÞ � 1

2
�min

2

NS
2
;

1

NP �NS

� �
�AdveCKp1

ðMÞ:
694694

695The construction of S is as follows. S executes the eCK
696security game withM and modifies the data returned by
697the honest parties in such a way that ifM wins the eCK
698experiment, then S can reveal the solution to the ECGDH
699problem.
700Finally, under the ECGDH assumption, AdvECGDHðSÞ
701is negligible. Therefore, AdveCKp1

ðMÞ is negligible and
702Protocol p1 has eCK security. tu

7036.2 �-CAFL-eCK Security of Protocol p2

704Theorem 5. Given that the underlying protocol p1 is eCK-secure
705and n > 20, Protocol p2 is �-CAFL-eCK-secure with � ¼
706ð0:15nlog q; 0:15nlog qÞ.
707Proof. First, since in Protocol p2 m ¼ 1, the condition
708n > 20 guarantees that n > 20 �m, n � m=3 and n > 16.
709Therefore, according to Theorems 1 and 2, the leakage-
710resilient storage Ln;1

Z�q is ð2�; �Þ-secure leakage-resilient and
711the refreshing protocol Refreshn;1Z�q is ðl; �; �0Þ for l 2 N , neg-

712ligible � and �0 and � ¼ ð0:15nlog q; 0:15nlog qÞ.
713Second, since the underlying protocol p1 is eCK-secure,
714the underlying leakage-resilient storage scheme Ln;1

Z�q is

715ð2�; �Þ-secure leakage-resilient and the underlying refresh-

716ing protocol Refreshn;1Z�q is ðl; �; �0Þ-secure leakage-resilient,
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the advantage of a PPT adversary A against p2 in the
�-CAFL-eCK secure game is

Adv��CAFL�eCKp2
ðAÞ 	 NP � ðAdveCKp1

ðAÞ þ �0Þ;

according to Theorem 3.

717 Therefore, Protocol p2 is �-CAFL-eCK-secure with
718 � ¼ ð0:15n log q; 0:15n log qÞ. tu

719 6.3 Leakage Tolerance of Protocol p2

720 In Protocol p2, the length of the private key skA is log q bits;
721 and its two parts skAL and skAR are both of size n log q bits.
722 When n > 20, according to Theorem 5, the leakage parame-
723 ter is � ¼ ð0:15n log q; 0:15n log qÞ which means the leakages
724 of skA and skB are up to 0:15n log q bits respectively. The

725 leakage tolerance is 0:15n log q
n log q � 100% ¼ 15% for both skAL

726 and skAR. It means Protocol p2 can tolerate 15 percent leak-
727 age from two parts of privates keys in every protocol ses-
728 sion. The overall leakage is unbounded since continuous
729 leakage is allowed.

730 7 LIGHT-WEIGHTING PROTOCOL p1 AND p2

731 This section introduces a method which transfers computa-
732 tions from one party to its partner in an AKE protocol. We
733 have designed several lightweight AKE protocols using this
734 method [56], [57], [58]. In application scenarios where the two
735 communicating parties have great disparity in computational
736 power, the method will remarkably reduce the burden on the
737 weak side, and thereby improve the overall performance.
738 We first introduce the lightweight construction of Protocol
739 p1 and p2. Thenwe discuss the security concerns and propose
740 countermeasures.

741 7.1 Light-Weight Versions of Protocol p1 and p2

742 7.1.1 Light-Weighting of Protocol p1

743 Suppose the initiatorA is a computationally limited party and
744 the responderB is a powerful one.A andB have the common
745 public parameters ðE;G;n; p;HÞ where ðE;G;n; pÞ have the
746 same meaning as in Protocol p1 and H : E ! Zn is a hash
747 function. The key exchange procedure in the light-weight
748 version of Protocolp1 is presented as follows.

749 1. A generates a random integer rA, computes uA ¼
750 rA þ skA, and sends uA to B.
751 2. B generates a random integer rB, computes uB ¼
752 rB þ skB and UB ¼ uB �G, and sends UB to A.
753 3. A computes the shared key as follows:

Ktemp ¼ rA � ðUB � PKBÞ
755755

756

k ¼ HðKtempÞ;
758758

759 B computes the shared key as follows:

UA ¼ uA �G
761761

762

Ktemp ¼ rB � ðUA � PKAÞ
764764

765

k ¼ HðKtempÞ:767767

768

769 The light-weight version of Protocol p1 reduces the
770 computational burden on A by transferring an elliptic curve

771scalar multiplication from A to B. With the same method,
772we can reduce the burden on B for scenarios that the
773responder is much less powerful than the initiator.

7747.1.2 Light-Weighting of Protocol p2

775Still suppose A is much less powerful than B. A and B have
776the common public parameters ðE;G; n; p;HÞ where ðE;G;
777n; pÞ have the same meaning as in Protocol p2 and H : E !
778Zn is a hash function. The key exchange procedure in the
779light-weight version of Protocol p2 is presented as follows.

780� A chooses a random value RA, sets

vA
�! ¼ ðrA; skAL1

; . . . ; skALnÞ
782782

783

wA
�! ¼ ð1; skAR1

; . . . ; skARnÞ; 785785

786

787and computes

uA ¼ vA
�! � wA

�!>: 789789

790

791Then A sends uA to B.
792� B chooses a random value rB, sets

vB
�! ¼ ðrB; skBL1

; . . . ; skBLnÞ
794794

795

wB
�! ¼ ð1; skBR1

; . . . ; skBRnÞ; 797797

798

799and computes

uB ¼ vB
�! � wB

�!> 801801

802

UB ¼ uB �G:
804804

805Then B sends UB to A.
806� A computes the shared key k as follows

Ktemp ¼ rA � ðUB � PKBÞ
808808

809

k ¼ HðKtempÞ;
811811

812B computes the shared keyK as follows

UA ¼ uA �G
814814

815

Ktemp ¼ rB � ðUA � PKAÞ
817817

818

k ¼ HðKtempÞ: 820820

821

8227.2 Discussion

823The reducing of computations on one of the parties will
824inevitably weaken its security. For example, in the light-
825weight version of Protocol p1, after alleviate the computa-
826tions on A, an attacker C can impersonate B and establish a
827shared session key with A as follows

828� A generates random integer rA, computes uA ¼ rAþ
829skA, and sends uA to B.
830� B generates random integer rB, computes uB ¼ rBþ
831skB and UB ¼ uB �G, and sends UB to A.
832At this step, C intercepts the message from B to A
833and replaces UB with UC ¼ rC �Gþ PKB for some
834random value rC generated by C
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835 � A computes the shared key as follows:

Ktemp ¼ rA � ðUC � PKBÞ
837837

838

k ¼ HðKtempÞ;
840840

841 C computes the shared key as follows:

UA ¼ uA �G
843843

844

Ktemp ¼ rC � ðUA � PKAÞ
846846

847

k ¼ HðKtempÞ:849849

850

851 At the end of key exchange, A and C compute the same
852 session key k ¼ HðKtempÞ ¼ HðrA � rC �GÞ.
853 To remove the above attack, a countermeasure is to add an
854 authentication mechanism such as message authentication
855 codes or digital signatures for A authenticating B; this will
856 increase computations a bit. Another countermeasure is to
857 hide PKB from attackers; this method does not increase com-
858 putations but might be inconvenient in practice for some
859 scenarios.

860 8 PERFORMANCE

861 This section evaluates the performance in terms of computa-
862 tion for Protocol p1, p2 and their light-weight versions. We
863 first theoretically evaluate the computations by counting the
864 numbers of time-consuming operations; then we carry out a
865 set of experiments to test the performance in practice.

866 8.1 Evaluation

867 We count the number of elliptic curve scalar multiplications
868 of each protocol. The results are summarized in Table 1.
869 According to the table, the two light-weight protocols
870 require less scalar multiplications on A and B compared
871 with Protocol p1 and p2. Meanwhile, they require less scalar
872 multiplication on A than on B. We can draw the following
873 two conclusions:

874 � the lightweight versions have better performance in
875 terms of computations, compared with Protocol p1

876 and p2; and
877 � the lightweight versions are more friendly to A.
878 In the next subsection we use a set of experiments to ver-
879 ify the above conclusions and to show to what extent the

880light-weight versions have improved the performance com-
881pared with Protocol p1 and p2.

8828.2 Experiments

8838.2.1 Setup

884We realize prototypes of Protocol p1, p2 and their light-
885weight versions using Python programming language. The
886hash functions are realized through Message-Digest Algo-
887rithm (MD5). The communication is realized through socket
888programming with Transmission Control Protocol (TCP).
889The experimental environment is explained in Tables 2
890and 3. In the experiments, we run the prototypes on four
891recommended curves in Federal Information Processing
892Standards (FIPS) [59], [60]: P-192, P-256, P-384 and P-521.
893The two communicating parties A and B are simulated by
894two virtual machines with the same configuration run on
895the same laptop (Table 3 ).

8968.2.2 Results and Analysis

897In the experiments, we run the prototypes for ten times
898between two virtual machines. The average runtime is ana-
899lyzed in Fig. 1.
900According to Fig. 1, for all the four elliptic curves, Protocol
901p2 is themost time-consuming protocol. The two lightweight
902versions have less computing time on A than on B; and they
903have much less overall computing time than both Protocol
904p1 and p2. The experimental results accord with the theoreti-
905cal evaluation in Table 1.

9069 USE CASE

907This section demonstrates how to apply the proposed proto-
908cols in Bluetooth. The original protocol in Bluetooth 5.0 is set
909as benchmark and comparedwith the leakage-resilient ones.

9109.1 Overview

911Bluetooth is a significant wireless communication technique in
912the edge networks. It connects smart devices in Edge AI appli-
913cations such as smart building, smart city, smart industrial
914and so on. ECDH-based AKE protocols are supported in the
915latest version Bluetooth specification 5.0. The protocols are
916called Secure Simple Pairing protocols in the specification.
917They basically includes five phases as follows.

TABLE 1
Evaluation: Numbers of Scalar Multiplications

p1 p2 light-weight p1 light-weight p2

A 4 5 1 1
B 4 5 3 3
Overall 8 10 4 4

TABLE 2
Experimental Environment: Software

Item Implementation Details

Programming Language Python 2.7
Communication Socket programming with TCP
Elliptic Curve FIPS P-192, P-256, P-384 and P-521
Hash Function MD5

TABLE 3
Experimental Environment: Hardware

Device Operating System Base Memory Storage CPU

A Ubuntu 16.04.3 (64-bit) 1,024 MB 10 GB 1 CPU
B Ubuntu 16.04.3 (64-bit) 1,024 MB 10 GB 1 CPU
Laptop Windows 10 (64-bit) 8 GB 256 G Intel(R) Core(TM) i5-8250U @ 1.60 GHz 1.80 GHz
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918 � Phase 1: Public Key Exchange. The devices generate
919 their ECDH public and private keys and exchange
920 the public keys.
921 � Phase 2: Authentication Stage 1. The devices select
922 and exchange random values, and authenticate the
923 exchanged data in Phase 1 and 2.
924 � Phase 3: Authentication Stage 2. The devices compute
925 the shared key (DHKey) and check if they have the
926 sameDHKey.
927 � Phase 4: Link Key Calculation. The devices derive
928 the link key from the DHKey.
929 � Phase 5: Link Manager Protocol Authentication and
930 Encryption. This phase includes authentication and
931 generation of the encryption key.
932 The first four phases constitute a basic ECDH-based AKE
933 protocol that does not resist side-channel attacks. In the fol-
934 lowing two subsections we demonstrate how to apply our
935 LRAKE protocols in Bluetooth 5.0.

936 9.2 Application of Protocol p2

937 Suppose the initiator A and the responder B are two
938 Bluetooth-connected devices with similar computational
939 power.We apply Protocol p2 in the Secure Pairing procedures
940 as follows.

941� Phase 1. This phase applies the initialization proce-
942dure of Protocol p2. After the generation of ECDH
943public and private keys, each private key is encoded
944into two 21-dimension vectors. The vectors are
945securely stored and the private keys are destroyed.
946Then A and B exchange the public keys.
947� Phase 2. This phase applies the key exchange and
948refreshing procedures of Protocol p2, except that the
949last step of key exchange procedure is not executed.
950� Phase 3. This phase applies the last step of key
951exchange procedure in Protocol p2 to compute the
952DHKey.
953� Phase 4 and Phase 5 are the same as those in Blue-
954tooth 5.0.

955Compared with the Secure Simple Pairing in Bluetooth 5.0,
956in each protocol run the above procedures can tolerate up to 15
957percent leakage from each 21-dimension vector.

9589.3 Application of Light-Weighting Protocol p2

959Now, suppose the initiator A is a computationally limited
960sensor and the responder B is a gateway that is more

Fig. 1. Average computing time of Protocol p1;p2 and their lightweight versions on P-192, P-256, P-384 and P-521.

Fig. 2. Size of compiled files.
Fig. 3. Average computing time of Protocols in Section 9.2, Section 9.3
and Bluetooth 5.0 on P-256.
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961 powerful than A. We apply the lightweight version of Proto-
962 col p2 in the Secure Pairing procedures as follows.

963 � Phase 1. This phase is the same as Phase 1 in
964 Section 9.2.
965 � Phase 2. This phase is the same as Phase 2 in
966 Section 9.2 excepted that the key exchange procedure
967 adopted here is the one of lightweight Protocol p2.
968 � Phase 3. This phase applies the last step of key
969 exchange procedure in lightweight Protocol p2 to
970 compute the DHKey.
971 � Phase 4 and Phase 5 are the same as those in Blue-
972 tooth 5.0.
973 Compared with the Secure Simple Pairing in Bluetooth
974 5.0, the above procedures possess not only leakage-resilient
975 feature but also better performance. In addition, the security
976 concerns discussed in Section 7.2 is addressed by the
977 authentication measures provided in Bluetooth 5.0.

978 9.4 Comparison

979 We realize prototypes of the Secure Simple Paring protocol
980 in Bluetooth 5.0, its leakage-resilient version in Section 9.2
981 and light-weighting version in Section 9.3. The software and
982 hardware environments are the same as Tables 2 and 3 in
983 Section 8.2.1.
984 Performance of the three protocols are compared in
985 Figs. 2, 3 and Table 4. Fig. 2 compares the size of compile
986 files. This evaluates the storage requirements of each proto-
987 col. In Fig. 3, the average runtime of each protocol with P-
988 256 are compared. The leakage-resilient protocol in
989 Section 9.2 has the largest overall runtime. The increase of
990 runtime is reasonable since this protocol has the strongest
991 security. The lightweight protocol in Section 9.3 has similar
992 overall runtime as the original protocol in Bluetooth 5.0.
993 Both can be good alternative AKE protocols in future ver-
994 sions of Bluetooth. A more comprehensive comparison is
995 summarized in Table 4.

996 10 CONCLUSION

997 In this paperwe presented an LRAKEprotocol that is proved
998 secure under the CAFLR-eCK model. To improve its perfor-
999 mance, particularly in the edge environments where limited

1000 devices are wide deployed, a lightweight construction was
1001 presented to shift some computations from the limited party
1002 to its more powerful communicating partner. The proposed
1003 protocols will help to enhance the security for Edge AI.
1004 To evaluate the performance and study the usability of
1005 the proposed protocols, prototypes were realized and a set
1006 of experiments were carried out. Implementation details
1007 were also presented. Moreover, a use case for Bluetooth 5.0
1008 was illustrated. The theoretical design and implementation
1009 details will provide a guidance to future applications.

1010The Dziembowski-Faust leakage-resilient storage and
1011refereshing method used in this paper is a bit complicated,
1012though it can achieve high security level. In our future work,
1013we plan to study leakage-resilient AKA protocols con-
1014structed by othermethods.
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