1,423 research outputs found

    An HMM-Based Framework for Supporting Accurate Classification of Music Datasets

    Get PDF
    open3In this paper, we use Hidden Markov Models (HMM) and Mel-Frequency Cepstral Coecients (MFCC) to build statistical models of classical music composers directly from the music datasets. Several musical pieces are divided by instruments (String, Piano, Chorus, Orchestra), and, for each instrument, statistical models of the composers are computed.We selected 19 dierent composers spanning four centuries by using a total number of 400 musical pieces. Each musical piece is classied as belonging to a composer if the corresponding HMM gives the highest likelihood for that piece. We show that the so-developed models can be used to obtain useful information on the correlation between the composers. Moreover, by using the maximum likelihood approach, we also classied the instrumentation used by the same composer. Besides as an analysis tool, the described approach has been used as a classier. This overall originates an HMM-based framework for supporting accurate classication of music datasets. On a dataset of String Quartet movements, we obtained an average composer classication accuracy of more than 96%. As regards instrumentation classication, we obtained an average classication of slightly less than 100% for Piano, Orchestra and String Quartet. In this paper, the most signicant results coming from our experimental assessment and analysis are reported and discussed in detail.openCuzzocrea, Alfredo; Mumolo, Enzo; Vercelli, GianniCuzzocrea, Alfredo; Mumolo, Enzo; Vercelli, Giann

    STUDY OF HAND GESTURE RECOGNITION AND CLASSIFICATION

    Get PDF
    To recognize different hand gestures and achieve efficient classification to understand static and dynamic hand movements used for communications.Static and dynamic hand movements are first captured using gesture recognition devices including Kinect device, hand movement sensors, connecting electrodes, and accelerometers. These gestures are processed using hand gesture recognition algorithms such as multivariate fuzzy decision tree, hidden Markov models (HMM), dynamic time warping framework, latent regression forest, support vector machine, and surface electromyogram. Hand movements made by both single and double hands are captured by gesture capture devices with proper illumination conditions. These captured gestures are processed for occlusions and fingers close interactions for identification of right gesture and to classify the gesture and ignore the intermittent gestures. Real-time hand gestures recognition needs robust algorithms like HMM to detect only the intended gesture. Classified gestures are then compared for the effectiveness with training and tested standard datasets like sign language alphabets and KTH datasets. Hand gesture recognition plays a very important role in some of the applications such as sign language recognition, robotics, television control, rehabilitation, and music orchestration

    A Survey of Applications and Human Motion Recognition with Microsoft Kinect

    Get PDF
    Microsoft Kinect, a low-cost motion sensing device, enables users to interact with computers or game consoles naturally through gestures and spoken commands without any other peripheral equipment. As such, it has commanded intense interests in research and development on the Kinect technology. In this paper, we present, a comprehensive survey on Kinect applications, and the latest research and development on motion recognition using data captured by the Kinect sensor. On the applications front, we review the applications of the Kinect technology in a variety of areas, including healthcare, education and performing arts, robotics, sign language recognition, retail services, workplace safety training, as well as 3D reconstructions. On the technology front, we provide an overview of the main features of both versions of the Kinect sensor together with the depth sensing technologies used, and review literatures on human motion recognition techniques used in Kinect applications. We provide a classification of motion recognition techniques to highlight the different approaches used in human motion recognition. Furthermore, we compile a list of publicly available Kinect datasets. These datasets are valuable resources for researchers to investigate better methods for human motion recognition and lower-level computer vision tasks such as segmentation, object detection and human pose estimation

    Evaluation of classical machine learning techniques towards urban sound recognition embedded systems

    Get PDF
    Automatic urban sound classification is a desirable capability for urban monitoring systems, allowing real-time monitoring of urban environments and recognition of events. Current embedded systems provide enough computational power to perform real-time urban audio recognition. Using such devices for the edge computation when acting as nodes of Wireless Sensor Networks (WSN) drastically alleviates the required bandwidth consumption. In this paper, we evaluate classical Machine Learning (ML) techniques for urban sound classification on embedded devices with respect to accuracy and execution time. This evaluation provides a real estimation of what can be expected when performing urban sound classification on such constrained devices. In addition, a cascade approach is also proposed to combine ML techniques by exploiting embedded characteristics such as pipeline or multi-thread execution present in current embedded devices. The accuracy of this approach is similar to the traditional solutions, but provides in addition more flexibility to prioritize accuracy or timing

    An End-to-End Neural Network for Polyphonic Piano Music Transcription

    Get PDF
    We present a supervised neural network model for polyphonic piano music transcription. The architecture of the proposed model is analogous to speech recognition systems and comprises an acoustic model and a music language model. The acoustic model is a neural network used for estimating the probabilities of pitches in a frame of audio. The language model is a recurrent neural network that models the correlations between pitch combinations over time. The proposed model is general and can be used to transcribe polyphonic music without imposing any constraints on the polyphony. The acoustic and language model predictions are combined using a probabilistic graphical model. Inference over the output variables is performed using the beam search algorithm. We perform two sets of experiments. We investigate various neural network architectures for the acoustic models and also investigate the effect of combining acoustic and music language model predictions using the proposed architecture. We compare performance of the neural network based acoustic models with two popular unsupervised acoustic models. Results show that convolutional neural network acoustic models yields the best performance across all evaluation metrics. We also observe improved performance with the application of the music language models. Finally, we present an efficient variant of beam search that improves performance and reduces run-times by an order of magnitude, making the model suitable for real-time applications
    • …
    corecore