488 research outputs found

    Knowledge-oriented task and motion planning for multiple mobile robots

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of experimental and theoretical artificial intelligence, published online: 30 Nov 2018 available online: https://www.tandfonline.com/doi/abs/10.1080/0952813X.2018.1544280Robotic systems composed of several mobile robots moving in human environments pose several problems at perception, planning and control levels. In these environments, there may be obstacles obstructing the paths, which robots can remove by pushing or pulling them. At planning level, therefore, an efficient combination of task and motion planning is required. Even more if we assume a cooperative system in which robots can collaborate with each other by e.g. pushing together a heavy obstacle or by one robot clearing the way to another one. In this paper, we cope with this problem by proposing Âż-TMP, a smart combination of an heuristic task planner based on the Fast Forward method, a physics-based motion planner, and reasoning processes over the ontologies that code the knowledge on the problem. The significance of the proposal relies on how geometric and physics information is used within the computation of the heuristics in order to guide the symbolic search, i.e. how an artificial intelligence planning method is combined with low-level motion planning to achieve a feasible sequence of actions (composed of collision-free motions plus physically-feasible push/pull actions). The proposal has been validated with several simulated scenarios (using up to five robots that need to collaborate with each other to reach the goal state), showing how the method is able to solve challenging situations and also find an efficient solution in terms of power.Peer ReviewedPostprint (author's final draft

    Integrating realistic human group behaviors into a networked 3D virtual environment

    Get PDF
    Distributed Interactive Simulation DIS-Java-VRML Working Group. Includes supplementary material provided from the contents of a CD-Rom issued containing the work of all three Working Group members and all supplementary material, in compressed format.Virtual humans operating inside large-scale virtual environments (VE) are typically controlled as single entities. Coordination of group activity and movement is usually the responsibility of their real world human controllers. Georeferencing coordinate systems, single-precision versus double-precision number representation and network delay requirements make group operations difficult. Mounting multiple humans inside shared or single vehicles, (i.e. air-assault operations, mechanized infantry operations, or small boat/riverine operations) with high fidelity is often impossible. The approach taken in this thesis is to reengineer the DIS-Java-VRML Capture the Flag game geolocated at Fort Irwin, California to allow the inclusion of human entities. Human operators are given the capability of aggregating or mounting nonhuman entities for coordinated actions. Additionally, rapid content creation of human entities is addressed through the development of a native tag set for the Humanoid Animation (H-Anim) 1.1 Specification in Extensible 3D (X3D). Conventions are demonstrated for integrating the DIS-Java-VRML and H-Anim draft standards using either VRML97 or X3D encodings. The result of this work is an interface to aggregate and control articulated humans using an existing model with a standardized motion library in a networked virtual environment. Virtual human avatars can be mounted and unmounted from aggregation entities. Simple demonstration examples show coordinated tactical maneuver among multiple humans with and without vehicles. Live 3D visualization of animated humanoids on realistic terrain is then portrayed inside freely available web browsers.Approved for public release; distribution is unlimited

    Automatic Building of a Repository for Component-based Synthesis of Warehouse Simulation Models

    Get PDF
    Simulations are a common tool in the warehouse planning and adoption process for evaluating and comparing variants of a storage system. But simulation modeling is a complex and time-consuming task. Due to limited resources, often not all possible system variants can be modeled. A promising solution is the migration of an existing simulation model to enable component-based software synthesis. An inhabitation algorithm composes structural variants according to a synthesis goal given a repository of typed components. In this paper, we automatically generate a repository and synthesize simulation model variants using a block stacking warehouse simulation model as an example

    Optimal task and motion planning and execution for human-robot multi-agent systems in dynamic environments

    Full text link
    Combining symbolic and geometric reasoning in multi-agent systems is a challenging task that involves planning, scheduling, and synchronization problems. Existing works overlooked the variability of task duration and geometric feasibility that is intrinsic to these systems because of the interaction between agents and the environment. We propose a combined task and motion planning approach to optimize sequencing, assignment, and execution of tasks under temporal and spatial variability. The framework relies on decoupling tasks and actions, where an action is one possible geometric realization of a symbolic task. At the task level, timeline-based planning deals with temporal constraints, duration variability, and synergic assignment of tasks. At the action level, online motion planning plans for the actual movements dealing with environmental changes. We demonstrate the approach effectiveness in a collaborative manufacturing scenario, in which a robotic arm and a human worker shall assemble a mosaic in the shortest time possible. Compared with existing works, our approach applies to a broader range of applications and reduces the execution time of the process.Comment: 12 pages, 6 figures, accepted for publication on IEEE Transactions on Cybernetics in March 202
    • …
    corecore