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ABSTRACT 
 

 
Virtual humans operating inside large-scale virtual environments (VE) are 

typically controlled as single entities. Coordination of group activity and movement is 

usually the responsibility of their “real world” human controllers.  Georeferencing 

coordinate systems, single-precision versus double-precision number representation and 

network delay requirements make group operations difficult. Mounting multiple humans 

inside shared or single vehicles, (i.e. air-assault operations, mechanized infantry 

operations, or small boat/riverine operations) with high fidelity is often impossible. 

The approach taken in this thesis is to reengineer the DIS-Java-VRML Capture 

the Flag game geolocated at Fort Irwin, California to allow the inclusion of human 

entities. Human operators are given the capability of aggregating or mounting nonhuman 

entities for coordinated actions.  Additionally, rapid content creation of human entities is 

addressed through the development of a native tag set for the Humanoid Animation (H-

Anim) 1.1 Specification in Extensible 3D (X3D).  Conventions are demonstrated for 

integrating the DIS-Java-VRML and H-Anim draft standards using either VRML97 or 

X3D encodings. 

The result of this work is an interface to aggregate and control articulated humans 

using an existing model with a standardized motion library in a networked virtual 

environment.  Virtual human avatars can be mounted and unmounted from aggregation 

entities.  Simple demonstration examples show coordinated tactical maneuver among 

multiple humans with and without vehicles.  Live 3D visualization of animated 

humanoids on realistic terrain is then portrayed inside freely available web browsers. 
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I. INTRODUCTION 

To                                                                                                    
The Inhabitants of SPACE IN GENERAL                                                         

And H.C. IN PARTICULAR                                                                            
This Work is Dedicated                                                                               

By a Humble Native of Flatland                                                                      
In the Hope that                                                                                         

Even as he was Initiated into the Mysteries                                                 
Of THREE Dimensions                                                                             

Having been previously conversant                                                        
With ONLY TWO                                                                                      

So the Citizens of that Celestial Region                                                         
May aspire yet higher and higher                                                                

To the Secrets of FOUR FIVE OR EVEN SIX Dimensions                    
Thereby contributing                                                                                    

To The Enlargement of THE IMAGINATION ….                                      
– Dedication from Flatland: A Romance of Many Dimensions                   

by A. Square (Abbott, 1992)    

                  

A. BACKGROUND 

Visualization of a battle space in three dimensions (3D) is a traditional training 

task for combat arms leaders of the United States Army.  The Army tries to develop this 

skill through formalized professional training in courses, exercises such as Staff Rides to 

historical battle sites, terrain walks, and Tactical Exercises without Troops (TEWTs), as 

well as through the use of briefing techniques such as sand tables and operational 

overlays.  Even though not yet in widespread use, this skill can be further developed 

through simulations in virtual environments. 

The Department of Defense (DoD) is the largest developer of networked virtual 

environments, having developed SIMNET and Distributed Interactive Simulation (DIS), 
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and was also an early explorer in large-scale virtual environments (LSVEs) (Singhal, 

1999).  DoD is committed to the use of training in virtual environments to improve the 

quality of its “warriors” more effectively and economically.  However, in high-resolution 

simulations, the focus has been on vehicular systems being exercised as individual 

entities.  The use of human entities or dismounted infantry (DI) has been limited in such 

virtual simulations (Reece, 2000). 

This thesis is an effort to add human entities into the existing virtual environment 

of DIS-Java-VRML’s canonical game example, Capture the Flag (CTF).  These entities 

are capable of being controlled as an aggregate unit (fire team) or individually.  They can 

also aggregate or mount, move with and move within a non-human entity (in this case, a 

helicopter).  Such mounting enables precise positioning and control of related entities 

even when operating distant, distributed controllers over georeferenced terrain. 

B. MOTIVATION 

The motivation for this project is to provide higher headquarters, mission planners 

and mission executors with a visualization tool that can realistically display a mission’s 

area of operations.  Additionally, the design of this project facilitates the sharing of ideas, 

information and operational concepts based on the visualization even if headquarters, 

planners and executors are not geographically collocated.  Three possible uses are as a 

virtual sand table, a networked virtual rehearsal tool and a tool for after-action review 

(AAR).  Specific details regarding these scenarios are now examined. 
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1. 3D Mission Visualization – Virtual Sand Table 

Actual terrain models, commonly referred to as sand tables, are detailed,  

scaled-3D representations of a geographical region representing an area of operations.  

Sand tables typically show accurate or exaggerated elevation and relief.  Sand tables are 

usually large (between one and ten meters squared) and are often established in a central 

location within the planning area to allow multiple planners to simultaneously access it 

and to as an area to conduct staff coordination.  Such models enable the inclusion of 

mission graphics to include routes, boundaries, targets and objective areas, as well as 

troop locations and decision-support templating.  Sand tables provide excellent 

understanding and knowledge of the terrain and also provide a means for a unit to 

visualize a complete mission from start to finish.   

Ideally, a virtual sand table may provide rapid generation of a geolocated 3D 

model for any location in the world.  Subsequently, it also needs to allow the inclusion of 

mission graphics and troop locations.  It then can be used in support of the intelligence 

preparation of the battlefield (IPB) process and decision process, used by the US Army 

and Marine Corps, in such areas as course of action (COA) development and COA 

selection, war-gaming, and the creation of synchronization matrices and decision-support 

templates.  The IPB process, synchronization matrices and decision-support templates are 

discussed in Chapter II.   

2. Networked Virtual Rehearsal 

Mission executors, particularly Special Operation Forces (SOF), are commonly 

geographically disparate from their command elements, final mission approval authority, 
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and even support elements such as aviation or sea borne transport.  A tool that allows all 

participants to rehearse a mission from their current, disjoint locations creates greater 

understanding of overall mission roles, and might also be done in a manner more secure 

and requiring less bandwidth then current procedures.  In terms of mission approval, such 

a capability can allow the decision maker to see a 3D execution of the mission rather than 

solely a written plan of execution with supporting 2D graphics.  It further allows 

supporting forces greater understanding of the supported forces planned actions in cases 

of emergencies, mission changes during execution or contingencies.

3. Networked After-Action Review (AAR) or Debriefing Tool 

After-actions reviews (AAR) are a critical element in the success and 

improvement of military readiness and training.  Unfortunately, AARs are often 

constrained by a lack of resources in data recording and visual presentation of spatial 

relations during the reviewed events.  Debriefings are often troublesome because of an 

inability to appropriately describe or understand complex spatial data regarding a mission 

setting.  A tool that provides the ability to display spatial relationships in a 3D 

representation of the actual mission or training location can certainly augment current 

practice to provide a more thorough understanding and better learning experience.  

Additionally, for debriefings, playback of recorded behaviors allows a more complete and 

accurate report.  Addition of “what if?” scenario alternatives might provide significant 

new planning and training capabilities.  
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C. OBJECTIVES 

The objective of this research is to provide an interface to aggregate and control 

articulated humans in a networked virtual environment.  To achieve this objective, the 

following areas are addressed: 

 

• Virtual human avatars must have an articulated joint structure and at least 
a limited motion library in order to model realistic movement. 

• A set of rule-based physical and logical behaviors for groups of humans 
must be developed and implemented in order to execute basic tactical 
formations and activities. 

• Human entities must be able to aggregate into a group or mount other non-
human entities (such as vehicles) and then separate back to individual 
entity control.  Otherwise, the high-precision relative motion needed for 
group activities is not possible across network delays or in georeferenced 
locations. 

• The source code for this research ought to be platform-independent and 
open-source distribution.  Ideally, the code ought to be deployable (in the 
military sense) worldwide with a military unit regardless of their computer 
systems, operating efficiently if not optimally. 

• The final product must be “visually compelling” to make it a viable 
visualization tool.  The system must have enough appeal, usability and 
practical value to encourage user acceptance. 

D. THESIS OUTLINE 

This chapter describes the background, motivation and objectives for integrating 

human group behaviors into the DIS-Java-VRML CTF game.  Chapter II provides 

background of DIS-Java-VRML and the CTF game, humanoid animation, the Virtual 
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Reality Modeling Language (VRML) and Extensible 3D (X3D), and NPSNET IV work 

with human animation.  Chapter III provides a clear and concise problem statement for 

this thesis.  Chapter IV discusses initial development efforts to include integrating 

humans into the CTF game, CTF usability improvements and an examination of VRML 

browsers.  Chapter V describes the inclusion of the H-Anim 1.1 specification into 

X3D-Edit editing tool and the creation of H-Anim 1.1 specification compliant humanoids 

using this tool.  Chapter VI discusses the mounting of the human entities in the virtual 

environment.  Chapter VII describes the software providing the multi-entity, single-user 

interface, the group-control panel and the group behaviors. Chapter VIII provides thesis 

conclusions and recommendations for follow-on or future research.
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II. RELATED WORK 

A. INTRODUCTION 

This chapter provides an overview to DIS-Java-VRML framework and the 

humanoid models used in this research. Further, it examines pertinent background work 

in large-scale virtual environment (LSVE) research and in the animation of virtual 

humans on the World Wide Web or other networks.  It also provides an introduction to  

the new and developing technologies used in support of this thesis, and a brief overview 

of the US Army’s IPB and decision processes.   

B. DIS-JAVA-VRML 

A way to implement networked, shared virtual worlds using widely 
available technology and tools. (McGregor, 2000). 

 
In the development of the Virtual Reality Transfer Protocol (VRTP), the marriage 

of the IEEE Standard Distributed Interactive Simulation (DIS) protocol for networking, 

the flexible object-oriented programming language Java, and the Virtual Reality 

Modeling Language (VRML) for 3D graphics has taken the process a fundamental step 

forward.  The work follows in the steps of NPSNET IV by using DIS and Internet 

Protocol (IP) multicast.  The work greatly expands the group of possible users by making 

use of widely available technologies, platform independence, open-source software code 

and open standards.  DIS-Java-VRML is a Web3D Consortium working group that works 

in parallel with the VRTP working group.
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1. Distributed Interactive Simulation (DIS) 

Distributed Interactive Simulation (DIS) is a government/industry                                             
initiative to define an infrastructure for linking simulations of 
various types at multiple locations to create realistic, complex 
virtual  ‘worlds’ for the simulation of highly interactive activities 
(IEEE, 1995).   

The Distributed Interactive Simulation (DIS) protocol describes an IEEE 

approved standard of communications between entities in distributed simulations (IEEE, 

1993).  The standardization of object interactions and large lexicon of behavior-based 

messages provides an excellent interface for general usage in LSVEs. 

The Protocol Data Unit (PDU) is the structure used to pass information between 

entities and from the simulation to an entity and back.  Twenty seven PDU types are 

defined in the 1995 IEEE Standard for DIS-Application Protocols (IEEE, 1995) as shown 

in Table 1, which fall into seven categories (Entity Information/Interaction, Warfare, 

Logistics, Simulation Management, Distributed Emission Regeneration and Radio 

Communications).  The Entity State PDU (ESPDU) is the principal message type for DIS 

transmissions because it carries the physical (location and motion) state information of an 

entity.  To maximize positional information transfer while reducing bandwidth, 

standardized dead reckoning algorithms are available.  Even though 27 PDUs exist, in 

most DIS-compliant VEs only three to four of the most commonly used PDUs (ESPDU, 

Fire, Detonation and Collision) are used.  Free and commercial DIS libraries are widely 

available, including C++ and Java implementations from NPS.  
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Protocol Data Unit  Purpose 
Entity State * Update entity state, i.e. location, rotation, velocity, acceleration etc. 

Fire * Reports firing of a weapon 

Detonation * Reports the impact or detonation of a munition 

Collision * Reports the collision of an entity with an object or other entity 

Service request Request for the transfer of supplies 

Resupply Offer Offers supplies to another entity 

Resupply Received Acknowledges the receipt of some or all offered supplies 

Resupply Cancel Cancels a resupply request 

Repair Complete Report Completion of a repair 

Repair Response Acknowledges the completion of a repair 

Start/Resume * Instructs an entity to participate in a simulation 

Stop/Freeze * Instructs an entity to stop or pause its participation in a simulation 

Acknowledge * 
Acknowledges the receipt of a Start, Stop, Create or Remove PDU as 
part of simulation management 

Action Request * Requests a specific action from an entity 

Action Response * Acknowledges the receipt of an Action Request 

Data Query * Requests data from another entity 

Set Data * Sets or changes the parameters in an entity 

Data * Returns data requested by a Data Query or Set Data PDU 

Event Report * 
Communicates the occurrence of a significant event such as entry into a 
minefield

Message Sends a miscellaneous unformatted message 

Create Entity * Establishes the identity of a new entity  

Remove Entity * Removes an entity from the simulation 

Receiver * Communicates the state of a radio receiver  

Signal * Transmit voice or data  

Transmitter * Announce start/stop of radio transmissions 

Designator  Communicates designation emissions 

Electromagnetic Emission Communicate electromagnetic emissions other than radios 

Table 1. Distributed Interactive Simulation Protocol Data Units. (Note: * implemented in               
DIS-Java-VRML). From (Stewart, 1996).  
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2. Java 

Java is a programming language designed by the engineers at Sun Microsystems 

starting in 1991.  In a white paper written by the designers, released in 1995 before Java’s 

official release in January 1996, they gave 11 key words that explained their design goals 

(Horstmann, 1999).  They are Simple, Object Oriented, Distributed, Robust, Secure, 

Architecture Neutral, Portable, Interpreted, High Performance, Multithreaded and 

Dynamic.  Widespread Java use was propagated when Netscape, in the fall of 1995, 

decided to make Netscape browsers (starting with Netscape 2.0) Java enabled.  Sun has 

continued to release upgrades to Java releasing Java 1.2 or Java 2 in December of 1998.  

Development and release of Java 1.3 has already occurred for some platforms (notably 

Windows, Linux and Solaris) but is still in beta testing for others.  (Horstmann, 1999). 

Java, through its design conception and improvements, offers a number of 

desirable attributes for its use as an application in a LSVE.  It is cross platform, meaning 

multiple hardware architectures and operating systems, providing portable code that does 

not require recompilation.  It offers network support and can operate with the Netscape 

and Microsoft security models.  Of key interest to this research: Java is VRML 

compatible, with three class libraries specified for the Java-VRML interface. Finally, if 

not yet high performance as visualized by its designers, it already provides excellent 

performance with continuing steady improvement.  (Brutzman, 2000). 

3. Virtual Reality Modeling Language (VRML) 

The Virtual Reality Modeling Language (VRML) is a general 3D scene 

description language for describing interactive 3D objects and worlds, and intended to be 
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a universal interchange format for integrated 3D graphics and multimedia.  It is capable 

of representing static and animated dynamic 3D and multimedia objects with hyperlinks 

to other media such as text, sounds, movies, and images.  It is an International Standards 

Organization (ISO) specification (ISO/IEC 14772-1:1997).  VRML provides a large 

number of 3D graphics nodes, and they are organized in a hierarchical manner, within a 

file, to compose a directed acyclic graph (DAG) called a scene graph (Brutzman, 1998).  

VRML files are called Worlds or scenes and end with a .wrl file name extension (or .wrz 

for a gzip-compressed VRML file). A VRML file, like the example in Figure 1, can 

contain four main types of components: the VRML header; Prototypes; Shapes (geometry 

and appearance), Interpolators, Sensors, and Scripts; and Routes (Ames, 1997).  The only 

element that it must contain is the VRML header.  Prototypes (PROTOs) allow a user to 

author new 3D graphic node types, and can be formed into libraries and reused by 

referencing them by using an external prototype (EXTERNPROTO) declaration.  Shapes 

encompass both object geometry and appearance.  VRML geometries include 3D 

geometry primitives, text, and face sets, and appearances include color components, 

transparency and textures. Interpolators define keys for key frame animations.  Sensors 

allow users to interact with the scene.  Script nodes are shells which provide which 

provide an interface between the VRML scene and a program script, usually written in 

Java or JavaScript.  They are crucial in creating complex actions and animations to 

include networked game play and articulated motion.  Finally, routes are statements 

which define connections (or routes in the sense of an electric circuit) between named 

nodes and fields, which allow events to be passed from source to target. 



12

Figure 1. VRML Scene and Source hello-world.wrl.  From (Brutzman, 1998). 

4. Capture The Flag (CTF) Game 

The Capture the Flag (CTF) game is a demonstration of an interactive 3D virtual 

environment implemented through DIS-Java-VRML and is part of the DIS-Java-VRML 

source code at http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml.  It uses IP 

Multicast and is implemented in a server-less peer-to-peer fashion.  It was largely written 

by students at NPS over a two-year period as a series of class projects for CS4472, 

Advanced Physically Based Modeling.  The basic scenario is two teams, red and blue, 

competing to capture their opponents’ flag and safely return with it to their home base, 
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which is an airfield.  The game is geolocated at the National Training Center (NTC) at 

Fort Irwin, California.  The red flag and red airfield is shown below in Figure 2.  Each 

team originally consisted of three M1 Abrams tanks and three OH-58 Kiowa helicopters.  

The entities are controlled through “control panels” which are Java frames, external to the 

scene.  The frames take user input information, translates it using Java logic in an “Action 

Interpreter” and updates the scene, by passing protocol data units (PDUs) through a Java 

script to a VRML PROTO node called the EspduTransform node, as shown in Figure 3.     

Figure 2.  Screen Shot of a Blue Tank With Trace Values Displayed and the Blue Flag in CTF. 
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Figure 3.  DIS-Java-VRML Flow Chart Showing Multiple Networked Entities in a Single Web 
Browser.  From (McGregor, 2000). 

5. Coordinate Systems 

The coordinate axes as defined by the VRML and DIS standards are different in 

orientation.  VRML defines its ground plane in terms of the XZ plane with positive Y 

defining up.  DIS defines its ground plane in terms of the XY plane with negative Z 

defining up. See Figure 4. Both systems define positive X to be North in world 

coordinates and the nose of the entity in body coordinates.  The positive orientation of the 

other axis defining the ground plane represents East in world coordinates or to the entity’s 

right in body coordinates.  The translation between the two coordinate systems is 

transparent to the operator because it is handled by the ESPDUTransform script.  

However, properly handling such spatial correspondences is crucially important when 

designing applications for CTF. 
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Figure 4.  Comparison of the VRML and DIS Coordinates Axes. 

C. THE HUMAN ANIMATION 1.1 SPECIFICATION (H-ANIM 1.1 SPEC)  

The Human Animation 1.1 Specification (H-Anim 1.1 spec) was developed by 

Human Animation Working Group of the Web3D Consortium in order to provide a 

means of interoperability of virtual humans and human behaviors for animations created 

by different authors using different authoring tools, as shown in Figure 5.  The working 

group followed three design goals in implementing this specification: Compatibility, 

Flexibility, and Simplicity.  Though originally constrained to just any VRML 2.0 

compliant browser, the drive for compatibility is now to have H-Anim humans work 

anywhere.  In fact, the H-Anim specification has been represented as a High Level 

Architecture (HLA) Federation Object Model (FOM) (Shockley, 2000).  Flexibility 

assists in the drive for compatibility, allowing the specification to include information 

that is required by some applications and not by others.  Simplicity is manifested since  

VRML DIS

+X

+Y

+Z

+X

-Z

+Y



16

 

Figure 5.  Connection of H-Anim with Other Systems. From (H-Anim, 1999). 

 

the specification only addresses humans and the belief that the specification is not static 

and can be extended if necessary. (H-Anim, 1999) 

The H-Anim specification, as its fundamental basis, defines three VRML PROTO 

nodes. Segments are the geometries of body parts.  Joints are the connectors and 

controllers of the segments. The Humanoid Proto holds the joints and segments in a 

hierarchical format as well as metadata and other scene graph information.  The most 

significant contributions of the H-Anim 1.1 spec are the definition of a neutral body pose 

and the establishment of naming conventions.  The neutral body pose defines a position 
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such that all joint rotations are zero.  This is extremely useful for animation as a default 

position. The naming convention defines the set of names for each joint and segment of 

the human body as seen in Figure 6.  The naming convention includes 94 joints with

corresponding segments, and is purported to be sufficient to model a virtual human to the 

highest level of anatomical correctness.  This allows an application to easily access the 

data concerning a virtual human’s geometry.  (Roehl, 2000). 

D. HUMAN MODELS 

A search for a suitable model with a motion library was conducted since the 

creation of a suitable, realistic, compelling and articulated virtual human avatar with a 

motion library is difficult, time consuming (Maestri,1999) and fell outside the scope of 

this thesis research.  The model had to be able to be converted to accept the 

EspduTransform node for network play, and provide access into its motion library so that 

the motions could be mapped to articulated parameters.  

 There were a number of available models to choose from.  Models from the US 

Army Simulation, Training, and Instrumentation Command (STRICOM), members of the 

H-Anim working group ( most notably Beitler, Babski, Ballreich, Flavin and Miller) and 

Blaxxun (among others) were examined.  There were four major hindrances among the 

models with the largest problem being that models that were not 100% H-Anim 1.1 

specification compliant.  The other major difficulties were lack of adequate, appropriate   
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Figure 6.  H-ANIM 1.1 Spec Joint and Segment Names with Skeleton Diagram.  From (H-Anim, 
1999). 
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motion libraries, models being overly complex and heavyweight (at times in excess of 

7,000 polygons) and not being adequately realistic for visual appeal and acceptance 

(McCloud, 1993 and McCloud, 2000).  After examining a number of alternatives, the H-

Anim 1.1 compliant Nancy.wrl was chosen as the principal model. 

Nancy.wrl is the canonical exemplar of H-Anim 1.1 spec (as it previously was for 

H-Anim 1.0 spec).  The model was created by Cindy Ballreich, who grants permission for 

its non-commercial usage when distributions include appropriate credits and maintenance 

of the 3Name3D name and logo.  Nancy.wrl consists of 2082 polygons and contains 17 

joints, 15 segments and four viewpoints.  It also contains a behavior library with four 

behaviors, stand, walk, run and jump, which are activated by a Touch Sensor.  See 

Figures 7-10. 

Figure 7.  Nancy, The Canonical H-Anim Exemplar, Demonstrating the Stand Behavior. From      (H-
Anim, 1999). 
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Figure 8.  Nancy Demonstrating the Walk Behavior. From (H-Anim, 1999). 

Figure 9.  Nancy Demonstrating the Run Behavior.  From (H-Anim, 1999). 
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Figure 10.  Nancy Demonstrating the Jump Behavior.  From (H-Anim, 1999). 

E. NPSNET 

NPSNET is a networked virtual environment (VE) for battlefield simulation and 

was, during its height, the highest-performance VE software available.  In 1986, two 

Computer Science students at the Naval Postgraduate School (NPS) developed a visual 

simulator for the fiber-optically guided missile (FOG-M) system. The FOG-M, its follow 

on system, VEH, and the Moving Platform Simulator (MPS) were the precursors to 

NPSNET.  (Singhal, 1999).   

NPSNET I was named in March 1990.  It played with other systems on a local- 

area network (LAN), did not use dead reckoning and sent packets at visual frame rate 

(typically ten packets per second).  As seen in Figure 11, parallel development followed 

with NPSNET II, NPSNET III and then NPSSTEALTH.  NPSSTEALTH was operational 
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in early 1993 and was the only workstation-based VE capable of interoperating with 

SIMNET.  In the fall of 1993, the first version of NPSNET IV became operational.  

NPSNET-DI supported Dismounted Infantry (DI) men as a special version of NPSNET 

IV.    Of note, research has now begun on NPSNET V with the Virtual Reality Transport 

Protocol (VRTP) as its means of communication.  (Singhal, 1999). 

1. Overview of NPSNET IV 

NPSNET IV was motivated by the desire to expand VEs beyond LANs and 

expand VE capabilities using multicast networks to serve more than 1,000 simultaneous 

users.  It ran on commercial, off-the-shelf Silicon Graphics Incorporated (SGI) 

workstations (at the time the best graphics workstations commercially available) and  

Figure 11.  Evolution of NPSNET. From (Macedonia, 1994). 
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employed the Performer graphics library.  NPSNET IV was the first DIS application to 

use the IP Multicast Protocol.  It provided low-cost 3D sound, simulation-based design 

and autonomous players for populating virtual worlds to include a fully articulated 

human. (Macedonia, 1995).  The NPSNET Research Group planned a major overhaul and 

redesign of NPSNET IV during the fall of 1993, but such an effort was never undertaken.  

This software is no longer in widespread use, due to its reliance on (SGI) workstations 

and heavy administrative support requirements.  NPSNET IV continued on through 

December of 1996, eventually being utilized by over 100 DoD contractors and other 

university laboratories (Singhal, 1999), as well as a research platform for over 60 NPS 

students.  

2. Human Entities 

In 1994, a joint-research project with NPS, SARCOS Inc. and the University of 

Pennsylvania (UPenn), under Army Research Laboratory sponsorship demonstrated the 

insertion of a fully articulated human into a DIS environment.  The demonstration 

involved Jack, a program to provide and manipulate articulated human geometries from 

UPENN, NPSNET IV from NPS and Individual Soldier Mobility System (hardware) 

controller from SARCOS. (Pratt, 1994).  While successful, there was significant overhead 

in communicating to Jack and the SARCOS sensor suit was cumbersome and difficult to 

adjust.

In 1995, the NPSNET Research group began the NPSNET-HUMAN Project.  The 

ultimate project goal was real-time interaction with entities and objects in a VE with 

high-resolution feedback.  The focus was for tactical medical personnel and dismounted 
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infantry soldiers.  The project achieved success with an accurate articulated human 

viewpoint, simple networked wounding, a networked autonomous evacuation unit, real-

time arm articulations (Waldrop, 1995) and level of detail (LOD) model work allowing 

150 DI entities to exist in NPSNET IV (Chrislip, 1995). (Zyda, 1995).  However, there 

was discussion about the its limitations and complexity (Roehl, 1995). 

a) Jack 

Jack was developed by UPenn’s Center for Human Modeling and 

Simulation headed by Dr. Norman Badler.  Jack was originally written as a program to 

manipulate articulated human geometries (Badler, 1993).  Later variations included the 

Jack Motion library (implemented in NPSNET IV), and JackMOO, a web-based 

simulation system for virtual humans.  In 1996, Transom Corporation (recently acquired 

by EAI) bought the exclusive rights to develop, commercialize and support Jack software.  

There have been three commercial releases of Jack, the latest under the trade name 

TransomJack.  See Figure 12. 

3. Mounting Human Entities 

Three NPS theses address mounting humans in a VE in the NPSNET environment 

space.  In 1995, humans were incorporated into the Damage Control Virtual Environment 

Trainer (DC VET) by LT James O’Byrne USN (O’Byrne, 1995).  However, DC VET was 

a stand-alone environment and one of the recommendations for follow on research was to 

incorporate DC VET into NPSNET IV.  In 1996, LT Bryan Stewart USN, incorporated 

DC VET into NPSNET IV and subsequently mounted human entities to a non-human  
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Figure 12.  Three JACK Humans in a Military Setting.  From (Transom, 2000). 

entity (in this case a ship) (Stewart, 1996). This implementation was forced to pass data 

regarding behaviors of the mounted human via the NPSNET high-resolution network 

channel, an additional network resource that was used to send non-DIS information.  It 

was outside his research scope to mount humans so that they might be controlled as units.  

LT Jeffrey Halvorson USN, mounted human entities to more realistically control a 

submarine (Halvorson, 1997).  However, this work was also only concerned with 

individual entities and also used the high-resolution network to pass behavior 

information.



26

F. EXTENSIBLE MARKUP LANGUAGE (XML) 

The Extensible Markup Language (XML) is a new technology based on retaining 

the strengths of the Standard Generalized Markup Language (SGML) and the experiences 

learned through the development of the Hyper Text Markup Language (HTML).  It 

designs text formats for structured data sets and new languages that are extensible, 

unambiguous, license-free, platform-independent, internationalizable and easily generated 

and read. The development of XML began in 1996, and it became a World Wide Web 

Consortium (W3C) recommendation in 1998.  Through its use of tags and attributes, 

XML appears to be similar to HTML as seen in Figures 13 and 14.  However, while 

HTML defines its tags and attributes, XML leaves their definitions to the designer and 

interpretation to the application that reads it.  In fact, XML only uses its tags  and 

attribute values to delimit data.  While generally larger than a file in binary format, XML 

files are presented in text file format, which tend to compress well due to its regularity.    

 

Figure 13.  Example HTML Code For a “Pretty Print” Version of an X3D Fragment Produced by 
X3DToHTML.xsl.  From (X3D, 2000). 

<FONT color="GREEN">DEF</FONT><B>='
</B><FONT color="TEAL">NancyTeamAddRoutes_EspduTransform</FONT><B>'
</B><FONT color="GREEN">address</FONT>
<B>='</B><FONT color="TEAL">"224.2.181.145"</FONT><B>'
</B><FONT color="GREEN">applicationID</FONT>
<B>='</B><FONT color="TEAL">1</FONT><B>'
</B><FONT color="GREEN">entityID</FONT>
<B>='</B><FONT color="TEAL">40</FONT><B>'
</B><FONT color="GREEN">marking</FONT>
<B>='</B><FONT color="TEAL">"NancyTeam 40"</FONT><B>'</B>
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Figure 14.  Example XML Code For An X3D Fragment. 

Even though it is not specifically meant to be read by a human, having an XML 

file as a text file eases debugging and allows human modification using any text editor.  

Zip or tar archiving utilities can be used to compress XML files, so generally the more 

verbose file format of XML is not problematic.  Finally, as XML matures as a technology, 

it carries with it a large family of supporting technologies and helpful optional modules 

that help define tags and attributes or task guidelines. (Bos, 2000).

G. EXTENSIBLE STYLESHEET LANGUAGE (XSL) 

Absent a stylesheet, a processor could not possibly know how to render the 
content of an XML document other than as an undifferentiated string of 
characters. XSL provides a comprehensive model and a vocabulary for 
writing such stylesheets using XML syntax.  (Adler, 2000).  

The Extensible Stylesheet Language (XSL) is used to express stylesheets and is a 

member of the family of XML technologies.  An XSL stylesheet is used to express how 

<Group>
<children>

<EspduTransform DEF="NancyTeamAddRoutes_EspduTransform"
address="&quot;224.2.181.145&quot;"
applicationID="1"
entityID="40"
marking="&quot;NancyTeam 40&quot;"
nodeTypeHint="Transform"
port="62040"
readInterval="0.25"
siteID="0"
traceColor="0 0 1"
traceJava="false"
traceOffset="0 3 0"
traceSize="1 1 1"
translation="-10 –200 2240">

<children>
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the structured content of an XML file (or class of XML files) is to be presented, or how 

the designer intended that it be presented.  The XML source can be “styled” into or for 

almost any medium for presentation, such as a palm-top computer, cellular phone, a 

window or page in a web browser, or a printer for a hard copy of the output.  

The conceptual XSL processing model, as shown in Figure 15, consists of two 

aspects, tree transformation and formatting.  Tree transformation essentially takes the 

source tree (the source XML file) and builds a result (or element and attribute trees) tree 

from it.  In the result tree, a formatting object (fo) is represented by an XML element and 

properties are represented by XML value-attribute pairs.  The XSL stylesheet contains the 

rules to construct the result tree, in the form of patterns to compare against the source tree 

and a template to construct a portion of the result tree.  Formatting is conducted by a

formatter.  Formatting interprets the result tree in the manner intended by the designer of 

the XML/XSL pair, and prepares the content to be presented in the desired manner. 

Formatting reads the formatting objects from the result tree and converts them into a new 

tree (of geographical or spatial area) called an area tree.  The formatting objects represent 

particular formatting behaviors such as paragraph blocking with properties such as font 

and color.  The conversion of the result tree now provides an abstract model of the 

presentation.  The resulting abstract model is then rendered into the medium of its desired 

presentation whether that is a browser window, a cellular telephone display screen or 

paper (Adler, 2000). 
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Figure 15.  The Two XSL Processes: Transformation and Formatting. From (Adler, 2000). 

H. EXTENSIBLE 3D (X3D) SPECIFICATION AND THE X3D-EDIT 
AUTHORING TOOL 

The X3D Task Group is designing and implementing the next-generation 
Extensible 3D (X3D) Graphics specification. We are expressing the 
geometry and behavior capabilities of the Virtual Reality Modeling 
Language (VRML 97) using the Extensible Markup Language (XML) 
(X3D, 2000).  

The X3D Specification, in its use of the XML family of technologies, is a redesign 

of the fundamental syntax of VRML scenes.  It defines an XML Document Type 

Definition (DTD) tag set which allows a user to form and validate a scene graph to 

describe 3D content.  None-the-less, X3D maintains a strong similarity to VRML 97 

Standard in its node and structure.  It provides the user to generate VRML 97 on the fly 

and allows behaviors to react to user input.  It maintains the viewpoint animation and 

navigation assistance provided by VRML 97.  Additionally, it supports multiple 
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extensions such as GeoVRML, the H-Anim specification and the DIS networked 

behavior protocols. (Brutzman, 2000).  

The X3D Specification is supported by the X3D-Edit authoring tool, which is 

implemented as a customized interface for IBM’s XML editor Xeena (IBM, 2000).  A 

screen shot of the X3D Edit GUI is shown in Figure 16. This authoring tool allows the 

user produce validated scene graphs with (essentially) error-free editing.  Once directed to 

do so, the authoring tool calls a supporting XSL stylesheet which “formats” (i.e. 

translates) the XML file into VRML 97 and then “renders” it through a web browser with 

a VRML plug in.  This goes a long way towards fulfilling the Web3D Consortium’s 

mandate to make 3D graphics ubiquitous on the Web. 

I. INTELLIGENCE PREPARATION OF THE BATTLEFIELD (IPB) 

Since war is a conflict of opposing wills, we cannot make decisions in a 
vacuum.  We must make our decisions in light of the enemy’s anticipated 
reactions and counteractions, recognizing that while we are trying to 
impose our will on the enemy, he is trying to do the same to us. (MCDP 1, 
1997). 

The intelligence preparation of the battlefield is a four-step continuous process of 

analyzing the enemy threat and environment within the confines of a specific 

geographical location.  From the analysis and products produced from the IPB process, a 

battlefield commander can selectively apply and maximize his combat power at the 

critical time and space on the battlefield.  The IPB process helps to identify facts and 

assumptions about the battlefield environment and threat,  provides direction and 
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Figure 16.  Screen Shot of the X3D-Edit Scene Graph Editor. From (X3D, 2000). 

synchronization to the intelligence collection plan and contributes to complete staff 

synchronization.  The process is designed to be used at all levels down to the individual 

soldier level.  The lower the level of use, the less formalized and detailed these processes 

are and limited (if any) formal products are produced.  As the size of the unit increases, 

with subsequent increase in the size of a commander’s staff, the level of detail in analysis 

and product generation correspondingly increase.  The four steps of the process are: (a) 

Define the battlefield environment, (b) Describe the battlefield’s effects, (c) Evaluate the 

threat, and (d) Determine threat Courses of Actions (COAs).  Products from the process 
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may include (but are not necessarily limited to or required, based on an element’s size) 

modified obstacle overlays, threat doctrinal and situational templates, detailed studies on 

the enemy’s doctrine and equipment, and comprehensive sets of possible enemy COAs,  

and in conjunction of the decision making process help develop battlefield operating 

system (BOS) synchronization matrices and decision-support templates (DST).   

The BOS synchronization matrix and the DST are compiled from the results of 

war gaming, where friendly COAs are gamed against enemy COAs through a process of 

action, reaction and counteraction.  During the action, reaction and counteraction process 

of wargaming, the commander provides decisions based on the current situation.  These 

decisions are recorded graphically in the DST and usually in text in the supporting BOS 

synchronization matrix.   Information recorded include the decision criteria (what was the 

cause of the decision?), a friendly force action or response, a decision point (DP -where 

geographically and/or temporally the decision must be made, represented by a star), target 

areas of interest (TAI - where the effects of  friendly force actions are synchronized), 

named areas of interest (NAI - locations from which information is needed to confirm or 

deny the decision criteria) and possible changes or nominations to the high priority and 

high value targeting lists.  See Figure 17 for a combined BOS synchronization matrix and 

DST and Figure 18 for a DST imposed on a map with operational graphics. (FM 34-130, 

1994). 
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Figure 17.  Combined BOS Synchronization Matrix with DST. From (FM 34-130, 1994). 
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Figure 18.  DST Superimposed Over a Map with Operational Graphics.  From (FM 34-130, 1994). 

J. SUMMARY 

This chapter details the DIS-Java-VRML framework, the H-Anim 1.1 Spec and 

the humanoid models used in this research. It examines the new and developing 

technologies, like XML, XSL, X3D and the X3D-Edit authoring tool, used in support of 

this thesis project.  Additionally, it reviews background work in large-scale virtual 

environment research and briefly discusses the IPB and decision process.
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III. PROBLEM STATEMENT 

A. INTRODUCTION 

This chapter defines the problem statement of this research, offers a proposed 

solution, specifically addresses the focus of the research, and then examines design issues 

considered in the development of the model implementation. 

B. PROBLEM STATEMENT 

With the fall of the former Soviet Union in 1990, the assigned missions of the 

United States (US) military have undergone a profound paradigm shift.  The advent of 

multinational narco-terrorism and organized crime, the resurgence of nationalism and the 

continuance of radical religious fundamentalism and regional power aggression has led to 

a higher level of US military deployments involving ground forces putting “dirty boots on 

the ground.”  There is the realization that there is a shortfall of decision and visualization 

aids to support these increased deployments, particularly in SOF missions (Rand, 1994) 

and Military Operations in Urban Terrain (MOUT) (Pew, 1998).  

 Unfortunately, support in the modeling and simulation community has not yet 

answered the emerging needs of this new world reality.  Thus, there exists a need for the 

development of high-resolution 3D visualization tools for tactical mission planning.  

Technical problems include model interoperability, georeferenced coordinate systems, 

retaining double-precision accuracy while using single-precision variables, network 



36

latency, network quality of service and network reliability.  Any satisfactory solution 

must address all of these problems simultaneously. 

C. PROPOSED SOLUTION 

The proposed solution for these multiple challenges is to develop a proof of 

concept model for a networked 3D visualization tool within an existing LSVE.  The tool 

must contain articulated human entities, aggregated into small units, capable of showing 

physically based human motion as well as the performance of realistic group behaviors, 

under the control of a single or multiply users, as required.  The system must be 

extensible, platform-independent and worldwide deployable to support current unfulfilled 

and emerging needs.

D. RESEARCH FOCUS 

The focus of the research is to produce aggregated groups of virtual humans 

(using the Nancy.wrl file), which display realistic group behaviors, as defined by 

dismounted infantry tactical formations and activities, in the networked 3D virtual 

environment provided by DIS-Java-VRML CTF. Human entities must further be able to 

disaggregate from a group and return to independent control.  Additionally, the need to 

rapidly develop human content with interchangeable geometries and behaviors is 

examined as a requirement to effectively support such a visualization tool. 

E. DESIGN CONSIDERATIONS 

The most significant design consideration was how best to implement the 

aggregation and disaggregation of the networked human entities. Multiple 
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implementations were designed, tested, examined and reviewed before an implementation 

was chosen for the model.  The selected implementation uses relative coordinates from a 

non-physical aggregation entity passed over the network via the DIS protocol. The file is 

composed as a VRML scene graph with the DIS-compliant aggregation entity and, 

wrapped within separate transform nodes, the human entities as scene-graph peers.  

Aggregation and disaggregation is handled through sophisticated, run-time VRML scene 

graph switching which executes the addition and deletion of VRML routes. 

Other major design considerations were: implementing the Nancy.wrl file, with its 

accompanying motion library, in a DIS-compliant format and then including it within 

CTF; defining the group behaviors for the aggregated entities to execute; designing the 

interface (both graphical and logical) for the single aggregated human entities; and 

developing a new behavior (e.g., kneeling) to include in the motion library to demonstrate 

the desired interchangeability of behaviors and geometries. 

F. SUMMARY 

This chapter defines the problem addressed by this thesis research.  It discusses 

the proposed solution and the specific focus of this research.  It addresses the method 

chosen to implement the problem of entity aggregation and disaggregation.     
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IV. INITIAL DEVELOPMENT EFFORTS 

A. INTRODUCTION 

This chapter examines, in detail, the challenges involved making the scene 

Nancy.wrl DIS-compliant, designing a single-user, single-entity interface to control the 

DIS-compliant Nancy, and then including Nancy in the CTF framework as well as 

implementing the file within the Herrmann Hall terrain database.  It discusses an 

extension to the motion library through the addition of animation interpolators to create a 

kneel behavior.  Additionally, improvements made within the CTF world regarding 

identification and removal of extra sound threads plus a brief discussion of VRML 

plugins for web browsers are presented.  

B. NANCYS IN CTF 

The first challenge of this research was to modify and incorporate the canonical 

H-Anim 1.1 specification exemplar file, Nancy.wrl, into an acceptable DIS-Java-VRML 

entity, and subsequently incorporate it into the CTF game.  First, the .wrl file had to be 

modified to accept DIS packets along with the accompanying Java scripting and logic.  

Second, an interface to control the DIS-compliant Nancy, consisting of a graphical user 

interface (GUI) control panel and an action interpreter, both written in Java, was designed 

and implemented.  Subsequently, the animations of the motion library were incorporated 

in the interface so as to logically occur in CTF as human behaviors.  Finally, when this 
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was accomplished, experiments in moving the DIS-compliant Nancy to a different LSVE 

and controlling multiple Nancys were conducted. 

1. DIS, Animations and Scripts 

The initial design concern in implementing Nancy in the DIS-Java-VRML 

framework was the multiple nesting of prototypes.  The original Nancy already has one 

layer of PROTO nesting by using Joint and Segment within Humanoid.  In order to make 

it DIS-compliant, the PROTOs defining the geometry needed to be further nested within 

the EXTERNPROTO of the EspduTransform node.  However, in execution, the browser 

was able to read all PROTO declarations, and was able to render the file.  A rotation of  

0.5 * Π (90 degrees counterclockwise)  around the positive Y axis (up direction in 

VRML) had to be placed around the instance of the Humanoid PROTO in order to 

appropriately register Nancy’s movement within CTF and other DIS-Java-VRML 

environments.  

Nancy’s movement library execution model also had to converted from the 

original model, where behaviors were performed through the use of a VRML touch 

sensor (mouse click) on a heads up display, to a suitable model for execution in CTF.  

Since the goal of this thesis was to implement realistic behaviors, this involved matching 

behaviors to environmental input; such as movement behaviors executed based on the 

magnitude of the entities’ linear velocities.  Other behaviors are implemented through 

user command via a control panel.  To execute this model, a behavior articulated 

parameter was implemented in the DIS-compliant Nancy.wrl file that was subsequently 

fed from the single-entity interface developed for Nancy.  The articulated parameter in the 
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interface enumerated the behavior library and sent this via DIS packet to the 

EspduTransform Java (language) Script file, which communicates with the VRML file.  

The input from the Java (language) Script file is then communicated within the VRML 

file via routes to an internal VRML Script node containing a ECMAScript. The 

ECMAScript translates the enumerated behavior and passes the translated behavior to 

interpolators within the VRML file, which then correctly renders the file within the scene.  

See Figure 19.  

 

 

 

Figure 19.  Flow of Human Behavior Implementation via an Articulated Parameter Executed Within 
the DIS-Java-VRML Framework. 
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2.  Single Nancy Interface 

The single Nancy interface consists of the GUI control panel, as seen in Figure 20, 

and the logic, in the form of an action interpreter, which translates user input from the 

panel and sends it to the VRML scene in a form in which it can be understood and 

rendered. The GUI is implemented as a Java swing component jFrame, which runs 

independently of the VRML scene.  This allows it to be moved, resized or hidden to 

maximize the user’s experience.  The panel itself offers simple navigation controls and 

information to allow control of speed and heading.  It also allows the user, through button 

control, to fire a weapon, kneel, come to a full stop, reset to its start position or restart as 

a new player.  The animation behaviors are initiated in the action interpreter either as 

indicated by achieving a threshold magnitude of linear velocity, or in the case of kneel, by 

user input command.  The action interpreter runs iteratively as a child thread of the 

control panel, forms DIS-compliant ESPDU packets and transmits them to the network to 

be handled by the EspduTransform Java (language) Script class approximately every half 

a second.  The VRML scene reads updates more frequently than the send interval to 

ensure low latency, and these intermediate posture updates are handled by the dead-

reckoning algorithms provided in the EspduTransform Java (language) Script class.   
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Figure 20.  Single Human Entity, Single User Control Panel.  The orange center panel is reserved for 
future work on situational awareness maps. 
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3. Nancy in Herrmann Hall 

To demonstrate the interchangeability of geometries and behaviors between 

worlds, the DIS-compliant Nancy file was inserted into a world containing Herrmann 

Hall as shown in Figure 21.  The Herrmann Hall model (NPSNET, 2000) was created by 

John Locke for NPSNET IV using the authoring tool Multigen Creator (Multigen, 2000) 

and subsequently exported as a VRML file.  It contains approximately 10,000 polygons 

and 92 different textures in its original format.   After the Nancy file was appropriately 

registered, she was able to move around this world, external to the building, exhibiting 

her motion library, in the DIS XY plane as seen in Figure 22.  Movement inside the 

building fell outside the scope of the demonstration due to complex collision detection.    
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Figure 21.  Nancy in the left foreground outside of Herrmann Hall (circled in white), seen from 25 
meters.  Note the flagpole in the center. 
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Figure 22.  Close view of Nancy moving in front of Herrmann Hall, with trace values and control 
panel shown. 

4. Adding Behaviors to the Motion Library 

To illustrate the ability to extend the motion library, the “kneel” behavior was 

developed.  The new behavior was developed using the Parallel Graphics Internet 

Character Animator (ICA) VRML development tool, shown in Figure 23.  The ICA 

provides powerful visual support for professional quality animations and is H-Anim 

compliant.  The new behavior was first included in the original Nancy.wrl file, shown in 

Figure 24, and activated by a Touch Sensor. Then the behavior was modified to support 
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the DIS-compliant Nancy by incorporating a move to kneel from stand behavior as well 

as a kneel behavior, shown in Figure 25. 

 

 

Figure 23.  Parallel Graphics Internet Character Animator.  From (Parallel, 2000). 
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Figure 24.  Nancy.wrl Demonstrating Kneel Behavior. 

Figure 25.  DIS-Compliant Nancy demonstrating Kneel behavior through use of the control panel 
Kneel button. 
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5. From One to Many 

Once the Nancy file had been made DIS-compliant and shown to be 

interchangeable between worlds, the more complex problem of how to scale up to several 

Nancys while maintaining a single controller for these multiple entities had to be 

addressed.  This problem had network, scene graph and mathematical transform aspects 

working in concert.  Several non-interactive two-entity and three-entity implementations 

were developed, but in all these early attempts, network latency led to an unacceptable 

level of hysteresis or “popping” from the non-lead entities, as they constantly tried to 

reach their correct position in the virtual world.  This problem is further examined and 

resolved in Chapter VI. 

C. THREAD PROBLEMS AND SOUNDS 

Even though the subject of sound nodes and the accompanying threading 

problems associated with them is not directly part of this research, the isolation, 

identification and solution of this problem, existent from its creation in 1996,  increased 

the usability of CTF to an extent to allow my research (and that of other students) to 

continue on this platform.  DIS-Java-VRML and CTF are, by their very nature, required 

to be multithreaded.  Unfortunately, the thread count, and subsequent memory lock, 

occurring from running CTF was large enough not only to significantly and adversely 

effect the display frame rate, but essentially made the program unexecutable for greater 

than five minutes due to the drain on virtual memory. 
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At first, the thread problem was not readily apparent, and the root cause even 

further obfuscated.  Upon systematic examination of computer system monitoring utilities 

across various operating systems, we discovered that an unexpectedly large number of 

threads were consistently being generated by the browser while running CTF.  

Subsequently, we began to examine different components within the source code base 

that might be adversely effecting the threading. 

The next break came while testing CTF on a Windows98-based machine without 

a sound card.  Without the sounds, significant increases in performance and significant 

reductions in thread count were experienced.  Knowing where to look, we began to 

systematically scrub the code for sound nodes, and then design, code and test different 

implementations to reduce the number of sound nodes while maintaining the same level 

of fidelity spatialized sound within CTF.  We were able to develop an implementation 

through careful combination of source files, using file inlining and defining (DEF) and 

using (USE) Sound node sources, such that we were able to reduce the thread count by 

over 180 threads, providing a 50% reduction in overall thread count.  This made CTF a 

stable and reliable research platform once again.  

Concurrent with these activities, we queried members of the Web3D Consortium 

for possible sources of the problem as well as identified this problem for future 

conformance testing for the new X3D specification.  There were no specific reference to a 

problem such as we encountered in CTF in previously published materials, specifications 

or Frequently Asked Questions (FAQ).  However, through electronic mail with David 
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Chamberlin, formerly of Silicon Graphics, Incorporated (SGI), where CosmoPlayer was 

developed, we did identify the suspected overall root cause. 

The CosmoPlayer 

…audio/video library was designed to be a very extensible, pluggable 
library with the ability to do very tight synchronization and the ability to 
be used in a highly multithreaded environment (Chamberlin, 2000).  

This causes CosmoPlayer to provide robust performance in exchange for a very “heavy 

weight” underlying structure.  Availability of open source for future browsers will greatly 

improve our ability to diagnose and correct such difficult problems.  

D. BROWSER COMPARISON 

There are three major VRML browsers, CosmoPlayer 2.1.1, Cortona VRML 

Client and Blaxxun Contact 4.4, currently available.  All three work inside the Netscape 

and Internet Explorer family of browsers.  Each are available to download free of charge 

and all offer advantages and disadvantages. 

1. CosmoPlayer 2.1.1 

CosmoPlayer was originally developed by SGI, with the latest version 2.1.1  

released in December 1998.  CosmoPlayer has been the browser standard in relation to 

conformance testing.  However, it has numerous identified program bugs and 

unfortunately, 2.1.1 was the last work done on the source code because SGI sold it to 

Platinum Technologies (and subsequently resold to Computer Associates Inc.).  Since the 

CosmoPlayer source code is stagnant, Blaxxun and Cortona, who have continued to 

develop their products, offer a higher level of support for updated technologies and 
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advanced features.   CosmoPlayer is the only browser that currently supports the Java 

network security model required to run DIS-Java-VRML.  Unfortunately, it also contains 

the sound thread problem and also does not conform to the VRML97 specification due to 

its inability to render H-Anim 1.1 specification humanoids using EXTERNPROTO 

definitions. 

The control panel, shown in Figure 26, provides interactivity through viewpoint 

(bottom left) and navigation controls (bottom center). Preferences can be set and a VRML 

console can be called from the check button (bottom right).  Gravity can also be applied 

and each rendering comes with a default headlight or light from the viewpoint so that 

lighting does not have to explicitly be built into the file. 

2. Cortona VRML Client 

Parallel Graphics, the maker of the Cortona VRML Client, shown in Figure 27, have been 

the most active company in developing Web3D tools recently, and seemingly is the most 

committed to making a profit from these technologies.  The Cortona VRML Client was 

released for the Apple Macintosh on 5 September 2000.  They are also developing a 

VRML Client for Windows CE for handheld devices.  They have developed a series of 

four VRML authoring tools (VRML Pad, Internet Space Builder, Internet Scene 

Assembler, Internet Character Animator) and are preparing to release a fifth tool to 

optimize 3D scenes.  Cortona is currently the smallest VRML browser and claims to be 

the fastest. 
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Figure 26.  CosmoPlayer 2.1.1 showing the model RunningWomen.wrl.  From (ZdNet, 2000). 

 

Cortona provides standard navigation and viewpoint interactivity.  However, 

Parallel Graphics has added extensions to define and support Spline geometries and 

NURBS, support REAL Audio and Video and Macromedia Flash for inclusion as movie 

textures, as well as extended event generation to support drag and drop and keyboard 

input.  On the cutting edge of technology, the latest VRML client is optimized for the 

Intel Pentium III processor and provides full support for Software renderings and 

hardware accelerators DirectX and OpenGL.  Unfortunately, at this time, Cortona does 

not support the DIS-Java-VRML security model, but it does support the H-Anim 1.1  
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Figure 27.  The Cortona VRML Client showing the Model RunningWoman.wrl.  From             
(ZdNet, 2000). 

specification native tag set translation from developed for X3D-Edit.  The DIS-Java-

VRML working group continues to encourage Parallel Graphics to enable the next release 

of the Cortona VRML Client to support the DIS-Java-VRML security model.   

3. Blaxxun Contact 4.4 

Blaxxun, began in 1995, is an internationally based company, bringing interactive 

3D for virtual worlds across the web.  Blaxxun Contact 4.4, shown in Figure 28, is their 

latest update in their Contact VRML browser family and was released 2 August 2000.  
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Blaxxun has experimented with integrating new technologies into their VRML browsers, 

such as including a NURBs specification and most recently a sample Cells and Portals 

implementation for 3D optimization.  There have also shown consistent interest in rapid 

avatar creation with the Blaxxun Avatar Den and most recently with the Blaxxun Avatar 

Studio. 

 The control panel also allows interactivity through navigation and viewpoint 

control.  Blaxxun also includes more technologically advanced controls through a pop up 

menu activated by right clicking in the browser.  These include providing an avatar to 

represent the position of the viewer, plus wire-frame and vertices-only drawing of scenes.  

See Figure 29. 

Figure 28.  Blaxxun Contact 4.4 showing the model RunningWoman.wrl.  From (ZdNet, 2000). 
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Figure 29.  Blaxxun Contact 4.4 Showing Wire frame Rendering of the Blaxxun Avatar. 

E. SUMMARY 

This chapter discussed the challenges involved in implementing the model 

Nancy.wrl in a DIS-compliant format, and designing a single-user, single-entity interface 

to control the DIS-compliant Nancy. The inclusion of the DIS-compliant Nancy into the 

CTF framework and an alternate VE world, as well as extending the motion library are 

addressed.  Additionally, improvements made within the CTF world regarding sound 

threads, and a brief discussion of VRML browsers are presented. 

 

 

 



57

V. H-ANIM IN X3D 

A. INTRODUCTION 

This chapter provides a brief overview of the significance of switching to X3D 

when dealing with human avatars.  Following this is a description of the original 

conversion of the existing Nancy.wrl file to XML and then its translation back to VRML.  

Finally, the creation and implementation of a H-Anim 1.1 Spec DTD is discussed. 

B. WHY X3D? 

The X3D specification is an evolutionary step forward toward the realization of 

the Web3D Consortium’s mandate to make 3D graphical content ubiquitous on the web.  

The X3D-Edit authoring tool is the proof-of-concept demonstration application to 

leverage new and emerging technologies to further drive this mandate and make rapid, 

error-free 3D content generation as easy as constructing a 2D web page is today.  While 

fully implementing and supporting the VRML97 standard, this is merely an interim step 

in X3D’s final form.  The ease in which extensions to the standard can be incorporated 

into the authoring tool and the control of the final output format through the XML family 

of technologies make it the platform from which to implement revolutionary leaps in web 

3D graphics emerging in the near future.  The inclusion of the extensions of the H-Anim 

specification, discussed in this chapter, GeoVRML specification and DIS-Java-VRML 

framework are blueprint exemplars from which to continue to develop and include 

powerful new concepts in web 3D graphics.   
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C. TRANSLATING NANCY 

Since both the original Nancy and the DIS-compliant Nancy were written solely in 

VRML, the file needed to be converted into XML and then translated back into VRML to 

ensure compatibility forward and backward, as well as provide a stable starting point to 

more rapidly create human graphics content.   

1. *.wrl to *.xml 

Unlike the robust translation support provided by X3DToVRML.xsl, no good 

VRML to X3D translator yet exists.  The VRML-Java3D working project and open 

source X3D/VRML-Java3D (Xj3D) codebase, primarily developed by Sun Microsystems, 

have made steps in that direction.  Unfortunately, in its current implementation of its 

Document Object Model (DOM) X3Delement class, attributes are typed by context and 

not by content.  While as a generalized model, this provides a powerful translation tool, it 

is unable to translate PROTOs as PROTOs and instead fully writes each instance of a 

PROTO out in an operative format for execution.  Nevertheless, this partial translation 

provided a baseline to start from, while the rest of the translation required work by hand 

using the X3D Edit tool as seen in Figure 30. 

2. *.xml to *.wrl 

The XML to VRML conversion is handled through an XSL style sheet.  In the 

case of the original Nancy.xml translation, the unchanged X3DtoVRML97.xsl file was 

used.  This style sheet reads the attributes and tags from the XML file, translates  
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Figure 30.  X3D-Edit Screen Shot of Nancy.xml. 

them into a VRML97 format and launches a web browser with a VRML plug in as the 

renderer.  It was able to read the PROTO declarations and PROTO instantiations written 

into the Nancy.xml file, and therefore render the VRML file appropriately in a web 

browser.  See Figure 31 for a fragment from the X3DtoVRML97.xsl file, which 

determines the node type of PROTOs and EXTERNPROTOs, thus used to translate 

Nancy.xml back into VRML. 
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Figure 31.  Fragment from X3DtoVRML97.xsl Which Determines Node Types of    PROTOS.  From 
(X3D, 2000). 

 

3. Lessons Learned 

The major lesson learned is that converting a large graphics file by hand is 

tedious, time-consuming work.  It is far preferable to have a conversion program do the 

work.  Suggestions and recommendations developed during the conversion experience 

were passed on to Rick Goldberg, Sun MicroSystems, the primary Xj3d author, for use in 

further development of backwards-compatibility translations.  For more information on 

Xj3D, visit the How to Install and Compile Xj3D page at http://www.web3D.org/ 

TaskGroups/x3d/Xj3D/HowToInstall.html.   On the positive side, the conversion work 

validated the forward compatibility from XML to the H-Anim 1.1 spec in VRML, which 

<xsl:apply-templates />
</xsl:template>
<!-- ****** recurse through each of the tree node elements ******

-->
- <xsl:template match="*">

<!-- figure out node type for ProtoDeclared ProtoInstance,
ExternProtoDeclared ProtoInstance and internal DTD declaration
tag definitions -->
<xsl:variable name="nodeName" select="./@name" />
<xsl:variable name="nodeName2" select="local-name()" />
<xsl:variable name="parentNodeName" select="../@name" />
<xsl:variable name="parentNodeName2" select="local-name(..)" />

<!-- ProtoDeclared ProtoInstance -->
<xsl:variable name="nodeType" select="local-

name(//ProtoDeclare[@name=$nodeName or
@name=$nodeName2]/*[local-name()!='field'])" />

<xsl:variable name="parentType" select="local-
name(//ProtoDeclare

[@name=$parentNodeName]/*[local-name()!='field'])" />
<!-- ExternProtoDeclared ProtoInstance -->

<xsl:variable name="EPnodeType" select="//ExternProtoDeclare
[@name=$nodeName or @name=$nodeName2]/@nodeTypeHint" />

<xsl:variable name="EPparentType" select="//ExternProtoDeclare
[@name=$parentNodeName]/@nodeTypeHint" />
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allowed the development of the H-Anim EXTERNPROTOs and the development and 

implementation of a native tag set for H-Anim in the X3D-Edit tool. 

D. GOING NATIVE 

In order to rapidly generate virtual human content in X3D-Edit, a H-Anim DTD 

and native tag set had to be developed and implemented.  This required defining 

EXTERNPROTOs for the H-Anim 1.1 spec PROTO nodes in a file, defining the DTD in 

an XML file and then adding the appropriate code to the X3DtoVRML97.xsl stylesheet in 

order to allow the correct translation and format.  In each case, development and support 

of prototype declaration versions enabled getting the code to work, and then simplified 

the generation of native tag support. 

1. EXTERNPROTOS for H-Anim 1.1 Spec and the H-Anim DTD  

The H-Anim EXTERNPROTO declarations used for the XSL style sheet 

translation reside in the VRML translation of NancyProtos.xml called 

NancyProtosTranslated.wrl.  As per the VRML specification, libraries of PROTOs can be 

created by including multiple PROTO definitions within the same file.  Specific PROTO 

definitions are accessed by adding a pound sign (#) and node-type name to the end of the 

Uniform Resource Locater (URL) used in the EXTERNPROTO declaration (Ames, 

1997).  Of note, the Nancy files only include the three major PROTOs of the H-Anim 1.1 

spec (Humanoid, Joint and Segment Nodes), not all five (the Site and Displacer Nodes), 

and these three are the only EXTERNPROTOs currently defined in X3D-Edit.  The 
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EXTERNPROTO definitions supporting H-Anim have been included in the current 

builds of X3D-Edit since version 1.4. 

The DTD was developed from the node definitions provided in the H-Anim 1.1 

Specification and implements all five of the specified H-Anim nodes.  It is the list of tags 

that define the attributes and elements of H-Anim, and describes their relationships and 

their formatting.  It also provides the ability to validate XML files containing H-Anim 

content by ensuring that the content adheres to the specified formatting and structure.  See 

Figures 32 and 33.  

 

 

 

 

 

Figure 32.  Fragment from HumanoidAnimation.dtd.  From (X3D, 2000). 

<!ELEMENT Humanoid (
(humanoidBody, (

(joints,((segments,((sites,viewpoints?)|(viewpoints,sites?))?)
|(sites,((segments,viewpoints?)|(viewpoints,segments?))?)
|(viewpoints,((segments,sites?)|(sites,segments?))?) )? )
|(segments,((joints,((sites,viewpoints?)|(viewpoints,sites?))?)
|(sites,((joints,viewpoints?)|(viewpoints,joints?))?)
|(viewpoints,((joints,sites?)|(sites,joints?))?) )? )
|(sites,

((joints,((segments,viewpoints?)|(viewpoints,segments?))?)
|(segments,((joints,viewpoints?)|(viewpoints,joints?))?)
|(viewpoints,((joints,segments?)|(segments,joints?))?) )? )
|(viewpoints, ((joints,((segments,sites?)|(sites,segments?))?)
|(segments,((joints,sites?)|(sites,joints?))?)
| sites,((segments,joints?)|(joints,segments?))?) )? ) )? )

<!ATTLIST Humanoid
bboxCenter %SFVec3f; "0 0 0"
bboxSize %SFVec3f; "-1 -1 -1"
center %SFVec3f; "0 0 0"
info %MFString; #IMPLIED
name %SFString; #IMPLIED
rotation %SFRotation; "0 0 1 0"
scale %SFVec3f; "1 1 1"
scaleOrientation %SFRotation; "0 0 1 0"
translation %SFVec3f; "0 0 0"
version %SFString; #FIXED "1.1"
nodeTypeHint NMTOKEN #FIXED "Transform"
DEF ID #IMPLIED
USE IDREF #IMPLIED>
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Figure 33.  Screen Shot of the NancyNativeTags.xml Showing the H-Anim Native Tag Set  in the 
Leftmost Panel.  Also Note the EspduTransform Native Tag Also in the Leftmost Panel. 

2. XSL Script Changes 

Changes to the XSL Stylesheet had to be implemented in order to format and 

render H-Anim content from its new native tag set.  These changes are merely additions 

to the existing document, allowing the H-Anim extension to be treated as if it were a 

VRML97 Specification node.  Figure 34, a code fragment from the updated 

X3DtoVRML97.xsl, illustrates the format of the EXTERNPROTO of the Joint node that 

is written into a translated H-Anim VRML file, thus allowing it to be rendered by a 

VRML browser. 
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Figure 34.  A Code Fragment from the Updated X3DtoVRML97.xsl showing the formatting for the 
EXTERNPROTO declaration of Joint.  From (X3D, 2000). 

3. Lessons Learned 

The implementation of the H-Anim native tag set in the X3D-Edit authoring tool 

considerably speeds development work and debugging on existing H-Anim content.  The 

use of the native tags eliminates costly time dealing with PROTO/ EXTERNPROTO 

declarations and instantiations while the H-Anim DTD allows work to be validated 

during development providing early identification of errors.  While no H-Anim content 

has been developed from scratch with the native tag set, the authoring tool will provides  

users the same (if not greater) benefit when compared to extension work done on existing 

<xsl:text>]</xsl:text>
</xsl:if>

- <xsl:if test="//Joint and
not(//ExternProtoDeclare[@name='Joint'])">
<xsl:text>EXTERNPROTO Joint [</xsl:text>
<xsl:text>exposedField SFVec3f center # 0 0 0</xsl:text>
<xsl:text>exposedField MFNode children # []</xsl:text>
<xsl:text>exposedField MFFloat llimit # []</xsl:text>
<xsl:text>exposedField SFRotation

limitOrientation # 0 0 1 0</xsl:text>
<xsl:text>exposedField SFString name # ""</xsl:text>
<xsl:text>exposedField SFRotation

rotation # 0 0 1 0</xsl:text>
<xsl:text>exposedField SFVec3f scale # 1 1 1</xsl:text>
<xsl:text>exposedField SFRotation

scaleOrientation # 0 0 1 0</xsl:text>
<xsl:text>exposedField MFFloat

stiffness # [ 0 0 0 ]</xsl:text>
<xsl:text>exposedField SFVec3f

translation # 0 0 0</xsl:text>
<xsl:text>exposedField MFFloat ulimit # []</xsl:text>
<xsl:text>] [</xsl:text>

<xsl:text>"NancyProtosTranslated.wrl#Joint"</xsl:text>
<xsl:text>"C:/www.web3D.org/TaskGroups/x3d/translation/

examples/HumanoidAnimation/
NancyProtosTranslated.wrl#Joint"</xsl:text>
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content. A major lesson learned through the implementation of the H-Anim tag set was 

that CosmoPlayer does not support the EXTERNPROTO model mandated in the 

VRML97 Specification well enough to render H-Anim native tag set VRML translations, 

although the other major VRML browsers can.  We suspect this bug prevented the 

development of a generalized H-Anim EXTERNPROTO specification.  This 

unfortunately limits development for DIS-Java-VRML inclusion of native tag XML  

H-Anim content since the other browsers do not yet support the security model.  

E. SUMMARY 

This chapter discussed the reasons for converting to X3D and the experience of 

converting a H-Anim compliant human from VRML to XML and then translating back to 

VRML.  Subsequently, the development and implementation of a native tag set in X3D 

for the H-Anim 1.1 Spec is discussed. 
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VI. MOUNTING OF HUMAN ENTITIES 

A. INTRODUCTION 

This chapter discusses the mounting and aggregating of the human entities to non-

human entities.  Entities transmitting DIS protocol Entity State PDUs, expressed in 

relative coordinate systems versus a world coordinate system, while the entities maintain 

their true real-world location, are addressed.   A basic mounting algorithm is defined and 

its usage is illustrated through its implementation in the entities’ action interpreters and 

the VRML scene.  Finally, the topics of collision, rotations in a relative coordinate system 

and network latency are discussed in terms of the implementation.   

B. LOCAL COORDINATES IN DIS 

The DIS protocol is designed to pass all position information in terms of world 

coordinates.  However, in order to aggregate virtual humans, the use of local coordinates 

was required.  Otherwise, the high precision relative motion needed for team activities is 

not possible across network delays or in georeferenced locations.  A non-physical entity, 

called an aggregation entity, was created to act as the centroid position from which to 

determine the relative coordinates of mounted or aggregated entities.  As a non-physical 

entity, it lacks the ability to perform actions directly effecting the CTF game play, i.e. it 

cannot fire, collide with another entity, be destroyed or capture the flag.  However, it 

maintains CTF’s physically based modeling framework of movement whether it is 

directing virtual humans representing DI or a virtual helicopter.  The aggregation entity 



68

can present an iconic representation during game play as a reference to the human 

controller as shown in Figure 35, or otherwise set to be invisible.  Even though the 

aggregation entity is a non-physical entity, it provides the control and coordination of the 

group actions of the physical entities aggregated with it. 

Figure 35.  The Aggregation Entity: Directional Three-Axis Icon. 

C. MOUNTING HUMANS 

The vast majority of entities in a VE are controlled singly and independently.  

This limits the ability to perform moves requiring any team effort or coordination.

Coordination of group activity and movement is usually the responsibility of their “real 

world” human controllers.  This “real world” coordination requirement makes group 

operations difficult to impossible.  By aggregating entities into groups or mounting them 

on non-human entities, realistic group behaviors can be performed and exhibited. 

In the manner that DIS is designed and normally implemented, entities’ positions 

are presented in a shared world coordinate system referenced to a terrain database.  

However, in this thesis research, mounted entities use relative coordinates in relation to 
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the world coordinate position provided by the aggregation entity.  The use of relative 

coordinates in networked VEs is usually problematic, since the networked ghost entities 

normally interpret the relative position information as world coordinates, subsequently 

rendering the entity in the wrong location.  This problem was addressed through the use 

of articulated parameters to the ESPDU, to denote whether an entity was mounted to the 

aggregation entity, in both the mounted entity and the aggregation entity.  The ESPDUs 

are sent across the network and the ghost entities are informed of their mounted status.  In 

this implementation, a true position ESPDU is maintained in the master entity only.  The 

true-position ESPDU is used, as a data structure to maintain entity state data that 

otherwise is lost through the conversion to relative coordinates.  This facilitates switching 

from mounted state, collision and weapons firing, and is critical to the accurate 

movement of mounted entities.  Individual behaviors are determined by the magnitude of 

linear velocity, and while aggregated they perform their behaviors based on the 

magnitude of the linear velocity vector, to an upper limit, formed by summing the linear 

velocities of the aggregation entity and mounted entity.  This provides appropriate 

behaviors unless the velocity vectors are in opposite directions.  

The mounting algorithm used in this research essentially replicates vector addition 

of the velocity vectors of the mounted entity and the aggregation entity.  The basic steps 

to the algorithm are as follows:  move the mounted entity as if it were an independent 

entity, determine a relative vector from the mounted entity to the aggregation entity, move 

the aggregation element, add the relative vector to the aggregation entity’s new position 
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to determine the mounted entity’s final position, and of course, repeat until 

disaggregation.  This basic algorithm is illustrated in Figure 36.     

1. Implementing the VRML Scene 

The decision on the final form of this research’s implementation came after 

almost a year of test and development work involving a variety of networking and 

rendering implementations.  The evaluation criteria dealt with reducing network latency, 

maintaining PDU send rate at a level that would not cripple further scalability, ease of 

implementation and reduction of complexity to achieve the highest possible frame rate in 

a complex maneuver scene.  In its most complex behaviors, such as mounting the 

helicopter, a average frame rate of approximately four frames per second is maintained on 

a 512 MB RAM machine, dropping from an average of eight to nine frames per second 

on less complex behaviors.  In the end, two implementations were fully developed to 

handle a mix of five human entities and single aggregation entity.  Only the final 

implementation developed includes a helicopter entity and above ground-level maneuver. 

The first of the fully developed implementations involved the switching of inlined 

files containing the same entity but presenting it as either a mounted or unmounted entity.  

A scene graph fragment of this implementation is shown in Figure 37.  The decision to 

render the entity as mounted or unmounted was provided from the mounted state 

articulated parameter from the aggregation entity, which was routed to an ECMAScript 

internal to the scene graph for implementation, as illustrated by Route1 in Figure 37.  
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Figure 36.  Mounting algorithm illustrated.  A moving humanoid first determines vector distance and 
velocity differences with the aggregation vector, then adjusts to match. 
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Figure 37.  Fragment of a VRML scene graph showing the first fully developed test implementation 
dealing with switching the human entity between a scene graph child and a scene graph peer of the 
aggregation entity. 

The Script node then routed the implementation to the Switch nodes, as shown by Route2 

and Route3 in Figure 37, which in turn rendered the human entity to the correct position 

in the correct mounted state.  Unfortunately, there were two problems which prevented 

this test implementation from being the final product.  The first problem dealt with the 

switching node, which is required according to the VRML specification to pass all 

information along its routes to every choice in a Switch node.  This led to the artifact, due 

to DIS and even though one Espdu was transmitted across the network, that the human 

Aggregation Entity 
EspduTransform Node

Inlined file Leader.wrl 
(Human EspduTransform Node) 

Inlined file Leader.wrl  
(Human EspduTransform Node)

Script Node 
Route1: Carries information in on mounted state of 

Leader.wrl to set switches served by Route2 and Route3 
Route2: 0: Mounted 1:Unmounted 

Route3 = !Route1 (0: Unmounted 1:Mounted) 

Route3:whichChoice

Route2:whichChoice

Route1:ArticulatedParameter

SCENE
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entity was rendered in both its mounted position relative to the aggregation entity and to 

its world coordinate position when the entity was in the mounted state.  While a work 

around solution of a higher-level Switch node over the unmounted inline file was 

implemented to set the world coordinate human entity non-visible when in the mounted 

mode, this was an unacceptable fix since its implementation affected future scalability.  

The other element dealt with the loss of the active viewpoint when switching from a 

mounted to a nonmounted state and vice versa.  This was caused by reloading the inlined 

file with the Switch node at the change of state.  The active viewpoint was instead bound 

to the viewpoint prior to the currently active one prior to state change.  This viewpoint-

hysteresis problem was also felt to be unacceptable in terms of usability and acceptance 

of the model. 

The final implementation involves sophisticated addition and deletion of VRML 

routes at run-time to provide the correct implementation and rendering of an entity either 

in relative coordinates (mounted state) or in world coordinates (unmounted state).  Scene 

graph fragments of the final implementation are shown in Figures 38, 39, 40 and 41.  The 

implementation involves the aggregation entity’s EspduTransform node as a scene graph 

peer of a Transform node wrapped around an inlined file containing the EspduTransform 

node of an entity that can execute mounting.  Like the first fully developed 

implementation, the ESPDUs from the action interpreter classes transmit to the 

EspduTransform script, which subsequently passes them to the VRML file as seen in 

Figure 38.  The aggregation entity then routes the mounted state articulated parameter for  
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Figure 38.  Java Classes updating the VRML scene through ESPDUs via the EspduTransform Java 
(language) Script class. 
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the specific entity involved to a ECMAScript Script node internal to the VRML file, as 

shown in Figure 39.  Based of the articulation parameter’s value, the logic resident in the 

Figure 39.  The mountedState ECMAScript receiving the MountedState articulated parameter value 
via ROUTE from the VRML EspduTransform Node. 

entity ECMAScript calls the browser in order to delete and then add the designated 

routes, which allows the correct passing of translation values to be added to the top of the  
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entity’s matrix stack.  If the entity is in a mounted state, the position of the aggregation 

entity is routed to the Transform wrapper node, as shown in Figure 40, following the 

deletion of ROUTEs 2a and 3, and the addition of ROUTE2b.  If the entity is in a  

Figure 40.  Illustrating the Add and Delete ROUTEs when the entity is Mounted. 
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nonmounted State, then the translation from the aggregation entity is routed to the Script 

node, it is zeroed out and then the zeroed translation is routed to the Transform wrapper 

node, as shown in Figure 41, after ROUTE 2b is deleted and ROUTEs 2a and 3 are 

added.   

Figure 41.  Illustrating the Add and Delete Routes When the Entity is Unmounted in the Final 
Implementation. 
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The ECMAScript function mountedState which sends the calls to the browser to 

add and delete the routes, is shown in its entirety in Figure 42.  The boolean flags 

routeUnloaded and routeLoaded are activated by passing the mounted state articulation 

parameter value from the aggregation entity.  In the VRML rendering of the scene,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 42.  From the file the NancyTeamAddRoutes.wrl, ECMAScript Function mountedState which 
dynamically adds and deletes VRML ROUTEs at run-time. 

mounted and unmounted entities can be visually identified through the color of their trace 

values.  See Figure 43.  If the entity is mounted, the trace color represents the team color 

 function mountedState ( mState, timeStamp ) {
print ('Leader mountedState =' + mState); // 0=unmounted, 1=mounted
if (mState == 0) {

if (!routeUnloaded) {
Browser.deleteRoute ( fromNode, 'translation_changed',

thisNode, 'translation' );
Browser.deleteRoute ( thisNode, 'zeroTranslation',

toNode, 'set_translation' );
routeUnloaded = true;
print ('Just deleted Local Translation Routes. routeUnloaded = '

+ routeUnloaded);
} // end if
if ( !routeLoaded ) {

Browser.addRoute ( fromNode, 'translation_changed',
toNode, 'set_translation' );

routeLoaded = true;
print ('Just added Espdu Translation Routes. routeLoaded ='

+ routeLoaded);
} // end if

} // end if
else {

if ( routeLoaded ) {
Browser.deleteRoute ( fromNode, 'translation_changed',

toNode, 'set_translation' );
routeLoaded = false;
print ('Just deleted Espdu Translation Routes. routeLoaded = '

+ routeLoaded);
} // end if
if (routeUnloaded) {

Browser.addRoute ( fromNode, 'translation_changed',
thisNode, 'translation' );

Browser.addRoute ( thisNode, 'zeroTranslation',
toNode, 'set_translation' );

routeUnloaded = false;
print ('Just added Local Translation Routes. routeUnloaded = '

+ routeUnloaded);
} // end if

} // end else
} // end mountedState
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(in this case the blue team), but if the entity is unmounted, though normally on the blue 

team, the trace color is green. 

 
 
 
 

Figure 43.  Demonstrating Mounted (Blue) and Unmounted (Green) trace colors. 

2. Dealing with Collision 

While collision while in the mounted state originally appeared to be problematic, 

in fact most issues were easily solved.  First, the aggregation entity itself is implemented 
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as a non-physical entity with the ability to have a visible icon assist the user.  Therefore, 

the aggregation entity only deals with collision in regard to the ground plane in order not 

to place its mounted entities below the world surface.  The mounted entities themselves 

currently have their collision with other mounted team entities disabled.  This allows 

them to mount the helicopter for air assault operations, since group movement under the 

aggregation entity is neither optimized nor prioritized.  Future work can add greater 

realism to the simulation.  The mounted entities do still deal with ground collision, fire, 

detonation and non-mounted entities, primarily using the stored true position ESPDU 

held only in the master entity. 

3. Dealing with Rotation 

In the original implementation testing and development, the mounted entities were 

provided with a relative position as well as an orientation.  Unfortunately, this caused a 

further matrix stack transformation within the relative coordinates requiring an additional 

transformation to allow the mounted entity to be rendered in its true position as shown in 

Figure 44.  While this was manageable dealing with only static entities, the complexity of 

the ongoing calculations combined with the dead-reckoning algorithms in the 

EspduTransform Java (language) Script class file and network latency led to 

unsatisfactory frame rate and marginal accuracy in positioning.  Therefore, the final 

implementation had the mounted entities maintaining independent heading and 

orientation state information except under the special circumstances of the human entities 

unloading the helicopter or the helicopter itself under mounted flight conditions.  These 

special cases were handled through a direct feed of the aggregation entity’s  
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Figure 44.  Transforming Relative Coordinates with Orientation Back to the True Position. 

heading information to the mounted entity, controlled by boolean flags within the 

mounted entity’s action interpreter.

4. Dealing with Network Latency and PDU Send Rate 

The final scene graph implementation was chosen partially for its ability to 

minimize network latency effects while not executing extremely fast PDU send rates.  

The aggregation entity transmits PDUs at an average of slightly higher than ten per 
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second (no less than every 100 milliseconds), the human entities transmit PDUs at an 

average of two per second (every 500 milliseconds) and the helicopter entity transmits 

PDUs at slightly higher than two per second (no less than every 500 milliseconds).  For 

the most part, these send rates perform adequately for the demonstrations.  The 

implementation proves to be problematic in situations where entities are very close to the 

aggregation element or when the aggregation element makes sudden shifts in orientation 

or linear velocity.  This feature became readily apparent during implementation work of 

the entity-bound and dismount-helicopter behaviors.  From these experiences, a hold 

behavior, which holds a mounted entity in its true location regardless of the motion of the 

aggregation entity, was developed as a tracking improvement.  However, even with the 

addition of this behavior, problems are still encountered involving mounted entities in 

close proximity to the aggregation element.  While increasing the transmission rates of 

the mounted entities may further minimize this undesired artifact, it is an inappropriate 

long-term solution because it minimizes future scalability of the VE by unnecessarily 

taxing network bandwidth, available computing power and rendering power of readily 

available personal computing systems.  A predictive-behavior aggregation state PDU is 

worth considering as a further development and implementation task to further optimize 

such challenging behaviors in future work.   

D. SUMMARY 

This chapter discusses the mounting or aggregating and disaggregating of the 

human entities to non-human entities, primarily an aggregation entity.  Linking an 
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aggregation entity to a moving vehicle is also examined.  Issues involved with entities 

transmitting DIS protocol entity state PDUs expressed in relative coordinate systems, 

while maintaining their true world location are addressed.   The definition and 

implementation of a basic mounting algorithm is presented and its use is illustrated 

through its implementation in the entities’ action interpreters and the VRML scene.  

Collision, rotations in a relative coordinate system and network latency are also discussed 

in terms of the final implementation results.    
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VII. MULTIPLE-ENTITY, SINGLE-USER INTERFACE  

A. INTRODUCTION 

This chapter discusses the implementation of the multiple-entity, single-user 

interface.  The use of rule-based movements to define group behaviors in a networked VE 

is described.  Individual behavior implementations to simulate tactical activities are 

described and illustrated.  Supported team behaviors include None, Hold, Column, Line, 

Wedge, Mount Vehicle and Dismount Vehicle.  The master control panel, its components 

and the underlying action interpreters are also examined in this chapter.  

B. RULE-BASED MOVEMENTS AND THE BEHAVIORS 

The group behaviors are defined through a series of rules that define a goal 

position and orientation relative to the aggregation entity.    For example, the goal 

position of the entity closest to the aggregation in the Line behavior is a positive 90 

degrees from the current heading of the aggregation element and five meters in distance, 

with the goal orientation (once it has reached the goal position) to match the aggregation 

entity’s current heading.  Each entity has a specific rule that defines its goal position and 

orientation in each behavior.  These simple rules enable the entities to mimic the 

positions of personnel in a US Army Dismounted Infantry (DI) fire team while 

performing a variety of tactical activities.  Once an entity determines its goal position and 

orientation, it will incrementally move there.  When the goal position and orientation is 

achieved, the entity correctly maintains its position and orientation by matching the linear 



86

and angular velocity vectors of the aggregation entity until a new behavior becomes 

active.  The specific behaviors are described in detail below.   

1. None 

The behavior None is generally the default behavior of aggregated entities that 

have not received a command to perform a behavior.  While None is the active behavior, 

aggregated entities will maintain their relative distances to the aggregation entity and will 

remain in the final position caused by the last active behavior.  However, None also 

allows the entities to move relative to the aggregation entity under user control.  This 

permits actions that require one or more entities to move away from or within the group, 

such as a reconnaissance during a tactical movement or a leader being called to the front 

of a formation.  

2. Hold 

The behavior Hold is used to prevent aggregated entities from moving in 

conjunction with the aggregation entity without unmounting them.  While Hold is the 

active behavior, mounted entities do not maintain their relative distances from the 

aggregation entity, and if stationary, will remain in the same true location even if the 

aggregation entity is moving.  Like the None behavior, the Hold behavior allows the 

aggregated entity to move relative to the aggregation entity under user control to perform 

tasks separate from the group.  Hold is used in the performance of the compound 

behaviors Mount Vehicle, Dismount Vehicle (right or left) and Bound.  It was a necessary 

addition to the behavior set to achieve these compound behaviors.  
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3. Wedge 

The wedge formation is the basic tactical movement formation for small units in 

the US Army.  The behavior Wedge, seen in Figure 45, is developed through the use of 

the goal position and orientation to form and maintain the correct form.  The rules for the 

centered or first tier humanoid define the goal position to be negative five meters in the X 

direction of the relative (body) coordinates of the aggregation element and the goal 

orientation to match the current heading of the aggregation element.  The rules for the 

second tier of humanoids is more complex.  Their goal position is negative ten meters in 

the X direction and plus or minus (±) five meters (depending on the entity) in the Y 

direction of the relative coordinates of the aggregation element.  In polar coordinates, this 

translates to an offset distance of approximately 11 meters and an offset angle of around ± 

154 degrees (depending on the side the entity occupies in the wedge).  In Cartesian world 

coordinates the goal position of the aggregated entity is calculated as follows: 

X component =  X component of the aggregation entity’s location 
                                  +  Cosine (± 154 degrees) * (11 meters) and 
Y component =  Y component of the aggregation entity’s location  
                                  + Sine (± 154 degrees) * (11 meters).

The goal orientation remains the aggregation entity’s current heading.   The third-tier 

entities’ rules define the goal position as negative 15 meters in the X direction and ± 10 

meters in the Y direction of the aggregation entity’s body coordinates, and the goal 

orientation of the current heading of the aggregation entity. 
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Figure 45.  The Nancy Team in the Wedge movement formation. 

4. Line 

The Line and Bound are the standard tactical formations for an assault.  The 

behavior Line, shown in Figure 46, is easier to define than the wedge.   The goal positions 

of the aggregated entities are negative five, negative ten, -15, -20 and -25 meters in the Y 

direction of the relative coordinates of the aggregation entity.  The goal orientation is the 

current heading of the aggregation entity. 
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Figure 46.  The Nancy Team in the Line movement formation. 

5. Column 

In the US Army, the column or file is defined in the terms of a modified Wedge.  

It is used in conditions where command and control of an element becomes difficult when 

the element is in a more open-movement formation.  Its primary usages are when the 

team is moving in restrictive terrain or during periods of limited visibility.  The behavior 

Column, shown in Figure 47, lies between the Wedge and Line in its ease of definition.  

The goal positions are defined as positive seven and one half meters, positive  
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Figure 47.  The Nancy Team in the Column movement formation, viewed from the right side. 

two and one half meters, negative two and one half meters, negative seven and one half 

meters and negative 12.5 meters in the X direction in the relative coordinates of the 

aggregation entity.  The goal orientation is the aggregation entity’s current heading. 

6. Bound 

Bound (as in leapfrogging or jumping ahead) is a standard assault movement 

technique) used in conjunction with the line formation..  The behavior Bound, illustrated 

in Figure 48, is a compound behavior, combining the line and the hold behaviors.    
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Figure 48.  The Nancy Team demonstrating the Bound behavior. 

 

In Figure 48, the two outermost aggregated entities have received hold commands while 

the other aggregated entities are moving in the line formation.  When the aggregation 

entity receives a command to bound from the user, it issues an order to move the 

aggregated entities into a line.  The aggregation entity then polls the aggregated entities to 

determine when they are in their goal positions and orientations.  Once all aggregated 

entities have achieved this state, the aggregation entity will order two aggregated entities 

to hold while advancing in line for approximately 20 meters with the other three entities.  
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Once the 20 meter distance is covered, the aggregation entity releases the hold order on 

the two entities with a line command, and begins polling again for the achievement of the 

line-goal positions and orientations.  The previously held entities then advance back into 

their line positions, and the cycle is repeated until a different movement order is given. 

7. Mount Vehicle (Helicopter) 

The Mount Vehicle behavior shown in Figure 49 is another compound behavior 

involving the Line behavior, with additional rules dealing with actually entering the 

helicopter.  At the beginning of the mount vehicle command, the vehicle is ordered to 

hold.  The aggregation entity reads the vehicle’s ESPDU and moves to its center and 

matches its orientation.  Simultaneously, the aggregated entities are given an order to go 

to a line.  When the aggregation entity is close to the vehicle’s center (within half a meter)  

and its orientation (within a tolerance of two degrees), it begins to poll the human 

aggregated entities to ensure they have reached their Line behavior goal positions and 

orientations.  Once they all report that they have reached this state, the team entities turn 

toward the helicopter by setting their goal orientations to a positive 90 degrees from the 

aggregation entity’s orientation  Upon achieving these new goal orientations, they begin 

to mount the helicopter, actually entering it when they are within a distance of one and 

one half meters distance from the aggregation entity.  Although upon first examination 

the mounting of the helicopter may seem stilted and formulated, in fact, for safety 

considerations dealing with the tail rotor area of rotation, main rotor flap and visibility 

considerations of the pilots and crew chief/door gunners, this mounting behavior closely 

simulates how helicopters are loaded by teams in the tactical environment. 
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Figure 49. The Nancy Team Loading the Helicopter. 

8. Dismount Vehicle Right or Left 

The Dismount Vehicle to the right or left behaviors are essentially the same rule 

set.  The initial change of orientation is either ± 90 degrees from the landing heading of 

the aggregation entity, since during flight conditions the helicopter matches the 

orientation changes of the aggregation entity.  The Dismount Vehicle to the Right is 

illustrated in Figure 50.  The Dismount behavior begins with the aggregation entity 

orienting to support the correct dismount orientation.  Following the orientation change, 

the first exiting aggregated entity reorients to match the aggregation entity and then 

begins to move to its goal position.  Once it has moved a distance of five meters from the 
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Figure 50.  The Nancy Team dismounting the helicopter to the right. 

aggregation entity, the team member signals that it has dismounted and the next exiting 

aggregated entity gets its new rule set to determine its goal position and orientation.  

When the entities reach their goal position, they are ordered to hold.  This allows the 

aggregation entity to exit the helicopter without beginning motion within the fire team.  

Of interest, as the team of aggregated entities reach their goal positions, their goal 

orientations are set so that they face out in a semi-circle rather than maintain the 

orientation with which they exited.  This simulates a hasty defensive position for troops 

dismounting a helicopter in a tactical situation. 
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C. THE MULTI-ENTITY SINGLE-USER INTERFACE 

The multi-entity single-user interface consists of the master GUI control panel 

formed by a Java jFrame consisting of jPanels used for the linked control of the 

aggregation entity and the aggregated human and helicopter entities, and the action 

interpreters for these elements.  The master control panel is shown in Figure 51.  Since it 

is implemented in Java, it executes independently of the VRML scene.  This panel is 

considerably more complex than the single-user, single-entity control panel described in 

Chapter IV.  The top three panels shown in Figure 51 are the controls for the aggregation 

entities and the commands to be sent to the aggregated entities.  The upper left panel 

represents the basic ground controls of the aggregation entity.  Immediately above it is the 

Other Actions menu which contains items to start and stop the bound behavior.  The top-

center panel provides button controls for the group behaviors and a visibility button 

which allows the user to set aggregation entity visible or not.  The rightmost panel 

provides controls for flight operations under the control of the aggregation entity with a 

higher speed control and a height above the ground climb and descent rate slider.  The 

next five panels hold the human aggregated-entity control panel.  An example of this 

panel is shown in Figure 52.  This panel has been redesigned for greater usability and due 

to the addition of required features for aggregation.  Additional features include a 



96

Figure 51.  The Multi-Entity Single User GUI team control panel.  The top row of subpanels controls 
the aggregation entity movement with buttons to trigger the behaviors for the team.  The second two 
rows of subpanels control individual humans and the helicopter, either in relative or independent 
world coordinates. 
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Figure 52.  The Human Panel subcomponent to the team control panel. 

heading compass,  a text field showing the active group behavior, speed and turn rate 

sliders (Horstmann, 2000) and most significantly, the Squad? checkbox which allows the 

user to set the entity to a mounted or unmounted state.  When in the squad node, 

movements are sent relative to the aggregation entity.  When not in the squad mode, 

movements are sent in independent real-world exercise coordinates.  Corresponding 

entity trace text in the 3D environment changes color to match.  Either way, human 

motion is smooth and continuous. 

The last panel on the bottom right is the aggregated helicopter control panel 

shown in Figure 53.  It contains the controls to simulate physically based helicopter flight 

as well as the features for aggregation discussed in the human panel above.  The action 

interpreters support the mounting algorithm discussed in Chapter VI and also the rule-

based behaviors with their associated cross-talk ability discussed in this chapter. 
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Figure 53.  The Helicopter Panel subcomponent of the team control panel. 

D. SUMMARY 

This chapter discussed the implementation of the multiple-entity single-user 

interface.  The use of rule based movements to define group behaviors in a networked VE 

was described.  Individual behavior implementations to simulate tactical activities were 

described and illustrated.  The master control panel, its components and the underlying 

action interpreters were also examined in this chapter.
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

A. GENERAL THESIS CONCLUSIONS 

The construction of a networked 3D visualization and planning tool with 

articulated virtual humans performing realistic individual and group behaviors is feasible.  

Content to support and extend such a tool can be rapidly generated and integrated, with 

behaviors being extensible and interchangeable.  The tool’s source code can be platform-

independent, world-wide deployable and enjoys open-source distribution.  As shown in 

Figure  54, this thesis contributes to and extends the 16-year body of work, in networked 

VE technology useful to DoD and civilian applications, performed by the NPSNET 

Research Group. 

B. SPECIFIC CONCLUSIONS AND RESULTS 

1. Inclusion of Articulated Humans 

The H-Anim 1.1 spec exemplar Nancy.wrl, created by Cindy Ballreich, was used 

as the base model for this thesis project.  By wrapping the EXTERNPROTO declaration 

of the EspduTransform node around the H-Anim PROTOs and content of the Nancy.wrl 

file and modifying the behavior library implementation through a Script node, a DIS-

compliant human avatar was created.  This composition of EXTERNPROTOs is an 

excellent, efficient and general result.  A GUI interface for a single virtual human entity, 

single-user control and an action interpreter were implemented to add the DIS-compliant 

Nancy to the DIS-Java-VRML framework and instantiate the entity within CTF. 
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Figure 54.  The Flow of NPSNET Research Group Systems showing this thesis research as part of the 
continuum. 

2. Aggregation and Disaggregation 

A basic mounting algorithm is now defined and implemented, utilizing a non-

physical aggregation entity to control aggregated entities.  The mounting algorithm is 

included for use in the action interpreters of the aggregation entity and the human and 

helicopter aggregating entities.  A VRML scene graph concept for rendering the 

aggregated entities using either relative or world coordinates has been researched and 

implemented through the use of sophisticated VRML ROUTE addition and deletion 

under the control of a resident Script node.  
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3. Group Behaviors 

Using the ability to aggregate and disaggregate, a series of group behaviors 

simulating tactical activities is now developed and implemented.  This includes the 

development of a multi-entity, single user interface consisting of a GUI control panel and 

its subcomponent Java jPanels, and the implementation of action interpreters for the 

aggregating humans and helicopters and for the aggregation entity.  The behaviors are 

implemented through a set of rules using goal positions and orientations and match two 

categories, single and compound.  The single behaviors are the movement formations, 

Line, Wedge, and Column, and the control behaviors, None and Hold.  The more 

complex compound behaviors use one or more of the single behaviors to define its 

actions.  The compound behaviors consist of the air assault behaviors Mount Vehicle and 

Unmount Vehicle to the Right or Left, as well as the advanced movement formation, 

Bound. 

4. Extensibility and Rapid Content Creation 

The rapid creation and extensibility of content to include in the networked VE is 

illustrated through the use of the X3D specification and its associated authoring tool 

X3D-Edit.  A native tag set for H-Anim 1.1 specification was created through the 

definition of the H-Anim PROTOs as EXTERNPROTOs and the development of an H-

Anim 1.1 spec DTD.  Forward compatibility from X3D to the H-Anim 1.1 spec and 

X3D’s H-Anim compliance is demonstrated through both the PROTO declaration 

implementation and the implementation using the H-Anim native XML tag set.  The 

extensibility and interchangeability of geometry and behaviors is demonstrated through 
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the development and addition of a new individual behavior, Kneel, to both the original 

and DIS-compliant virtual human avatar, Nancy. 

 

5. Platform-Independent, Open-Source Distribution and World-Wide 
Deployable Source Code 

The source code developed in this thesis project currently runs in VRML browsers 

on the Windows family of operating systems (Windows 95, Windows 98 version 2, NT 

4.0, and Windows 2000) with reasonable performance on all platforms.  The source code 

itself is available on the Web3d Consortium web site in its entirety in the DIS-Java-

VRML working group download page (http://www.web3d.org/ WorkingGroups/vrtp/dis-

java-vrml/ download.html) while the  H-Anim work in XML can be found in the X3D 

task group examples page (http://www.web3d.org/ 

TaskGroups/x3d/translation/ examples.html).  The source code is also included in the 

Appendix on CD-ROM  and will be posted with an electronic copy of this thesis 

document on the NPSNET Research group website under the category of the MOVES 

Academic group Theses (http://www.npsnet.org/~moves/Theses.html).  

C. LESSONS LEARNED 

Legacy and archival code can be difficult to understand, work with and extend.  

The researcher’s task of working with legacy code is greatly facilitated by clearly written, 

well-documented source code.  In turn, as the researcher extends the original code, it is 

important that new changes are documented as part of a coherent body of work. 
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  As a Masters student doing research in LSVEs, one is (generally) constrained to 

implement work within existing systems. The time to learn the system is greatly reduced 

by good documentation, which  subsequently allows the student a longer period of time to 

conduct research.  This thesis involved two significant pieces of legacy code, Cindy 

Ballreich’s Nancy.wrl and the DIS-Java-VRML Working Group’s code.  In both cases, 

good documentation was provided because the code was designed with the goal of 

providing an examples for other authors to use.  As students from the MOVES Academic 

Group and/or the NPSNET Research Group continue research in VE technologies, we 

must look upon good documentation as a mission critical task with the view and goal that 

our research should provide an example for other researchers.  All Java code is required 

to have good Javadoc additions (Brutzman, 2000) to support clarity and reusability. 

D. RECOMMENDATIONS FOR FUTURE WORK 

1. Adaptive Agent 

The addition of adaptive software agents can become a powerful extension to this 

thesis project.  Currently the source code of the aggregated humans is designed in such a 

way to permit rapid conversion to run as software agents using the RELATE agent 

architecture developed by LCDR Kimberly Roddy, USN and LT Michael Dickson, USN 

(Roddy, 2000).  The 3D implementation of networked virtual humans as software agents 

opens a large area of research in complex adaptive systems (Dörner, 1996) to include 

discovery of emergent behaviors in examining tactics, techniques and procedures, as well 

as the opportunity to do analytical and validation work on the efficacy of the agent 
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software simulation in comparison to current standard operating procedures.  Two areas 

of specific future research involving agents are addressed below. 

a) React to Environmental Stimuli 

Ideally, even under real human control while conducting a combat 

simulation, these virtual humans need to react to environmental stimuli autonomously.  

By using an adaptive-agent implementation, the virtual humans might react  

autonomously to input stimuli such as incoming direct fire or indirect fire.  The agents 

actions might be programmed to follow task and standards found for these actions in US 

Army or Marine Corps training and evaluation manuals. 

b) React to Higher Level Behavior Commands (Auditory, Message 
and Visual Stimuli) 

In addition to environmental stimuli, an agent implementation also needs 

to respond to commands provided from a higher command element or actions caused by 

higher-level behaviors.  Examples include reaction to voice commands using a natural 

language interface, simulated radio messages received within the virtual world, or hand 

and arm signals given by a group commander.  The autonomous response of agents to 

these conditions also provides a rich area of future research. 

2. Increase Behavior and Motion Libraries 

The H-Anim specification-compliant library of individual motions for the virtual 

humans needs to be increased to provide a greater range of motions and behaviors.  

Recommended immediate additions are prone and crouch positions, crawl, and walk/run 

while crouched motions.  Later additions need to include more upper-body articulated 
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motions to conduct activities such as transferring equipment, as well as the ability to 

perform standard military hand and arm signals. 

Future work to extend the group behaviors is essentially limitless, particularly if 

development focuses outside the specific tactical constraints addressed in this thesis.  

Higher levels of aggregation into larger units will require the development of more 

sophisticated compound behaviors.  In support of US SOF and US Marine Corps, 

behaviors to allow small boat operations and amphibious operations need to be 

developed.  Additionally, features addressed in the NPSNET-Human project, such as 

medical evacuation by ground and air, also provide a rich area for future research and 

development in cooperative and group behaviors.   

3. Develop Geometry Library of Bodies, Vehicles and Attachments 

An H-Anim specification-compliant geometry library containing a variety of 

human avatar and vehicle geometries needs to be developed to represent friendly and 

opposing forces.  Additionally, other libraries of attachments to model and represent 

personal and unit military equipment (such as arms, ammunition, radios and explosives) 

need to be developed so that mission rehearsals and planning can be further enhanced.  

For longer-term development, these items can be made interactive so that equipment can 

be exchanged and cross loaded as well as operated within the parameters of a mission.  

An example of such an item for development is a laser target designator to guide the 

delivery of precision munitions against a target. 



106

4. Rapid Creation World-Wide of Georeferenced Terrain 

For a viable networked 3D planning tool, the area of operations where a mission 

will be conducted must be capable of rapid computer generation.  The GeoVrml 

specification and its inclusion in the X3D standard provides a proven approach to further 

this concept through future research.  Work currently under way at NPS involves a terrain 

server containing a digitized terrain map for the entire world land mass.  Such work is an 

essential step toward the rapid development of geolocated virtual worlds for operations 

planning.  

5. Development of Drag and Drop Object Library for Rapid Scene or 
World Development and Modification 

In pursuing the goal of a networked 3D planning tool, the ability to rapidly add 

world objects is essential to mission planning.  The Cortona VRML Client currently 

supports drag and drop technology.  The addition of this feature into the CTF framework 

in concert with the development of a library to include man-made objects, like roads and 

buildings, and natural objects, such as vegetation, greatly enhances its potential as a 

planning tool. 

6. Inclusion of Line of Sight and Detection Algorithms 

In support of a mission-planning tool, it is essential to include real world line of 

sight and detection algorithms.  The development and inclusion of these capabilities 

especially when involving georeferenced terrain provides a powerful and necessary 

enhancement to worlds developed in the DIS-Java-VRML framework.  
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7. Scale-Up Level of Aggregation 

The development of larger units and their associated behaviors is another 

important area of future work.  This thesis developed a proof of concept using a fire team 

level of organization.  Network scalability issues, command and control issues, and level- 

of-detail work to speed rendering of a many entity scene requires further research and 

development. The Q-U-I-C-K algorithm is a particularly promising avenue to continue 

(Capps, 2000). 

8. Predictive Positional PDU 

As a method to arbitrate network-latency problems involved with rapid orientation 

and heading changes of the aggregation entity when combined with actions conducted in 

close proximity to the aggregation entity, a predictive positional PDU needs to be 

developed.  Such a PDU might be issued by the aggregation entity to inform the 

aggregated entity of an anticipated upcoming (or non-linear) state change.  Such a PDU 

might be particularly powerful when humans implemented as agents can react to 

environmental stimuli.  For example, as the unit approaches an obstacle, the aggregation 

entity can inform the aggregated entities of an expected direction change or halt.  Greater 

synchronicity among distributed participants will also occur.  

9. Mounting Algorithm Used for Deployment Load Planning for Ships 
and  Airplanes 

This research on mounting and aggregation can be extended to other fields where 

3D visualization is useful.  An example implementation is the creation of a tool used for 

deployment load planning and execution, or amphibious operations.  Such a tool might 
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allow the user to develop a load/unload plan based off the available means of 

transportation.  The deployment items could be loaded into the virtual transport ensuring 

that all items are transportable in regards to volume and weight.  Additionally, weight and 

balance calculations might be conducted to maximize and optimize the transports’ ability 

to move the load.  At the unload site, users might have a the ability to identify locations 

of specific items by clicking a manifest list and having the items highlight in the 3D 

visualization.  Additionally, optimized unloading plans, again taking into account the 

transports’ weight and balance parameters, might then be developed for either most rapid 

outload or based off the requirement for designated critical equipment to be outloaded 

first. 

10. Autogenerated LSVEs For Inclusion in Operations Orders 

Much of the previously discussed future work is a subcomponent of the final, big-

picture production to rapidly autogenerate networked 3D LSVEs for inclusion as annexes 

to military operations orders operations plans or contingency plans.  By developing and 

implementing these subcomponents, we are incrementally advancing the possibility of 

such a dramatic product in the near-term future.  Such capabilities and achievements are 

the penultimate goal of this research. 
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APPENDIX A. CD-ROM  

Theses Appendix Published 
as Part of the 
Distributed Interactive Simulation 
DIS-Java-VRML Working Group 

 
 

X3D and DIS-Java-VRML Theses 

 
 

MAJ David W. Laflam 
US Army 

Title:3D Visualization of Theater-Level Radio Communications Using a Networked 
Virtual Environment 

ABSTRACT 
The military is heavily reliant on the transfer of information among 
various networks in day-to-day operations. Radio-based communications 
networks that support this volume of information are complex, difficult to 
manage, and change frequently. Communications network planners need a 
way to clearly visualize and communicate mobile operational network 
capabilities, particularly to network users. 

By using the DIS-Java-VRML simulation and modeling toolkit, 
visualizations of radio-frequency energy and radio path-profiling data can 
be quickly generated as 3D models. These animated 3D visualizations can 
be loaded into a networked virtual environment, so that communications 
planners can detect a variety of problems such as radio frequency 
interference and gaps in coverage. Planners can also brief senior staff, plan 
within their own staff, and collaborate with communications staff planners 
in distant locations using such virtual environments. 

DIS-Java-VRML visualization tools can provide a clear picture of the 
battle space with respect to the deployed communications architecture. 
The prototypes presented in this thesis demonstrate the ability to generate 
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a shared visualization that can show a radio communications network in 
3D. Such dynamic visualizations increase communications planning 
information bandwidth and yield more intuitive ways of presenting 
information to users. Higher information density in a more intuitive format 
enables better understanding with quicker reaction times. This thesis and 
the visualization tool discussed provide the foundation for fundamental 
improvements in visualizing radio communications environments. 

Thesis Link  
Software Reference Link 

 
 
 

MAJ Thomas E. Miller 
US Army 

Integrating Realistic Human Group Behaviors Into A Networked 3d Virtual 
Environment 
ABSTRACT 

Virtual humans operating inside large-scale virtual environments (VE) are 
typically controlled as single entities. Coordination of group activity and 
movement is usually the responsibility of their "real world" human 
controllers. Georeferencing coordinate systems, single-precision versus 
double-precision number representation and network delay requirements 
make group operations difficult. Mounting multiple humans inside shared 
or single vehicles, (i.e. air-assault operations, mechanized infantry 
operations, or small boat/riverine operations) with high fidelity is often 
impossible. 
 
The approach taken in this thesis is to reengineer the DIS-Java-VRML 
Capture the Flag game geolocated at Fort Irwin, California to allow the 
inclusion of human entities. Human operators are given the capability of 
aggregating or mounting nonhuman entities for coordinated actions. 
Additionally, rapid content creation of human entities is addressed through 
the development of a native tag set for the Humanoid Animation (H-
Anim) 1.1 Specification in Extensible 3D (X3D). Conventions are 
demonstrated for integrating the DIS-Java-VRML and H-Anim draft 
standards using either VRML97 or X3D encodings. 

The result of this work is an interface to aggregate and control articulated 
humans using an existing model with a standardized motion library in a 
networked virtual environment. Virtual human avatars can be mounted and 
unmounted from aggregation entities. Simple demonstration examples 
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show coordinated tactical maneuver among multiple humans with and 
without vehicles. Live 3D visualization of animated humanoids on 
realistic terrain is then portrayed inside freely available web browsers. 

Thesis Link  
Software Reference Link 

 
 
 

MAJ Mark Murray 
MAJ Jason Quigley 

US Air Force 
Automatically Generating A Distributed 3d Battlespace Using Usmtf And Xml-Mtf 

Air Tasking Order, Extensible Markup Language (Xml) And  
Virtual Reality Modeling Language (Vrml) 

ABSTRACT 
For the past three decades, the Department of Defense (DoD) has used the 
U.S. Message Text Format (USMTF) as the primary means to exchange 
information and to achieve interoperability between joint and coalition 
forces. To more effectively exchange and share data, the Defense 
Information Systems Agency (DISA), the lead agency for the USMTF, is 
actively engaged in extending the USMTF standard with a new data 
sharing technology called Extensible Markup Language (XML). This work 
translates and synthesizes Air Tasking Order (ATO) data messages written 
in XML into a three-dimensional (3D) air attack plan within a virtual 
environment through the use of the Virtual Reality Modeling Language 
(VRML). 

Thesis Link  
Software Reference Link 
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X3D and DIS-Java-VRML Software Tools 

A. X3DEdit  
     I. Xeena 1.2  

B. X3DEdit Examples  
     J. Vorlon(VRML Syntax Checker) 

C.JDK.1.2.2  
     K. Cygwin (Windows Unix Tools)

D. Netscape 4.73  
     L. DIS-Java-VRML 

E. COSMO Player(VRML Plug-in)  
     M. Xj3D 

F. KELP Forest  
     N. GeoVRML 

G. VRTP Distribution  
      

H. RRA(Recursive Ray Acoustic)  
      

       
      

 

A. X3DEdit 

X3D-Edit is a graphics file editor for Extensible 3D (X3D) that enables simple error-free 
editing, authoring and validation of X3D or VRML scene-graph files.  

Local URL: www.web3D.org/TaskGroups/x3d/translation/README.X3D-Edit.html 

Local Fie Download:X3D-Edit.zip 

URL: http://www.web3d.org/x3d.html 

B. X3DEdit Examples 

Local Fie Download:X3D-Examples.zip 

These are the examples for X3D-Edit based on VRML 2.0 Sourcebook by David Nadue 
 

C. JDK.1.2.2 

The essential Java 2 SDK, tools, runtimes, and APIs for developers writing, deploying, 
and running applets and applications in the Java programming language. Also includes 
earlier Java Development Kit versions JDKTM 1.1 and JRE 1.1 

Local Fie Download: j2sdk1_3_0-win.exe 
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URL: http://java.sun.com/products/index.html 
 

D. Netscape 4.73 

Communicator 4.7 is the latest release of the Internet software suite from Netscape. In 
addition to the Netscape Navigator browser, Communicator includes a complete set of 
tools for effective everyday communication. 

Local Fie Download: netscape-cc32d475.exe 

URL: http://home.netscape.com/computing/download/index.html 
 

E. COSMO Player (VRML Plug-in) 

Cosmo Player is a high-performance, cross-platform VRML 2.0 client designed for fast 
and efficient viewing of virtual worlds. Navigate and manipulate 3D scenes and bring 
your Web experience to a new level. 

Use VRML to fly through anatomy class, experience 3D data visualizations, or show off a 
CAD model. Cosmo Player is the premiere viewing client for VRML, with support for 
the latest standards. 

Whether on the Internet or in an enterprise, Cosmo Player allows web content creators 
and applications developers to add visual and multimedia elements to their work. 

Local Fie Download: cosmo_win95nt_eng.exe 

URL: http://www.cai.com/cosmo/html/win95nt.htm 
 

F. KELP Forest 
Two classes of graduate students learning 3D graphics and analytic simulation at the 
Naval Postgraduate School modeled the three-dimensional (3D) shape, structure, imagery 
and motion behaviors of plants and animals in the Kelp Forest Exhibit at the Monterey 
Bay Aquarium. Our intended audience includes educators and students of all ages, 
scientific users interested in composing models in a 3D Web environment, and the 
general public. By focusing on thoroughly modeling a controlled environment, we 
produced an exemplar 3D graphics site for modeling larger and more sophisticated 
underwater domains. The Virtual Reality Modeling Language (VRML) proved to be an 
excellent medium for capturing diverse models, composing multiple student efforts, and  
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publishing dynamic results publicly on the Web. This project was successfully 
demonstrated to 1000 people during the National Ocean Fair in Monterey June 12 1998. 

 
Local URL: kelp/index.html 

Local Fie Download: kelp.zip 

URL: http://web.nps.navy.mil/~brutzman/kelp 

 

G. VRTP Distribution 

The capabilities of the Virtual Reality Modeling Language (VRML) permit building 
large-scale virtual environments using the Internet and the World Wide Web. However 
the underlying network support provided by the hypertext transfer protocol (http) is 
insufficient for large-scale virtual environments. Additional capabilities for many-to-
many peer-to-peer communications plus network monitoring need to be combined with 
the client-server capabilities of http. To accomplish this task, we present a detailed design 
rationale for the virtual reality transfer protocol (vrtp). vrtp is designed to support 
interlinked VRML worlds in the same manner as http was designed to support interlinked 
HTML pages. vrtp will be optimized in two ways: on individual desktops and across the 
Internet. vrtp appears to be a necessary next step in the deployment of all-encompassing 
interactive internetworked 3D worlds. 

Local URL: vrtp/vrtp/index.html 

Local Fie Download: vrtp.zip 

URL: http://www.web3d.org/WorkingGroups/vrtp/ 
 

H. RRA (Recursive Ray Acoustic) 

This project calculates and renders physically realistic sonar beams in real time. Java 
programs are used for sonar ray-tracing computation and the Virtual Reality Modeling 
Language (VRML 97) is used for 3D graphics. 

The primary motivation for this project is to produce underwater sonar beams for analytic 
and visualization use in virtual worlds. Virtual world simulations are realistic when 
individual components are simulated in a manner that reflects reality. For an underwater 
virtual world that includes simulated acoustic detection, a physically based sonar 
propagation model is required if ranges in excess of tens of meters are expected. The 
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Recursive Ray Acoustics (RRA) Algorithm by Dr. Lawrence Ziomek of NPS provides a 
general & rapid ray-tracing algorithm which can accurately & quickly predict sonar 
propagation through seawater, under a wide variety of surface, water-column and ocean-
bottom environmental conditions. 

This project creates an application programming interface (API) for real-time 3D 
computation and visualization of acoustic energy propagation. The API provides features 
for generating complex physically based sonar information at interaction rates, and then 
visualizing that acoustic information. The simulation is programmed in Java, and runs 
either as a stand-alone program or as a script in a web browser. This program generates 
Virtual Reality Modeling Language (VRML 97) compliant code that can be viewed from 
any VRML-capable Web browser. This approach allows the characteristics of the energy 
propagation to be calculated with high precision and observed in three dimensions (3D) 
and in real time. 

As sonar-system information bandwidth becomes larger, more intuitive ways of 
presenting information to users are required. Interactive 3D graphics with environmental 
and entity rendering can free users from from mentally integrating complex data 
piecemeal. This approach can enable significantly greater understanding and quicker 
reaction times. We are optimistic that this API might someday provide the foundation for 
fundamental advances in sonar modeling and visualization. 

Local URL: rra/vrtp/rra/rra.html 

Local Fie Download: rra.zip 

URL: http://web.nps.navy.mil/~brutzman/vrtp/rra/rra.html 

 

I. Xeena 1.2 

Xeena is a generic Java application from the IBM Haifa Research Laboratory for editing 
valid XML documents derived from any valid DTD. The editor takes as input a given 
DTD, and automatically builds a palette containing the elements defined in the DTD. 
Users can thus create/edit/expand any document derived from that DTD, by using a visual 
tree-directed paradigm. The visual paradigm requires a minimum learning curve as only 
valid constructs/elements are presented to the user in a context-sensitive palette. A Key 
feature of Xeena is its syntax directed editing ability. Xeena is aware of the DTD 
grammar, and by making only authorized elements icons sensitive, automatically ensures 
that all documents generated are valid according to the given DTD.  

Local Fie Download: Xeena-1.2EA.exe 

URL: http://www.alphaworks.ibm.com/tech/xeena 
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J. Vorlon( VRML Syntax Checker) 

The industry standard command line VRML Validator 
Trapezium developed Vorlon as a service to the VRML community to allow authors to 
spend less time chasing bugs and more time creating high quality content.  
Validates conformance to VRML97 specification 
Displays line, line number and descriptive message 
for each error or warning  
Vorlon is Freeware. 

Local Fie Download: vorlon.exe 

 
URL: http://www.trapezium.com/VorlonPage.htm 

 

K. Cygwin (Windows Unix Tools) 

Cygwin brings a standard UNIX/Linux shell environment, including many of its most 
useful commands, to the Windows platform so IT managers can effectively deploy trained 
staff, and leverage existing investments in UNIX/Linux source code and shell scripts. 

URL: http://www.cygnus.com/cygwin/ 
 

L. DIS-Java-VRML 

The area of interest of this working group is the nexus of DIS, Java and VRML. The 
IEEE Distributed Interactive Simulation (DIS) Protocol is used to communicate state 
information (such as position, orientation, velocities and accelerations) among multiple 
entities participating in a shared network environment. Java is a portable networked 
programming language that can interoperate on any computer which includes a Web 
browser. The Virtual Reality Modeling Language (VRML) enables platform-independent 
interactive three-dimensional (3D) graphics across the Internet, and can be used to 
compose sophisticated 3D virtual environments.  
The DIS-Java-VRML Working Group is developing a free software library, written in 
Java and interoperable with both DIS and VRML. There are a number of people 
contributing to the public-domain code archive. This software is protected under the 
terms of the GNU General Public License.  

Local URL: vrtp/dis-java-vrml/index.html 



117

Local Fie Download:dis-java-vrml.zip 

URL: http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/ 
 

M. Xj3D 

Xj3D is an example implementation for the X3D specification. Specifically, Xj3D is a 
Java3D-based open-source loader, browser and exporter for Extensible 3D (X3D) 
graphics. 

URL: http://web3d.metrolink.com/cgi-bin/cvsweb.cgi/x3d/HowToInstall.html 
 

N. GeoVRML 

GeoVRML is an official Working Group of the Web3D Consortium. It was formed on 27 
Feb 1998 with the goal of developing tools and recommended practice for the 
representation of geographical data using the Virtual Reality Modeling Language 
(VRML). The desire is to enable geo-referenced data, such as maps and 3-D terrain 
models, to be viewed over the web by a user with a standard VRML plugin for their web 
browser. 

Local URL: GeoVRML/1.0/doc/index.html 

Local Fie Download: geovrml1_0.exe 

URL: http://www.ai.sri.com/geovrml/ 
 

September 24 2000 (official NPS disclaimer)  
URL: www.web3D.org/WorkingGroups/vrtp/dis-java-vrml/SoftwareReference.html  
feedback: feedback@nps.navy.mil 
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