4 research outputs found

    Analytic Provenance for Software Reverse Engineers

    Get PDF
    Reverse engineering is a time-consuming process essential to software-security tasks such as malware analysis and vulnerability discovery. During the process, an engineer will follow multiple leads to determine how the software functions. The combination of time and possible explanations makes it difficult for the engineers to maintain a context of their findings within the overall task. Analytic provenance tools have demonstrated value in similarly complex fields that require open-ended exploration and hypothesis vetting. However, they have not been explored in the reverse engineering domain. This dissertation presents SensorRE, the first analytic provenance tool designed to support software reverse engineers. A semi-structured interview with experts led to the design and implementation of the system. We describe the visual interfaces and their integration within an existing software analysis tool. SensorRE automatically captures user\u27s sense making actions and provides a graph and storyboard view to support further analysis. User study results with both experts and graduate students demonstrate that SensorRE is easy to use and that it improved the participants\u27 exploration process

    The Effect of Code Obfuscation on Authorship Attribution of Binary Computer Files

    Get PDF
    In many forensic investigations, questions linger regarding the identity of the authors of the software specimen. Research has identified methods for the attribution of binary files that have not been obfuscated, but a significant percentage of malicious software has been obfuscated in an effort to hide both the details of its origin and its true intent. Little research has been done around analyzing obfuscated code for attribution. In part, the reason for this gap in the research is that deobfuscation of an unknown program is a challenging task. Further, the additional transformation of the executable file introduced by the obfuscator modifies or removes features from the original executable that would have been used in the author attribution process. Existing research has demonstrated good success in attributing the authorship of an executable file of unknown provenance using methods based on static analysis of the specimen file. With the addition of file obfuscation, static analysis of files becomes difficult, time consuming, and in some cases, may lead to inaccurate findings. This paper presents a novel process for authorship attribution using dynamic analysis methods. A software emulated system was fully instrumented to become a test harness for a specimen of unknown provenance, allowing for supervised control, monitoring, and trace data collection during execution. This trace data was used as input into a supervised machine learning algorithm trained to identify stylometric differences in the specimen under test and provide predictions on who wrote the specimen. The specimen files were also analyzed for authorship using static analysis methods to compare prediction accuracies with prediction accuracies gathered from this new, dynamic analysis based method. Experiments indicate that this new method can provide better accuracy of author attribution for files of unknown provenance, especially in the case where the specimen file has been obfuscated

    An exploratory study of software reverse engineering in a security context

    No full text
    Illegal cyberspace activities are increasing rapidly and many software engineers are using reverse engineering methods to respond to attacks. The security-sensitive nature of these tasks, such as the understanding of malware or the decryption of encrypted content, brings unique challenges to reverse engineering: work has to be done offline, files can rarely be shared, time pressure is immense, and there is a lack of tool and process support for capturing and sharing the knowledge obtained while trying to understand plain assembly code. To help us gain an understanding of this reverse engineering work, we report on an exploratory study done in a security context at a research and development government organization to explore their work processes, tools, and artifacts. In this paper, we identify challenges, such as the management and navigation of a myriad of artifacts, and we conclude by offering suggestions for tool and process improvements.Christoph Treude, Fernando Figueira Filho, Margaret-Anne Storey, Martin Saloi
    corecore