
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-4-2020

Analytic Provenance for Software Reverse Engineers Analytic Provenance for Software Reverse Engineers

Wayne C. Henry

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Henry, Wayne C., "Analytic Provenance for Software Reverse Engineers" (2020). Theses and Dissertations.
3882.
https://scholar.afit.edu/etd/3882

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3882&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F3882&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3882?utm_source=scholar.afit.edu%2Fetd%2F3882&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

ANALYTIC PROVENANCE FOR SOFTWARE
REVERSE ENGINEERS

DISSERTATION

Wayne C. Henry, Maj, USAF

AFIT-ENG-DS-20-S-010

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-DS-20-S-010

ANALYTIC PROVENANCE FOR SOFTWARE

REVERSE ENGINEERS

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Wayne C. Henry, B.S., M.S.

Maj, USAF

July 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-DS-20-S-010

ANALYTIC PROVENANCE FOR SOFTWARE

REVERSE ENGINEERS

DISSERTATION

Wayne C. Henry, B.S., M.S.
Maj, USAF

Committee Membership:

Dr. Gilbert L. Peterson, PhD
Chairman

Dr. Robert F. Mills, PhD
Member

Dr. Michael E. Miller, PhD
Member

Maj Daniel J. Casey, PhD
Member

AFIT-ENG-DS-20-S-010

Abstract

Reverse engineering is a time-consuming process essential to software-security

tasks such as malware analysis and vulnerability discovery. During the process, an

engineer will follow multiple leads to determine how the software functions. The

combination of time and possible explanations makes it difficult for the engineers to

maintain a context of their findings within the overall task. Analytic provenance tools

have demonstrated value in similarly complex fields that require open-ended explo-

ration and hypothesis vetting. However, they have not been explored in the reverse

engineering domain.

This dissertation presents SensorRE, the first analytic provenance tool designed to

support software reverse engineers. A semi-structured interview with experts led to

the design and implementation of the system. We describe the visual interfaces and

their integration within an existing software analysis tool. SensorRE automatically

captures user’s sensemaking actions and provides a graph and storyboard view to

support further analysis. User study results with both experts and graduate students

demonstrate that SensorRE is easy to use and that it improved the participants’

exploration process.

iv

Acknowledgements

There were many people who helped make this dissertation possible. I would like

to express my sincere appreciation to my research advisor, Dr. Gilbert Peterson,

for his guidance and support throughout this effort. His insight, experience and

willingness to allow me to pursue a topic I was passionate about is greatly appreciated.

This research was made possible through the generous sponsorship from the Air

Force Research Laboratory. Thank you for your support and trust in me throughout

this endeavor. I would like to thank the developers at Vector 35 and the Visual

Storytelling for their outstanding products and technical support.

Last but not least, I extend my most heartfelt appreciation to my wife. This

dissertation would not have been possible without your unwavering support.

Wayne C. Henry

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xi

I. Introduction . 1

1.1 Motivation . 2
1.2 Problem Space . 3
1.3 Dissertation Overview . 4
1.4 Research Outline . 7

II. Background and Related Work . 9

2.1 Software Reverse Engineering . 9
2.2 Reverse Engineering Tools . 11
2.3 Requirements Elicitations in Reverse Engineering 15
2.4 Sensemaking . 16
2.5 Sensemaking in Reverse Engineering . 18
2.6 Provenance . 19
2.7 Analytic Provenance . 20

2.7.1 Capture . 20
2.7.2 Visualization . 22
2.7.3 Utilization . 23
2.7.4 Evaluating Analytic Provenance Systems . 26

2.8 Implementation Technologies . 28
2.8.1 Binary Ninja . 28
2.8.2 Web Application Platform . 29

2.9 Chapter Summary . 30

III. User Needs Study . 31

3.1 Methodology. 31
3.1.1 Participants . 31
3.1.2 Procedure . 32
3.1.3 Data Analysis . 33

3.2 Results & Analysis . 35
3.2.1 Metadata Analysis . 35
3.2.2 Disassembly Analysis . 37
3.2.3 Dynamic Analysis . 38

vi

Page

3.2.4 Documentation . 39
3.2.5 Collaboration . 41

3.3 Discussion & Implications . 42
3.3.1 Provenance Capture . 42
3.3.2 Visualization Support . 43
3.3.3 Workflow Support . 45

3.4 Limitations and Threats to Validity . 46
3.5 Chapter Summary . 47

IV. Design and Implementation . 48

4.1 Design Approach . 48
4.2 System Overview . 49

4.2.1 System Design . 50
4.2.2 Communication Modules . 56
4.2.3 Collaboration Support . 57

4.3 User Interface . 59
4.3.1 Provenance View . 59
4.3.2 Story Board View . 60

4.4 Usage Scenario . 62
4.5 Chapter Summary . 66

V. Evaluation . 67

5.1 Study Design . 67
5.2 Selection of Participants . 68
5.3 Apparatus and Materials . 69
5.4 Procedure . 70

5.4.1 Experimental Setup . 71
5.4.2 Training Phase . 71
5.4.3 Task Phase . 72
5.4.4 Post-Study Survey Phase . 73

5.5 Data Analysis . 75
5.6 Results and Observations . 75

5.6.1 User Study 1 - Experts . 75
5.6.2 User Study 2 - Graduate Students . 77

5.7 Limitations and Threats to Validity . 81
5.8 Chapter Summary . 82

VI. Conclusions . 83

6.1 Research Contributions . 83
6.2 Implications and Lessons Learned . 84

6.2.1 Tool Integration . 85
6.2.2 Challenges Building Tools . 86

vii

Page

6.2.3 Evaluating Provenance Tools . 87
6.3 Future Work . 88
6.4 Closing Remarks . 89

Appendix A. Request for Human Experimentation . 91

Appendix B. User Needs Survey Interview Protocol . 94

Appendix C. Ethics Approval - User Needs Survey . 97

Appendix D. Software Listings . 99

Appendix E. Ethics Approval - Evaluation . 159

Bibliography . 166

viii

List of Figures

Figure Page

1 Dissertation overview. 5

2 Software reverse engineering analytic provenance model.
The two-way dashed line indicates the communication
between the provenance visualization and the software
analysis system providing sensemaking support [1]. 6

3 Example workspace in IDA Pro. 11

4 Software Reverse Engineering Visualizations. 12

5 Process model of sensemaking [2]. 17

6 Sensemaking in reverse engineering [3]. 18

7 Stages of analytic provenance. 20

8 The hierarchical analytic provenance model with
increasing semantic richness from bottom to top [4]. 21

9 Aruvi prototype history tree showing navigation
structure ordered by time [5]. 22

10 KnowledgePearls prototype. On the left is the
application view, in the middle is the provenance graph
panel, and on the right is a search side panel [6]. 24

11 CLUE provenance and story views [7]. 25

12 Binary Ninja Reversing Application. 29

13 Data Analysis in Qualitative Research [8]. 34

14 Reverse engineering workflow process. 36

15 SensorRE System Overview. 50

16 SensorRE prototype (a) Binary Ninja application, (b) a
captured provenance graph, (c) story board panel. 51

17 The action types captured by SensorRE. 53

18 Binary Ninja’s BinaryDataNotification class [9]. 54

ix

Figure Page

19 JSON messaging format. 55

20 SensorRE day in the life sequence diagram. 58

21 Two users leverage the provenance framework to
asynchronously collaborate on work in the Binary Ninja
application. 59

22 Provenance graph view. 60

23 Story board view. 61

24 SensorRE story board state duration change. 62

25 SensorRE story board transition duration change. 62

26 Provenance graphs during usage scenario. 63

27 Story board scenario results. 65

28 Phases of tool evaluation. 70

29 Likert-scale questionnaire. 74

30 The average ratings (marked X) for the Likert-scale
questions (1 - Strongly disagree, 7 - Strongly agree). 81

x

List of Tables

Table Page

1 Participant demographics. 32

2 XML-RPC messages used by SensorRE. 56

3 Expert reverse engineer participants demographic survey. 69

4 Graduate student participant demographic survey. 69

5 Observed results of the user study. 78

6 Observed results of the user study (continued). 78

xi

ANALYTIC PROVENANCE FOR SOFTWARE

REVERSE ENGINEERS

I. Introduction

“Solving a problem simply means representing it so that the solution is obvious.”

Herbert Simon

Exploring software binaries is a time-consuming and complex process. A single

analysis session can consist of hundreds of individual steps. After identifying interest-

ing patterns, analysts may need to explore the relationships between them, generate

potential hypotheses explaining those relationships, and find ways to verify those hy-

potheses. Unfortunately, people have a limited working-memory capacity and cannot

hold all of these artifacts simultaneously. They may forget previous findings and re-

lationships or forget how they were derived, making it more difficult to explain their

findings. Particularly for long and interrupted analysis sessions, often get lost in the

problem space: they are unable to examine their progress, unable to synthesize their

discoveries, and unable to decide the next steps effectively.

In other highly exploratory scientific fields (e.g., medical analytics and digital

forensics), analytic provenance techniques have been explored as a potential solution

to these problems. Analytic provenance is a sub-field of visual analytics, capturing

both the interactive data exploration process and the accompanying reasoning pro-

cess, releasing analysts from the burden of keeping track of their discoveries [10]. The

provenance data can then be visualized to provide different types of support to users,

such as recall, replication, action recovery (undo, redo), collaborative communication,

1

and presentation of findings.

1.1 Motivation

The Department of Defense (DoD) uses information systems that depend on com-

mercial off-the-shelf software, government off-the-shelf software, and free and open-

source software. Securing this diverse technology requires highly skilled reverse en-

gineers to reason out the functionality of software and identify vulnerabilities. This

process requires hundreds, if not thousands of hours of manual effort. Scaling up

existing approaches to address the size and complexity of modern software packages

is not possible given the limited number of experts in the world, much less the DoD

[11].

Reverse engineers use program analysis techniques and tools to identify and mit-

igate vulnerabilities, but this process requires considerable expertise, manual effort,

and time. Automated program analysis capabilities can reason over only a few vul-

nerability classes without human involvement, such as memory corruption or integer

overflow, but cannot address the majority of vulnerabilities. Identifying most vul-

nerabilities requires subtle semantic and contextual information, which is beyond the

grasp of modern automation.

As a sponsor of this research, the Defense Advanced Research Projects Agency

(DARPA) program Computers and Humans Exploring Software Security (CHESS)

aims to develop capabilities to discover and address vulnerabilities in a scalable,

timely, and consistent manner [11]. Achieving the necessary scale and timelines in

vulnerability discovery will require innovative combinations of automated program

analysis techniques with support for advanced computer-human collaboration. Due

to the cost and scarcity of expert reverse engineers, such capabilities must be able to

collaborate with humans of varying skill levels, even those with no previous experi-

2

ence or relevant domain knowledge. CHESS is seeking research breakthroughs in the

following areas:

• Developing instrumentation to capture and analyze the process by which reverse

engineers reason over software artifacts;

• Developing new forms of communication and information sharing between com-

puters and humans;

• Creating techniques that are currently hampered by information gaps and re-

quire human insight;

• Generating representations of the information gaps for human collaborators of

varying skill levels to reason over.

1.2 Problem Space

Reverse engineering is a time-consuming and complex process [12]. Engineers

may examine thousands of machine-language instructions (known as assembly) to

understand a software binary [3, 12]. High-level programming languages such as Java

or C++ include representations that aid program comprehension through expressive

variable names, functions, classes, and objects. This information is lost during com-

pilation. Therefore, assembly instructions must be mentally reconstructed during

analysis [3, 13]. These challenges are compounded due to the large volume of as-

sembly code in software binaries. Even experienced reverse engineers face difficulty

performing reversing tasks given the sheer quantity of data [14, 15].

Researchers and companies have developed a variety of tools supporting reverse

engineers [16, 17, 18, 19]. Unfortunately, these tools focus on exploratory analysis,

ignoring more complex analytical tasks (e.g., gathering evidence, forming hypotheses,

and presenting results). They provide limited features for organizing findings, forcing

3

users to track them with external note taking tools. Analytic provenance visualization

tools may assist reverse engineers to better explore the program structure, identify

patterns of interest, and communicate their results to stakeholders.

Analytic provenance tools, such as SensorRE, are closely related to the field of

sensemaking. Sensemaking reflects how we make sense of the world so that we can

take further actions [20]. More specifically, sensemaking is described as the process

of collecting, representing and organizing complex information sets in a way that can

help us better understand a problem [21]. For instance, sensemaking can be seen in an

everyday process such as finding a cell phone that suits our needs. This process may

involve searching for different models, learning domain-specific jargon, and comparing

the pros and cons between models.

1.3 Dissertation Overview

This chapter introduced some of the unique challenges present in comprehending

binary programs, such as large data sets, program complexity, and tool complexity.

The primary research hypothesis is that analytic provenance methods may offer cog-

nitive support beyond what is considered state-of-the-art for reverse engineers during

exploration, collaboration, and presentation tasks.

This section describes an analytic visualization solution from surveying reverse

engineers through implementing the provenance prototype and evaluating it. The

research overview is presented in Figure 1.

The three research phases have individualized research questions. The first is:

• What visualization needs do reverse engineers have?

Phase I This phase presents an exploratory study examining expert reverse en-

gineers’ discovery processes, methods, and visualization needs. By observing existing

users, processes, and tools, the dissertation produces fundamental requirements for

4

Figure 1. Dissertation overview.

the next generation of solutions. The distilled requirements serve as important design

criteria for SensorRE. The engineers reported difficulties managing hypotheses, orga-

nizing results, and reporting findings. The results indicate that analytic provenance

visualizations may serve as an effective aid, allowing reverse engineers to recall and

present formative details of their strategies and decisions.

With an understanding of the domain and capability gaps, the research process

shifts to the second research question:

• How can an analytic provenance tool be designed and implemented to support

software reverse engineers?

Phase II In this phase, an architecture and process for SensorRE is derived that

unifies the needs of the users with a technical approach. SensorRE is presented to

support reverse engineers’ comprehension. The proposed system is a visualization

tool integrated with an existing software analysis tool. A cyclic process model is

adopted in which analytic provenance data can be used to support sensemaking, as

illustrated in Figure 2.

The process starts with a user employing a software analysis system to solve a

reverse engineering problem. During the sensemaking process, both the performed

low-level actions (e.g., insert comment, change function, change view), and the pro-

duced high-level reasoning artifacts (e.g., findings, assumptions, and hypotheses) are

5

captured, referred to as provenance data. This provenance data should be visualized

in a way that can provide support to the ongoing exploration process. The user inter-

acts with both the software analysis system and the provenance visualization to solve

the problem. These two components communicate with each other to facilitate the

interplay between them and the user. The provenance visualization acts as a black

box and can be implemented using an information visualization pipeline [22].

Figure 2. Software reverse engineering analytic provenance model. The two-way
dashed line indicates the communication between the provenance visualization and the
software analysis system providing sensemaking support [1].

This framework allows users to examine the reasoning relationships between the

actions they performed, and it reminds them of what has been done earlier. SensorRE

provides an interface for users to assign additional meaning to automatically collected

data by spatially grouping actions. SensorRE supports collaboration through the

sharing of provenance graphs and the presentation-focused storyboard view.

The third research question then evaluates the prototype and hypothesis:

• Is the analytic provenance prototype effective at supporting software reverse

engineers?

Phase III Controlled user experiments tested the effectiveness and usability of

SensorRE with graduate students trained in reverse engineering as well as with pro-

6

fessional reverse engineers. The participants were asked to perform routine analysis

tasks on a binary including: exploration, validation, collaboration, and presentation

of findings. Post-study surveys provide qualitative data for analysis. All participants

found the visual representation and interaction of the tool intuitive to use. It helped

them to organize information sources, quickly find and navigate to data they wanted,

and effectively communicate their findings.

1.4 Research Outline

Toward the overall goal of supporting reverse engineers through the visualization

of provenance data, this dissertation contributes:

• Chapter 2 provides a background and literature review on software reverse en-

gineering, sensemaking, software visualization, and analytic provenance. It also

provides background information on SensorRE’s implementation technologies.

• Chapter 3 reports on a user needs study with subject matter experts address-

ing the first research question. The chapter describes how the interviews were

analyzed, represented, and verified, and how it was used to inform the develop-

ment of the prototype.

• Chapter 4 presents the design and implementation details for SensorRE. The

system is demonstrated through an example usage scenario visualizing the ac-

tions a user took analyzing an example program.

• Chapter 5 describes a formative evaluation of SensorRE with both experts

and graduate students. The evaluation examines whether SensorRE improved

the participants’ ability to collaborate, extend previous findings, and present

their results.

7

• Chapter 6 discusses the lessons learned during SensorRE design, development,

and the user studies. The chapter concludes with implications and areas for

future research.

8

II. Background and Related Work

Chapter 1 introduced cognitive challenges in software reverse engineering and pro-

posed a phased methodology to assist practitioners. Visualizing analytic provenance

data may augment the reverse engineer’s cognitive processes, enabling the engineer to

better recall, replicate, and present formative details of their strategies and decisions.

This chapter begins with a review of the software reverse engineering domain in

preparation for addressing the initial research question in Chapter 3. Next, foun-

dational literature in sensemaking and a model supporting the reverse engineers’

cognitive processes is reviewed. Analytic provenance literature is then discussed,

focusing on the capture, visualization, and utilization of provenance data. An under-

standing of this topic is necessary for Chapter 4, which presents the SensorRE design

and implementation details. Finally, the chapter concludes with a description of the

implementation technologies used in the SensorRE tool.

2.1 Software Reverse Engineering

Software reverse engineering is the practice of analyzing a software system to

understand its structure, function, and behavior [13]. One classical use of of reverse

engineering is to re-document an existing software system whose documentation is lost

or lacking [23]. However, practitioners are also in high demand in cyber security to

discover software vulnerabilities [24], detect and neutralize malware [25], and protect

intellectual property [26]. Each of these specialties relies on an advanced set of tools

and processes.

The reverse engineering process can be modeled in three phases: overview, sub-

component scanning, and focused experimentation [27]. Reverse engineers begin by

establishing a broad view of the program’s functionality. They next use the overview

9

to prioritize deeper inspection into sub-components (e.g., functions). As the reverse

engineers review these sub-components, they develop hypotheses that are tested and

answered through manual static analysis or dynamic execution.

Static analysis involves analyzing a software program before execution [28]. Tools

used in static analysis include hex editors, decompilers, and disassemblers. This

technique examines the program’s structure (e.g., call graphs), file properties, and

assembly language contents [29]. Static analysis techniques can be very thorough

because they explore all possible execution paths. However, this approach also re-

quires sorting through large quantities of data and therefore can be inefficient [19, 30].

This issue is amplified in programs that deliberately conceal their purpose from the

engineer.

Reverse engineers overcome these limitations through dynamic analysis tech-

niques. Dynamic analysis executes the software program with a given input set

while recording the run-time execution traces [28]. For many reverse engineering

tasks, dynamic analysis offers precise results, sacrificing scalability for a deeper un-

derstanding of the executed code path. However, this approach is often incomplete

because only one code path is analyzed at a time, and dynamic analysis is dependent

on program inputs [18]. Dynamic analysis tools include debuggers, dynamic binary

instrumentation tools, and virtualization environments.

Another constraint is that being a skilled reverse engineer requires a great deal

of domain knowledge. Reverse engineers need to understand architecture-specific

assembly language instructions [31], operating system calls [32], memory stack use

[33], process layout [34], and potentially attack and defense techniques [34, 35, 36].

10

2.2 Reverse Engineering Tools

As with any analysis process, an important need is presenting the right kind of

information, in the right amount, at the right level of abstraction. Reverse engineering

tools vary in the amount of detail they provide and the kinds of visualizations used.

While it is relatively easy to understand a few lines of assembly, the problem is

much more difficult when trying to understand thousands of lines of code. In one

study, participants analyzing small decompiled code snippets with less than 150 lines

required 39 minutes on average to answer common malware analysis questions [37].

Software visualizations have been explored to help reverse engineers solve problems

more effectively through intuitive visual representations of the data [38].

Static analysis tools commonly employed in the industry include Binary Ninja

[39], IDA Pro [40], and Ghidra [41]. An example of a reverse engineer’s complex

workspace is shown in Figure 3. These tools support a large number of executable

formats for a variety of processors and operating systems. They are also designed for

improved functionality and customizability through third-party plugins.

Figure 3. Example workspace in IDA Pro.

There have been many visualization tools developed to support reverse engineers.

11

Surveys by Koschke [42], Bassil and Keller [43], and Sim, et al. [44] provide an

expansive array of visualization technologies. We highlight a few below.

(a) Rigi (b) Rigi Extended (c) SHriMP

(d) Cartographer (e) Tracks (f) Atlantis

(g) KAMAS (h) VERA (i) ExTraVis Circular View

Figure 4. Software Reverse Engineering Visualizations.

Kienle and Muller developed Rigi [45], an interactive reverse engineering visual-

ization environment to explore and visualize source code written in C, C++, and

COBOL, as shown in Figure 4a. Rigi supports interactive zooming, layout change,

filtering, and summarizing a binary in a multi-window view.

The Rigi environment served as a platform for several other highly-cited software

visualization efforts. For example, Rigi extended [46], shown in Figure 4b, added

3-dimensional graphics to the visualization tool. SHriMP (Simple Hierarchical Multi-

12

Perspective) [47] used fisheye views of nested graphs for Java code, as shown in Figure

4c.

The Rigi system and related efforts are foundational to the field of software visu-

alization. However, because the system required source code or Java bytecode, which

preserves package hierarchy information, they are not considered general binary anal-

ysis tools [48]. The last official version of Rigi was released in 2003.

More recently, Pucsek developed Cartographer [49] to display binary call graphs

as a force-directed graph structure, shown in Figure 4d. This tool supported basic

interaction including function name assignment, adding comments to functions, re-

positioning nodes in the graph, and navigation to associated code in the data source.

However, without filtering or layout options, this visualization quickly became un-

manageable with larger graphs.

Tracks [19] is a visualization tool using sequence diagrams to display static or

dynamic information from software binaries, as shown in Figure 4e. Tracks was

built using an open-source sequence diagram tool called Diver [50], in the Eclipse

Rich Client Platform (RCP) framework [51]. Similar to Cartographer, Tracks uses

socket communication with IDA Pro to allow for greater interactivity, navigation,

and control. While sequence diagrams present an intuitive method to relay high-

order relations between software artifacts, the horizontal navigation method quickly

becomes over-whelming when navigating through many function calls.

Cleary, et al. [52], and later Huang, et al. [16], developed Atlantis, the assem-

bly trace analysis environment, shown in Figure 4f. This interface allows a user to

navigate through dynamic analysis data collection. Atlantis is built in the Eclipse

RCP environment and provides views to support dynamic analysis through trace,

search, regions, and project management views. Future iterations improved the lay-

out and added a register view to observe their behavior during the trace analysis.

13

To our knowledge, ATLANTIS has not been evaluated for usability and it is not

available for public use. Therefore, its ability to improve reverse engineering program

comprehension is uncertain.

KAMAS [53] is a knowledge-assisted dynamic analysis system, shown in Figure

4g. The tool visually exposes API system call patterns across a database to assist

in malware forensics and classification. KAMAS was developed in Java and borrows

traditional programming IDE (Integrated Development Environment) interface design

features. The prototype was evaluated through expert review and user study. This

system is not available for public use.

Quist and Liebrock [54] released VERA (Visualization of Executables for Revers-

ing and Analysis), a dynamic analysis malware forensics tool, shown in Figure 4h.

VERA visualizes basic block sequences as colored loops describing program behav-

ior. VERA supports interaction through zooming, filtering, and panning in both

2-dimensional and 3-dimensional graphs. In a small user study (n=6), VERA was

reported to significantly help in the initial analysis of malware. VERA is no longer

in development and is not available for public use.

Holten [55] developed ExTraVis, which uses hierarchical edge-bundling in a circu-

lar view to display dynamic analysis traces, as shown in Figure 4i. ExTraVis is de-

veloped in JHotDraw [56] with OpenGL [57] graphics. The views offer textual details

through tooltip hover-on-demand. While the authors only tested the visualization

with compiled Java programs, they assert its viability with other programming lan-

guages. This research presents an intuitive approach to visualizing hierarchical data

and advancements in edge bundling in order to reduce visual clutter. No usability

study was conducted on ExTraVis.

14

2.3 Requirements Elicitations in Reverse Engineering

Relatively few studies have examined the workflow and processes employed by

reverse engineers, which has made it difficult for industry to develop software that

specifically targets reverse engineers. Treude, et al. explored the work processes of

software reverse engineers in a security context [58]. Baldwin, et al. further identified

the limitations of visualizations within the reverse engineering domain and developed

a methodology to identify associated requirements from two specialized groups of

assembly language developers [59]. Through surveys, observations, and interviews

with these groups, the researchers identified a range of tooling needs. Kienle and

Muller have comprehensive discussions on reverse engineering tool development in

terms of requirements, software architectures, and tool evaluation criteria [60, 61].

While these works provide the groundwork for this study, they do not investigate the

analytic provenance needs of software reverse engineers.

Meanwhile, in the related hacker community, several empirical studies have ex-

plored the tool needs of users, including during reverse engineering tasks [62, 63].

Many of the tools described in such studies were created in an ad-hoc manner and

are well-known for being difficult to use [23]. To cope with these difficulties, hackers

require high levels of tolerance, patience, and perseverance. While the hackers per-

formed many other activities beyond reverse engineering (e.g., network penetration

testing), the progressive methodology employed in these studies for examining the

discovery process, methods, and visualization needs influenced the study reported in

Chapter 3.

Several studies have also captured and characterized the work practices and ana-

lytical processes of individual or collaborative analysis through a qualitative approach.

For example, Pirolli and Card studied intelligence analysts and developed a notional

model of the analytic processes they follow [2]. In addition, Chin, et al. conducted an

15

observational case study with professional intelligence analysts in which participants

worked on real-world scenarios, either as individual analysts or as an investigative

team [64]. The researchers identified processes of intelligence analysts, such as the

investigative methodologies they apply, how they collect and triage information, and

how they identify patterns and trends. Understanding the analytical processes of

reverse engineers, including how they are currently capturing and using provenance,

will be helpful for identifying gaps in provenance support technologies.

2.4 Sensemaking

People tend to understand the workings of things by recognizing patterns, making

intuitive leaps, validating and refuting hypotheses according to observations, and

making adjustments to mental models as needed [2]. For example, reverse engineers

try to identify familiar fragments of code based on conventions, expectations, and

previous experience. This understanding process is very individualistic and full of

trial and error; not everyone builds the same mental model or builds it in the same

way or uses the same interpretations.

Recall from Chapter 1 that sensemaking is defined as “the process of collecting,

representing and organizing complex information sets in such a way that can help us

understand the problem better” [21]. Pirolli and Card [2] presented a sensemaking

model that is an iterative process that gradually transforms raw data into reasoning

knowledge. The model in Figure 5 describes two major loops of activities: (1) a

foraging loop that involves processes aimed at seeking information, searching and

filtering it and reading and extracting information, and (2) a sense-making loop that

involves iterative development of a mental model. The sensemaking process can

progress upward (from data to knowledge) or downward (from knowledge to data).

The steps in the bottom-up process are summarized as follows:

16

Figure 5. Process model of sensemaking [2].

• Search and filter. External data sources, such as classified databases or the web,

are searched and filtered to retrieve documents relevant to the task.

• Read and extract. These documents are examined to extract pieces of important

information that may later be used as evidence.

• Schematize. The collected information is organized in a way that aids the

analysis. This organization may be executed implicitly in one’s mind, using

paper and pen, or with support of a complex computer-based system.

• Build case. Multiple hypotheses are generated, and evidence is marshaled to

support or disprove them.

• Tell story. Discovered cases are presented to some audience of interest.

The sensemaking process has been studied in many different contexts including

17

information science [65], organizations [66], human-computer interaction [67], intelli-

gence analysis [2, 68], and software reverse engineering [3, 69].

The following section reviews literature related to the study of software reverse

engineering.

2.5 Sensemaking in Reverse Engineering

Bryant [3] defined the sensemaking process in reverse engineering as “a goal-

directed planning-based activity, in which the reverse engineer interacts with an exe-

cutable program using RE tools to construct a mental model of the functionality of

the program.” This understanding is continuously improved as one reasons and for-

ages through information to construct a mental model. In this assessment, the model

is dynamic, continuously updated via an iterative loop of identifying knowledge gaps,

seeking information, and then adjusting the mental model. Figure 6 illustrates the

reverse engineering sensemaking process.

Figure 6. Sensemaking in reverse engineering [3].

Program understanding activities can be somewhat chaotic, with reverse engineers

making guesses, questions, and actions using their own experiences. Analysis activi-

ties need to become more systematic, but this is difficult to achieve. These difficulties

18

may stem from the problem that heuristics are often very domain-specific, whereas

systematic techniques tend to be quite general. The process of reverse engineering

should evolve to make it more repeatable, defined, managed, and optimized [23, 70].

2.6 Provenance

During complex sensemaking tasks, it can be valuable to maintain a history of

the data and reasoning involved - referred to as provenance information. Provenance

plays an important role in many aspects of our daily lives. For example, in everyday

shopping, before purchasing a bottle of fruit juice, a customer might like to know

about its origin, ingredients, methods used to collect them, processing fruits, and so

on. In art, the provenance information of a painting, such as the artist, ownership

trail, material, and story behind it, greatly affects its value. In computer systems, the

provenance of a piece of data is defined as “the process that led to that piece of data”

[71]. It contains input data information, output data, and program configuration

used for data processing.

Ragan, et al. [72] characterize the purposes of provenance information as recall,

replication, action recovery, collaborative communication, presentation, and meta-

analysis. Recall enables awareness of the tasks that have been completed. Replication

supports the reproduction of steps to repeat or verify results. Action recovery allows

the undo and redo of operations. Collaborative communication supports the shar-

ing of the analysis process with others. Presentation communicates how an analysis

was conducted and how findings were determined. Finally, meta-analysis evaluates a

user’s sensemaking process during an analysis.

Provenance research can be divided into two categories. The first category, data

provenance, focuses on data derivation history including its source information and

the process that produced it. In data-intensive fields such as scientific workflows

19

and databases, this type of provenance is often emphasized. Analytic provenance is

the second category focusing on the interactive data exploration and sensory-driven

reasoning process.

2.7 Analytic Provenance

Analytic provenance is a visual analysis process often described as “connecting the

dots.” It is commonly used to provide an overview of the sensemaking process and

reveal interesting patterns [73, 74, 75]. Visualization histories automatically record

past work, enabling users to easily revisit earlier states of the analysis. There are

three stages of analytic provenance as shown in Figure 7. As the user explores the

data by interacting with an application, the history of user interactions is captured,

visualized, and then utilized by the user to support sensemaking [10]. This section

describes a model for capturing, visualizing, and utilizing provenance data.

Figure 7. Stages of analytic provenance.

2.7.1 Capture.

From the perspective of human sensemaking, Gotz and Zhou [4] separate semantic

richness of information into a four-layer model. Figure 8 illustrates this model with

the level of semantic value increasing from bottom to top. The bottom-level consists

of low-level user interactions such as mouse clicks and keystrokes, which contain little

semantic meaning. The next level up includes actions, which are analytic steps such

20

as querying the database or changing the zooming level of a data visualization. The

parameters such as data description and visualization settings are also part of the

action layer. Next, sub-tasks are the analyses required to achieve the sensemaking

goal. At the top-level is the task, that is, the overall sensemaking objective.

Figure 8. The hierarchical analytic provenance model with increasing semantic richness
from bottom to top [4].

This four-layer model is flexible, allowing developers to determine the specific

elements they want to capture within each layer for their systems. Capturing lower-

level events and actions is relatively straightforward in a visual analytics system.

However, such analytic provenance information alone is of limited use [4]. Tasks

and sub-tasks provide important clues to the purpose and rationale underlining the

sensemaking. They are largely part of the users’ thinking, which a visual analytics

system does not have direct access to.

The two approaches for capturing high-level analytic provenance data, broadly

categorized as manual and automatic methods [4]. Manual methods rely on users

recording their analysis process and sensemaking tasks, while automatic methods

attempt to infer the higher-level tasks and sub-tasks from lower-level events and

actions. Both methods have strengths and weaknesses. Manual methods tend to be

more accurate in their capture, but they can also distract the user from the actual

analysis task. In contrast, automatic methods are not obtrusive to the sensemaking

21

process, but they are limited in their capability of inferring semantics-rich provenance

information [4].

2.7.2 Visualization.

Node-link diagrams are a popular choice to show an overview of the sensemaking

process [4, 5, 76, 77]. In most cases, nodes represent visualization states and edges are

actions that transition the system from one state to another. Besides visualizing the

overall sensemaking process, the details of each action are important for recovering

the users’ thoughts. To provide more context, when a sensemaking step is selected the

visual analytics system shows the corresponding visualization state and the action’s

information [78, 79, 80]. For example, Shrinivasan and van Wijk presented their Aruvi

prototype, shown in Figure 9. Aruvi used a horizontal history tree to visualize the

captured user actions as states including mouse events, key events, and other input

events.

Figure 9. Aruvi prototype history tree showing navigation structure ordered by time
[5].

Researchers have explored various methods for capturing history models, visual

representations, and operations. Graph-based [81, 82] and tree-based [5, 76] repre-

sentations have been developed for capturing complex analysis histories. Heer, et al.

[83] presented Tableau, a database visualization system used to record interaction

histories to support data analysis. Tableau recorded user actions and visualization

states as items that could be bookmarked, annotated, and exported. It was primarily

22

designed to support revisitation and communication. Other notable analytic prove-

nance tools that employ node-link graphs to visually represent the analysis history

include: GRASPARC [84], ExPlates [85], GraphTrails [77], VisTrails [76], and CzSaw

[78].

KnowledgePearls [6] and CLUE [7] utilize similar interface features to SensorRE,

but with different design intentions and domain data. KnowledgePearls records user

actions and visualization states during the exploration of biomedical data through

a browser-based system, as depicted in Figure 10. The interface also presents the

history using a vertical tree layout. CLUE captured user bio-medical provenance data

as “Vistories” that can be shared through a storytelling interface. Figure 11 shows

a closeup of CLUE’s provenance and story views. In contrast, SensorRE visualizes

provenance data from an external application. The user can select a sensemaking step

and the corresponding visualization state is restored in the reversing application. A

linear narrative interface allows users to produce concise stories based on the original

exploration.

2.7.3 Utilization.

While there are many possible applications of provenance data, collaboration and

storytelling are two major uses that can potentially make a great impact [10].

2.7.3.1 Collaboration.

Traditionally, analytic provenance was used to support an individual’s sensemak-

ing process [76]. However, provenance also has many uses in a collaborative context.

Analysts can review each other’s provenance data to get up to speed on an inves-

tigation, to assist in conceptualizing a challenging problem, or as a training aid for

sharing best practices. Research suggests that sensemaking activities benefit from

23

Figure 10. KnowledgePearls prototype. On the left is the application view, in the
middle is the provenance graph panel, and on the right is a search side panel [6].

the social aspects of collaboration [66].

Coordination is critical in distributed collaborative analysis. Collaborating an-

alysts need to understand what each person has done and what analysis remains

uninvestigated to effectively coordinate their efforts. With distributed collaboration,

there is another challenge, known as the “hand-off,” in which work started by one col-

laborator is transferred for continuation by another. Here, the second person needs to

learn what has already been done and then chooses where to investigate next. Gain-

ing a good understanding of past work is critical to ensuring effective coordination

and minimizing duplicate effort.

Collaborative provenance systems are useful in situations in which members of

the team work at different times and in different places. In synchronous collaborative

work, real-time shared views and instant-communication attributes can help in build-

ing common ground. For instance, CoMotion [86] enables sharing of personal views

across the group. Similarly, Cambiera [87] enables an analyst to maintain awareness

24

Figure 11. CLUE provenance and story views [7].

of a collaborator’s efforts. In an asynchronous context, however, a collaborator must

rely on trails of information left behind by the previous analyst.

Asynchronous collaboration tools capture and share findings or hypotheses with

a time lag, usually through manual intervention by the user. Sense.us [88], Com-

mentSpace [89], Analytic Trails [90], and ManyEyes [91] are examples of systems

that support asynchronous collaboration. Wattenberg, et al. [92] suggested using

an information scent (i.e., attention pointers that assist a person in navigating the

information space) to provide visual cues to potential collaborators to speed up their

exploration. Similarly, Willet, et al. [93], incorporated visual cues into interface

widgets to help collaborators identify under-explored data.

2.7.3.2 Visual Storytelling.

During the visual exploration process in many fields, including reverse engineering

[19, 13], findings are often captured by taking one or multiple screenshots of the

visualizations or by creating a screen recording that shows the steps that led to a

25

discovery. Static images, however, cannot tell the story of a visual discovery, as they

cannot convey information about the exploration process. Additionally, results of an

analysis often need to be communicated to an audience that lacks technical expertise.

Hence, there exists a gap between analysis findings obtained and what is needed to

communicate them to a larger audience. This requires results be presented in simpler

ways than may typically be used in a sensemaking application. One approach to

presenting results is visual narrative construction, during which the user composes

findings into a coherent story, a process referred to as visual storytelling [94].

A visual narrative can include raw data, analysis results, visualization, and user

notes. Narratives describe the final conclusions in the context of the sensemaking

process that led to them, a useful feature for reporting and team collaboration. The

DIVA system [95] allows interactive construction of narratives from user annotations

and associated visualization states. SchemaLine [96] allows users to create hypotheses

or narratives by grouping notes along a timeline.

These tools allow users to construct visual narratives using both story structure

and presentation design. Relevant to this dissertation are the ideas concerning the

integrated presentation of story content.

2.7.4 Evaluating Analytic Provenance Systems.

A visualization, no matter how novel and interesting, needs to be evaluated to

determine whether it meets the design goals and supports the targeted users. Previous

work discussed how visual analytics can be evaluated [97, 98, 99]. At present, there

are no consensus methods and guidelines for how visual analytics should be evaluated.

The prevailing view, however, is that traditional methods and metrics for usability

are not sufficient, and novel approaches are required.

Carpendale [100] summarized different quantitative and qualitative approaches

26

for evaluating information visualizations. Carpendale argued that it takes a variety

of methodologies to sufficiently analyze new approaches. Systems should be tested

with real users, real tasks, and realistic datasets. We evaluate SensorRE’s ability to

support reverse engineers completing common tasks with software binaries.

The call for new methods of evaluation is based on several factors. In infor-

mation visualization, evaluation methods have traditionally consisted of predefined

benchmark tests under controlled conditions. Predefined tests, however, are viewed

as problematic in this case because visual analytics is exploratory in nature and the

set of tasks that users want to perform may not be known beforehand [98]. Further-

more, controlled studies may not effectively represent real situations. Studies with

predefined or premature completion times leave little room for insight.

Another problem is that traditional metrics are not well suited to visual analytics

[101]. Measures such as performance and accuracy do not necessarily measure the goal

of visual analytics. North [74] introduced an insight-based approach to evaluation

using controlled experiments both with and without predefined tasks. If tasks are

used, they should be more complex than traditional benchmarking tasks or should be

tasks that involve uncertainty. Users should be directed to interpret visualizations in

articulate written form so their insights can be captured.

Another alternative is to eliminate tasks entirely and study what insights the users

gain on their own, letting them explore the data in the way that they choose [74].

In this approach users are initially oriented with the help of starting questions but

then left to freely explore the data and report their insights as they discover them.

Users verbalize their findings in a think-aloud protocol, enabling the evaluator to

capture their understanding. Findings are marked as insight occurrences which can

be quantified based on different metrics: complexity, time to generate, errors, insight

depth category and so on. During the evaluation, other kinds of usability data can

27

also be collected, such as which features helped to generate insight and what caused

problems for users.

2.8 Implementation Technologies

This section introduces some of the implementation technologies used in develop-

ing the analytic provenance tool presented in Chapter 4.

2.8.1 Binary Ninja.

Binary Ninja is a commercial application used in static analysis [39]. Binary

Ninja supports a large number of executable formats for a variety of processors and

operating systems. Users can also implement lifters for unsupported architectures.

Binary Ninja has an extensive application programming interface (API), supporting

third-party plugins to improve the application’s functionality and customizability for

almost every interface element.

Binary Ninja’s family of intermediate languages (ILs) are designed to aid in the

analysis of computer programs. Each layer works together to provide functionality

at different abstraction layers. As the user increases the abstraction level from low,

medium, and then high, groups of assembly instructions are transformed into a simpli-

fied representation, extracting useful information. For instance, in the medium-level

IL all registers are translated into variables, and all variables have types.

An example of the Binary Ninja default graph view is shown in Figure 12. In

the main window, adjacent assembly instructions are grouped into basic blocks with

entry and exit paths specified by jumps or branches. On the top left, Binary Ninja

displays all recognized functions or statically linked operating system calls in the

function listing. Below is a cross reference listing, showing references to user-selected

functions, easing navigation. The bottom left displays a mini graph with a zoomed-

28

out view of the function selected in the main window.

Figure 12. Binary Ninja Reversing Application.

2.8.2 Web Application Platform.

With the emergence of web libraries for interactive visual exploration [102, 103,

104, 105, 106], users are able to explore a wide variety of data from their web browser.

Support for animated transitions and event handling gives users the ability to inter-

actively filter data, change views, or dynamically steer computations. This interest

has led to modular systems that can be applied to many problem domains.

The Data-Driven Documents (D3) JavaScript library is a graphing library that

enables inspection and manipulation of the World Wide Web Consortium (W3C) stan-

dard document object model (DOM). The DOM is an object-oriented representation

of a web page that can be modified with a scripting language such as JavaScript.

D3 is an information visualization (InfoVis) tool that efficiently manipulates docu-

29

ments based on underlying data. It utilizes scalable vector graphics (SVG) to create

a wide array of dynamic visualizations [103]. The use of SVG allows D3 to support

partial graph modification, interactive manipulation, transitions, and easy debugging

through a web browser’s built-in element inspector. These features are not avail-

able in many stand-alone graphical development systems, such as Processing [107] or

Protovis [108].

Visual Storytelling is an open-source, web-based visualization library used for

creating and manipulating provenance graphs [109]. The visualization views are im-

plemented using D3.js through JavaScript and TypeScript interfaces. Visual Story-

telling has three modules: provenance-core, provenance-tree-visualization, and slide-

deck-visualization. Provenance-core provides tools for managing data structures and

tracking interactions in the web application. The provenance-tree-visualization mod-

ule updates and records the state data within the provenance graph. Slide-deck-

visualization offers a D3.js interface to visualize specific provenance graph nodes in

a slide-deck interface. SensorRE uses the Visual Storytelling libraries as part of the

first analytic provenance system for reverse engineering.

2.9 Chapter Summary

This chapter reviewed the current state of software reverse engineering and prove-

nance techniques. Visualization methods have found practical application for reverse

engineers. However, there has been no research into developing analytic provenance

tools to support software reverse engineers.

30

III. User Needs Study

The software reverse engineering industry is dependent upon having useful tools.

To be considered ‘useful’ the tool must meet the needs of the people that will use

it. This requires consideration of a number of factors including the capabilities and

working patterns of the users, the environments in which the tool will be used, and

the system(s) it will be a part of [23]. Understanding these complex factors requires a

highly-interactive communication process with the problem owners. The elicitation of

requirements is arguably considered the most important step in software development

[110].

This chapter presents a focused investigation into the user needs for a new re-

verse engineering visualization tool. The research question motivating this study is:

What visualization needs do reverse engineers have? Semi-structured interviews with

experienced reverse engineers led to an understanding of their work processes and

visualization needs. Iterating on these needs with the users informed the design of

an analytic provenance tool. The request for human experimentation is included in

Appendix A for reference.

3.1 Methodology

3.1.1 Participants.

The population queried for participation are experienced software reverse engi-

neers. Participants with fewer than two years of hands-on experience in reverse engi-

neering were excluded.

Table 1 shows participant P1 - P5 ’s background. On average, the participants

had 8.6 (± 4.6) years of reverse engineering experience in the security sector. Their

duty titles included “malware analyst” (P1, P2), “cyber tools analyst” (P3, P4), and

31

“software analyst” (P5). Two participants have PhDs in Computer Engineering, one

with two Masters degrees (Computer Science, MBA), and two have Bachelors degrees

(Mathematics and Computer Engineering).

Gaining access to participants who already possess a strong understanding of soft-

ware reverse engineering has been shown to be a common limitation in related works

[3, 23, 47]. However, our population was quite skilled. To get skilled participants, we

focused on emailing contacts at national security organizations within our personal

and professional networks. These contacts forwarded the request to engineers within

their organizations. The participants were under no internal or external pressure to

participate.

3.1.2 Procedure.

The in-person semi-structured interviews began with a quick introduction describ-

ing the purpose of the interview. Each interview lasted approximately two hours.

The interviews were performed off-site due to security limitations but near the par-

ticipants’ work location. The open-ended interview questions were pilot-tested and

refined based on feedback from a reverse engineering expert with 12 years experience.

The interview protocol provides a brief introduction to the researcher and sponsor,

the objectives of the study, instructions to review and sign the consent form, and the

break protocol. These questions were designed to inform the researcher on task anal-

Table 1. Participant demographics.

Participant Duty Title Exp. (Yrs.) Education

P1 Malware Analyst 4 MS CS
P2 Malware Analyst 13 BS Math
P3 Cyber Tools Analyst 10 PhD CE
P4 Cyber Tools Analyst 5 BS CE
P5 Software Analyst 11 PhD CE

32

ysis workflows, tools, challenges, and visualization needs. Each interview discussed

the following questions:

• What tasks do software reverse engineers perform?

• What key decisions do you make during the analysis?

• What tools do you regularly use and how do you use them?

• What are the results of analysis and how are they shared with external stake-

holders?

• How are findings shared between team members?

• How do time constraints modify your analysis process?

With the permission of the participants, the interviews were audio recorded and

extensive notes were taken. The researcher encouraged participants to talk freely

about the issues encountered during the binary analysis process. Prompts were used

to encourage them to provide more detail. Given the participant-driven nature of

exploratory interviews, we received varying levels of responses (e.g., one participant

talked at length about teamwork concerns while another focused on workflow chal-

lenges). The interview questions consist of six parts as referenced in Appendix B.

The ethics approval package is included in Appendix C.

Due to security concerns related to the practical application of the techniques

discussed, participants were encouraged to provide generic examples and practices to

avoid disclosing national security information.

3.1.3 Data Analysis.

Following the interviews, audio data was transcribed and compared with the re-

searcher’s notes for accuracy and completeness. Each response to a question category

33

is summarized and reported. Researchers followed Creswell’s [8] data analysis proce-

dure by iteratively coding and categorizing themes using the data analysis software

MaxQDA [111]. We grouped common practices, tools, challenges, and constraints

into high-level categories. These categories were refined as we gathered more data.

Figure 13. Data Analysis in Qualitative Research [8].

The qualitative data from both the textual and audio recordings are compared

using the data analysis software. The results of the study can then be compared to

see if there are any design goals not explicitly reported. For example, if the words

“trace route” is mentioned noticeably often, we could deduce that it is an area of

interest despite not being mentioned as a specific issue. Reviewing the collected data

for themes, or insights, informed the development of the visualization tool.

34

3.2 Results & Analysis

Each participant described their typical workflow during the semi-structured inter-

views. The primary finding is a consistent set of tasks being described. We identified

five common processes in the reverse engineering workflow: metadata, disassembly,

dynamic, documentation, and collaboration. The evolution between these themes is

captured in Figure 14.

We generally observed the same processes and methods were used by the reverse

engineers performing malware analysis as those that were seeking vulnerability dis-

covery or general program understanding. However, there were differences in what

the participants prioritized based on their role (e.g. malware analysts focused ini-

tially on network calls while others looked at memory management functions). Since

the focus is on the high-level processes and methods used, we discuss both groups

together in the following sections.

3.2.1 Metadata Analysis.

Metadata analysis was the first procedural step described by all participants. The

term metadata in this context is static analysis data which provides information about

the binary prior to deeper inspection. The engineers perform metadata analysis to

form initial impressions on files with little or no prior knowledge, as stated by one

subject, “script as much as we can to point the analyst in the right direction.” (P3)

Sources of metadata include the file name, size, header information, file structure, and

compiler artifacts. These data sources assist in generating a broad understanding of

the binary executable and potentially form hypotheses warranting further examina-

tion.

The specific methods and tools used change based on the reverser’s objectives, the

file under analysis, and how much information was already known about the file. “[We

35

Figure 14. Reverse engineering workflow process.

use] a lot of utilities for understanding the header information for files, sometimes we

have files that we’re not really sure what they are.” (P2) These tools comprise hex

editors, binary difference tools, Linux utilities (e.g., file, objdump), packer detection

(e.g., PeID), the Windows Sysinternals suite, PE viewers (e.g., CFF Explorer, PE

Explorer), and many more depending on the situation. The metadata analysis phase

is the quickest of the five phases described, and “usually completed within an hour.”

(P2)

Given the broad range of tools required, the participants described their reluctance

with non-scriptable stand-alone tools. Instead, the participants preferred tools that

could be integrated into other tools. “There are too many tools we use all the time

that we build scripts to streamline our processes. Ideally, new capabilities could tie

into one of the [tools] we already use” (P3). An analytic provenance tool could be

non-intrusively integrated into existing software analysis tools, capturing and then

displaying the visualized history data in order to minimize the impact on the reverse

engineers’ workflow.

36

3.2.2 Disassembly Analysis.

Each participant indicated the majority of their time is spent statically analyzing

code in a disassembler. All participants stated that IDA Pro was their disassembler

of choice with Binary Ninja and Ghidra as the next most used. When deciding which

disassembler to use, all participants reported cases where they would examine a given

binary executable with multiple disassemblers at the same time to piece together their

understanding. “Different tools produce different representations which can be helpful

in piecing together the functionality of the binary.” (P5)

In describing the strengths and weaknesses between the disassemblers, the partic-

ipants highlighted the power of plugins in supplementing the base tool. Participants

P1, P2, and P4 stated that they use plugins “heavily” during analysis, while P5 only

“occasionally.” Due to classification concerns, details on the specific plugin capa-

bilities were not shared. However, desirable attributes of the tool’s plugin interface

were described, including ease of development, API documentation, and active de-

velopment community. These factors contributed to their choice of IDA Pro as the

preferred tool in this phase of analysis, followed by Binary Ninja.

Next, the participants described their analytic process and workflow. The reverse

engineers initially examine high-level details such as system calls, strings, or other

structural information. The comprehension of these details are further refined through

the goal-driven exploration activities.

[We are] looking for a handful of things that might indicate what kind of

inter-process communication this binary has, either internally or exter-

nally. Statically, we want to find out what [the program] interconnects

with. How it interacts with the file system, network, or something embed-

ded inside it. (P2)

37

Analyzing program interaction through system calls is a critical step in the engi-

neers’ workflow, “API calls or custom programming calls tell us a lot of information

about what [the binary] is doing.” (P1) Reverse engineers use the import table and

an iterative process of examining the system calls to piece together how the program

functions.

3.2.3 Dynamic Analysis.

Dynamic analysis was viewed as an optional but useful analysis step by the par-

ticipants. Dynamic analysis traces the application’s events at run-time, allowing the

engineer to inspect stack variables and develop an understanding of the data flow.

The participants most often used debuggers in this step and iterated their findings

back into the disassembly analysis. “Dynamic analysis [is] more useful once you al-

ready have an understanding of what’s happening because then you can look in the

stack, you can look at a stack trace and figure out what’s there, or stop it at a certain

point.” (P3)

Four participants (P1, P2, P3, P4) described difficulties performing dynamic

analysis, restricting the usefulness of the technique. These difficulties included when

portions of the program were missing, when particular anti-debugging or anti-tracing

techniques were used, or when the binary’s system environment could not be virtually

instantiated.

The most frequently used dynamic analysis tool was the debugger (e.g., IDA Pro’s

integrated debuggers, OllyDbg, or WinDbg), followed by virtual machine emulation

tools (e.g., PANDA, Intel PIN), and occasionally fuzzers (e.g., Peech, AFL, and Sully).

Participant P5 described using fuzzers primarily for long-term, exhaustive analyses

which was not common-place at their work center.

38

3.2.4 Documentation.

The reverse engineers discussed three reasons for documenting results: personal

note taking, internal team reporting, and external stakeholder collaboration. Dur-

ing the exploration of the binary executables, the participants document just enough

information to be able to resume a task and rarely document the paths that were

explored without success. The engineers described the following phases of documen-

tation and current limitations in their process:

• Copying-and-pasting: To keep a record of their findings, reverse engineers

copy and paste images (e.g., graphs) or textual representations of the binary

executable into Microsoft PowerPoint, OneNote, or other electronic notebook

software. These actions are purely overhead, disrupting the researcher’s work-

flow while manually duplicating information that the computer should be able

to track automatically.

• Writing notes: Most early documentation is written using plain text files,

creating small diagrams, and note saving. Notes provide some context for what

the researcher is thinking at the present moment, but they are not linked to the

binary executable code to which they refer. For instance, P1 stated, “I may

record that at this [address] I saw something interesting, and may want to follow

up later.” Microsoft Word or lightweight text editors such as notepad++, gedit,

or vi were commonly used.

• Organizing notes: The problem with keeping one central notes file is that

it can become hard to search through it, and the problem of keeping many

specialized files describing a system can make it hard to sort through when

compiling results. Like copying-and-pasting, the burden of coming up with a

scheme to organize notes is purely overhead.

39

The participants expressed a general attitude that intermediate products such

as hand-sketched diagrams and comments were “ad hoc,” “experimental,” or “throw-

away.” Engineers noted a significant amount of their work ultimately did not validate

a useful hypothesis, and so they end up discarding the personal notes. One senior

reverse engineer described, “you go down a lot of dead ends, and you come up with

a bunch of hypotheses. 8 out of 10 are dead ends.” (P3) The same engineer went

on to say he lacked a process to tell others “don’t look here because I looked here

and it’s not useful. There are rarely remnants of dead ends.” The reverse engineers

intentionally discard intermediate products when the end result does not seem in-

sightful. Recording these analysis paths may prove useful in communicating progress

with team members, discussing issues encountered, or as a training tool to learn from

past successes and failures.

At the end of analysis, the participants typically record their findings using Mi-

crosoft Word including a summary of findings, screenshots, diagrams, and recommen-

dations. Translating the low-level findings into high-level results for consumption by

non-technical stakeholders is a constant challenge. One engineer describes this pro-

cess: “Typically, what I want to provide is evidence. So I take a lot of screenshots,

[and] put them together with diagrams that document how this program works.” (P5)

Diagrams are most frequently developed in Microsoft PowerPoint or Visio and im-

ported into the Word document. The length and quality of the reports vary based on

the speed, goals, and complexity of the analysis:

One report we publish is called a Software Quick Look (SQL). It’s a high-

level description of the software that gives an understanding of what we

think the software does, roughly how it works, and how it could be used ...

[The report] could be anywhere from 10 pages to 40 or 50 pages. (P1)

40

3.2.5 Collaboration.

The participants reported meeting regularly with other colleagues to discuss long-

term projects and immediate next steps. When working on large or complex projects,

the participants reported an average team size of 2 - 5 people. Documentation alone

is often not enough to understand the work that has been completed by somebody

else: “[I would] look at another engineer’s notes, but probably only two or three things

would make sense and then I’d still need to jump through [the code] to understand.”

(P5) During challenging analyses, sharing intermediate products with other engineers

was considered a necessity. All participants agreed that there are many times where

it is necessary to ask for assistance or agreement on a finding. As one engineer

jokingly states, “You have a bunch of people that kind of know a little bit about

reverse engineering scampering around semi-blindly trying to find cool things that are

happening and then make sense of them.” (P2)

When the participants were assigned to teams, they typically work in a co-located

facility that allows for face-to-face communication among team members. We found

that the engineers did not typically apply specialized collaboration tools in their anal-

ysis, but rather relied on basic tools such as shared documents (hand-written or elec-

tronic), white boards, and a lesser-used common knowledge repository. Diagrams are

most often used to summarize program behavior or highlight specific insights through

flow graphs, sequence diagrams, and time-line graphs. “There are huge needs for im-

proved communication. It’s really similar to team-source code development. You don’t

want to have multiple people working on the same part.” (P4) The participants felt

that the specialized collaboration tools were often too primitive to help them. These

tools are designed only to provide a common space to collaboratively work together

but do not effectively communicate hypotheses or insights during the sensemaking

process.

41

3.3 Discussion & Implications

This exploratory study sought to understand the participants’ reverse engineering

workflow to find opportunities for tool development. Improved reverse engineering

tools will likely always be needed to deal with the rapidly changing software landscape.

However, by analyzing the interview data we identified several potential tool concepts

that could enhance reverse engineers’ investigative and analytic capabilities.

3.3.1 Provenance Capture.

Analytic provenance captures the history and lineage of all of the actions per-

formed by the user during the exploration process. Existing tools and prior research

efforts in other heavily researched domains (e.g., intelligence analysis) have focused

on supporting the capture of provenance data, but this not a solved problem. Heer

and Agrawala [112] note that new visual analytic tools receive better user engage-

ment and acceptance when they are integrated into the users’ existing workflow tools.

This restricts the selection of the domain-specific tools to ones with API’s capable of

capturing and storing fine-grained user activity.

Based on the interview data, the captured analytic provenance should be used

to reproduce the binary manipulations that are performed by the engineer during

analysis. Automated methods are imperfect, however, and there is a lack of clarity

on the details of the provenance that needs to be captured. The reversing application

and interfaces for future visual analytic systems need to be designed with provenance

capture as a significant design focus. In a preliminary assessment of the reverse

engineering tools described by the participants, Binary Ninja has the capability to

automate the capture of user actions without significant external tooling, making it

a potential leading candidate for provenance tool development.

Besides capturing user actions, capturing annotations while performing the analy-

42

sis would provide important exploration process knowledge. Support for annotations

in current reverse engineering tools usually consists of making comments assigned

to particular instructions. These comments are usually limited to small hypotheses

about the instruction or function under analysis. Some of the participants described

the need for better methods for annotation management. Instead of the engineer

referring to their handwritten notes, screenshots, or abbreviated comments in the

reversing application, the provenance system can automatically record these data

collections and the associated context in the program.

3.3.2 Visualization Support.

Participants reported a pressing need for visualization tools supporting workflow

tasks, particularly during disassembly analysis. One engineer remarked on the cogni-

tive challenges: “All of the time in my head I’m trying to build up this graph of how

this function calls this other function. We need better methods to keep track of the

path activity.” (P1) The other participants agreed, “[We need] visualizations to help

mentally layout and communicate the functionality of the binary.” (P3)

However, such tools must be flexible enough to support tasks with changing goals

and needs. Newcomers and experienced software reverse engineers should be equally

supported in their efforts to accomplish their tasks. Participant P5 stated:

The vast majority of people need an easy-to-use tool to see some basic

things about the file, to hold their hand and walk them through step by

step. And it’s not any criticism of that person, they just have a very

specific set of things that they need to look at.

Participants frequently construct categories between data items by organizing

them spatially in their personal note space. For instance, when determining the

43

relationship between system calls and functions, participants would review both the

function listing and the import table to develop a high level understanding of the bi-

nary. In general, participants used scratch paper to record the data flow relationship

through node-link diagrams.

Reducing the time necessary to perform routine analysis activities was one need

described by all the participants. This early exploration task and accompanying

analysis generally took participants less than 24 hours to complete. A visualization

tool may be able to assist the engineer by presenting these binary artifacts directly

for exploration in a single view.

The level of available time given for an analysis depends on several factors, in-

cluding the workforce allocation for the task and customer prioritization. Certain

projects require a deep understanding of the software and are thoroughly analyzed

with little time pressure. In such cases, “analysis could take anywhere from 6 months

to years for complex samples.” (P1) In situations where a quick response is necessary,

the engineers will abandon a systematic approach for the sake of time:

If I’m being really structured and I have a lot of time, then I’ll go through

and collect all of the [details], but I’m often multi-tasking with a whole

bunch of other various projects. So what I’m doing with the binary I need

to do fast. (P3)

Without a systematic approach, however, reverse engineers risk missing important

details and/or critical steps in their analysis. In either case, improved visualization

tools should be pursued to improve the speed and accuracy of the analysis.

44

3.3.3 Workflow Support.

When reverse engineers analyze compiled software, they must organize their find-

ings, hypotheses, and evidence to “tell a convincing story”. (P4) The participants

described challenges in keeping track of numerous code paths and data files, compar-

ing the results of hypotheses with previously executed attempts, and remembering

what they learned from past successes and failures. These problems persist because

the current methods for managing and documenting findings require too much user

overhead and provide too little context. Low overhead means that the user can spend

more of their time on applying program comprehension skills than on managing notes

and findings. High context means that the user can directly correlate their past ac-

tivities and results in the context of the reversing application.

The participants described the process of forming and testing hypotheses to make

decisions based on the knowledge gained. This process is often iterative and can ac-

count for hours of exploration. Intermediate findings may lead to new strategies and

decisions, resulting in a cyclic progression of knowledge building and understanding

[3]. The reasoning steps are important to capture in order for the analysis to be

explainable, reproducible, and trustworthy [113]. For analysis such as those for na-

tional security, these steps may be needed for criminal or intelligence investigations.

Therefore, the accuracy and degree of detail of these reasoning steps are of critical

importance.

As previously discussed, reverse engineering findings are frequently documented

by taking screenshots. Static images, however, cannot convey information about

the exploration process. New tooling should not just communicate results, but also

describe how these results were derived. The lack of a back-link from the results to

the exploration stage and the underlying data makes it difficult (1) to reproduce and

verify the findings explained in a report and (2) to extend the exploration to make

45

new discoveries.

3.4 Limitations and Threats to Validity

A limiting factor was based on the nature of the participants’ work. Due to confi-

dentiality concerns, the researchers were not able to freely interview the participants

about all aspects of their work or observe them in their daily work environment.

This limitation was mitigated by focusing on their work needs and processes, not

on specific protected tools, data, or sources. Related concerns also restricted the re-

searchers’ ability to use recording devices for three of the interviews. However, the

risk of not adequately capturing all answers was mitigated by verifying the results

with the participants.

External validity The biggest threat to external validity is that the captured re-

sponses may be atypical from other reverse engineering groups. The elicited require-

ments may be unique due to security limitations, mission goals, or resources of the

participants, and therefore may not be representative of the larger population of re-

verse engineers. This threat is mitigated by adhering to a scripted protocol focusing

on their workflow instead of specific techniques unique to their environment.

Internal validity The generality of the interview questions may be affected by

researcher bias stemming from personal assumptions. This threat is mitigated by

the pilot interview, the open-ended questions, and the follow-up discussions. The

pilot interview helped the researchers refine the interview questions and ensure their

relevance. Open-ended questions enabled participants to add or elaborate on their

own opinions. Furthermore, the findings were confirmed in follow-up communications.

46

3.5 Chapter Summary

This chapter presented an exploratory study aimed at understanding the pro-

cesses, tools, challenges, and visualization needs of software reverse engineers to de-

velop requirements for a future tool. Five workflow processes were identified, including

metadata analysis, disassembly analysis, dynamic analysis, documentation, and col-

laboration. Describing these processes led to the identification of specific challenges

and visualization needs.

Unfortunately, it appears that no existing workflow tools capture all of the tasks

performed by reverse engineers. Task complexity, security challenges, time pressure,

and other tool constraints make it impossible to follow a structured heavyweight

process. Therefore, future tool support has to be lightweight and flexible.

The participants described a lack of adequate visualization and workflow sup-

portive tools contributing to an increase in analysis complexity, which may also be

prevalent in other reverse engineering settings. Analytic provenance tools may ad-

dress these challenges by enabling the user to revisit the visualization states during the

exploration process, validate hypotheses, organize findings, and present their process

and results to others.

47

IV. Design and Implementation

Reverse engineers are in heavy demand due to the growing number of systems,

programs, and malicious cyberspace threats. Previous research has indicated that a

significant amount of a reverse engineer’s time is spent exploring the assembly lan-

guage in the disassembler, iterating hypotheses until an analysis goal is met. During

this process, they may face challenges recalling their analysis path and communicat-

ing their findings with others. This research seeks to improve the sensemaking of

reverse engineers during the analysis process through analytic provenance methods.

This chapter presents SensorRE, the first analytic provenance tool supporting soft-

ware reverse engineers. SensorRE automatically captures user actions and provides

compact views supporting analysis and presentation tasks. The implementation of

the tool is described including the capture, replay, communication, and collaboration

mechanisms. Next, the user interface describes the provenance visualizations. The

chapter concludes with an example scenario demonstrating SensorRE’s use.

4.1 Design Approach

Expert reverse engineers were consulted during the design and implementation

of SensorRE. Beginning with the tool needs identified in Chapter 3, the experts

helped develop a set of general mission constraints. These constraints were then used

throughout the design, building and testing of the prototype.

1. Existing workflow integration: the tool should not change the reverse en-

gineers workflow.

2. Flexibility: the tool should be lightweight and support multiple CPU archi-

tectures (e.g., x86 and ARM) and operating systems.

48

3. Collaboration: the tool should facilitate collaboration between teams of re-

verse engineers.

4. Scalability: the tool should support common sensemaking time frames in the

domain by supporting long (2+ hour) and disjointed sessions.

These constraints link directly to the technology platforms and design decisions

chosen.

4.2 System Overview

SensorRE is an analytic provenance tool integrated with the existing software

reverse engineering platform Binary Ninja. Figure 15 provides an overview of Sen-

sorRE system. SensorRE automatically captures the user’s provenance data during

the binary analysis process. This data is transmitted to the provenance visualization

in the user’s web browser. The provenance history, which is displayed as nodes on

a link diagram, holds the visualization states of the reversing application for recall,

replication, or action recovery (undo/redo) activities. Importantly, users should not

notice any difference from their normal reverse engineering session (Constraint 1 -

Existing workflow integration). The user can treat the provenance visualization as a

passive collection of actions taken or they can navigate to any previous states of the

analysis.

SensorRE consists of custom Binary Ninja plugin components, a provenance visu-

alization, and intermediary communication modules. Binary Ninja plugin components

are written in Python while the visualization and communication modules use Type-

script. The plugin is responsible for capturing user action properties, transmitting

these properties to a NodeJS server, receiving replay commands from the browser,

and formatting the replay commands to be issued to Binary Ninja. Browser com-

ponents record action properties received as visualization states and store them in

49

Figure 15. SensorRE System Overview.

an interactive provenance graph for analysis and replay. Appendix D includes the

software code listings for all SensorRE components.

SensorRE consists of three user interface views shown in Figure 16: (a) the user’s

reverse engineering tool, (b) the provenance graph side panel, and (c) the storyboard

side panel. On the right side are the provenance graph and storyboard side panels.

The provenance graph provides a visualization of all recorded states. Interactions in

the application are instantly added to the provenance graph. The user can navigate

between previous states of analysis by selecting a node that updates the application

view. The storyboard view allows users to communicate their provenance discoveries

(e.g., hypotheses, tasks, subtasks) for reproducibility and presentation. The interface

is integrated with the reversing tool, enabling users to switch from exploration to

storytelling seamlessly.

A demonstration of SensorRE is presented here:

https://www.youtube.com/watch?v=aPB8T19VSKk.

4.2.1 System Design.

The researchers began by comparing existing reversing tools (e.g., IDA Pro, Binary

Ninja, and Ghidra) for their ability to support capture and replay mechanisms. Binary

50

Figure 16. SensorRE prototype (a) Binary Ninja application, (b) a captured prove-
nance graph, (c) story board panel.

Ninja stood out as the leader in accessible application Programmable Interface (API)

control and automation. While future provenance solutions may be possible with IDA

Pro and Ghidra, the same level of user provenance data and API control necessary

was not readily available. Binary Ninja is a static analysis platform that contains a

Python-based API. Users can develop third-party plugins to extend the platform’s

functionality.

Utilizing the analysis capabilities of Binary Ninja ensured that our solution is

adaptable to a wide range of CPU architectures and operating systems, meeting

Constraint 2 - Flexibility. Binary Ninja includes disassembly support for x86 32-bit,

x86 64-bit, ARMv7, Thumb2, ARMv8, PowerPC, MIPS, 6502, and others developed

by community. The following sections describe the design and implementation of

SensorRE’s capture and replay capabilities.

51

4.2.1.1 Designing Capture.

User actions must be captured with meaningful granularity. It is crucial to deter-

mine which key actions are to be captured, when they are captured, and how they

will be stored. Instead of recording low-level events (e.g., mouse clicks, keyboard

presses) SensorRE captures users’ sensemaking actions. An action is an atomic and

semantically meaningful activity performed by the user. These actions contain rich

context for the user’s sensemaking activity within the application. In the context of

the Gotz and Zhou model [4], this level of capture is classified as visual and knowledge

insight actions, which are defined as follows:

• Knowledge insights: The manipulation of new knowledge created by the user

as a result of knowledge synthesis. These insights are captured when there are

any changes to the following: variables, functions, read-only data (e.g., strings),

or type information.

• Visual insights: The explicit markings of visual objects related to their de-

rived insights. SensorRE captures these insights through user comments and

highlighting activities. These are visual indicators of the user connecting the

dots.

Figure 17 summarizes the action types captured in SensorRE.

52

Figure 17. The action types captured by SensorRE.

4.2.1.2 Capture Mechanism.

The detection and recording of all “insight” action types are automatically cap-

tured within the Binary Ninja application in real-time. A custom plugin passively

monitors for application events and supports communication between Binary Ninja

and SensorRE system components.

All insight action captures are automated within the Binary Ninja application

API. Binary Ninja’s BinaryDataNotification class supports 14 different types of anal-

ysis actions (depicted in Figure 18), including data modifications, function updates,

and type definitions. Each action triggers a callback function which performs state

data collection. State data recorded includes the action’s binary address, current

view, action type, previous state, and the new state. The current view references the

main window view: graph disassembly, linear disassembly, hex editor, type, or strings.

SensorRE references the specific BinaryDataNotification action type triggered by the

callback function. The previous state (prior to the user modification) and new state

(post-user modification) are also used by SensorRE to maintain the running history of

user interactions and their relation to each other to construct the provenance graph.

SensorRE’s capture plugin formats messages into JavaScript Object Notation

53

class BinaryDataNotification:

init ()

data inserted(view, offset, length)

data removed(view, offset, length)

data var added(view, var)

data var removed(view, var)

data var updated(view, var)

data written(view, offset, length)

function added(view, func)

function removed(view, func)

function update requested(view, func)

function updated(view, func)

string found(view, string type, offset, length)

string removed(view, string type, offset, length)

type defined(view, name, type)

type undefined(view, name, type)

Figure 18. Binary Ninja’s BinaryDataNotification class [9].

(JSON). Each message to the web browser visualization is saved to and served by

a minimal NodeJS web server residing on the local host. The JSON message contains

information identifying the message type, current state, previous state, and visual

properties.

Performing actions in the application creates a new visualization state. The state

data is stored in the provenance graph as metadata. This enables the user to return

to any previous state within Binary Ninja by clicking a node. For example, modify-

ing a local variable triggers the function updated API, which leads to an update of

the provenance graph. The user may return by clicking on the corresponding node,

reverting Binary Ninja to the prior state. A JSON message is created (see Figure 19).

4.2.1.3 Designing Replay.

The Binary Ninja plugin uses the eXtensible Markup Language (XML) Remote

Procedure Call (RPC) protocol to receive and process messages from the web browser

visualization. A SimpleXMLRCPServer module that is bundled in Binary Ninja’s de-

54

{
"type": "var name update",

"func addr": "0x401000",

"function": " start",

"index": "0",

"var name new": "var 14 test",

"var name old": "var 14",

"var type new": "int32 t",

"var type old": "int32 t",

"view": "Graph:PE"

}

Figure 19. JSON messaging format.

fault Python installation instantiates the client-server communication from the web

browser to the plugin [114]. XML messages conform to the Binary Ninja API specifi-

cations. For instance, the user may interact with the provenance graph to update the

Binary Ninja analysis to a specific view state. The SimpleXMLRPCServer module

receives a message from the client in the browser and issues binaryview.file.navigate

within the Binary Ninja, moving the user’s cursor to the view and address that were

provided as arguments.

SensorRE provides options to import and export the provenance data supporting

persistence over multiple sessions and sharing between users. At any time during

the analysis, users can save their analysis history or load a previously saved history.

When new provenance data is loaded, SensorRE automatically advances the Binary

Ninja application to the last saved state. This provides an interesting usage scenario.

When one user loads a provenance graph from another user, the provenance graph

automates the re-building of the saved analysis. Each step can then be inspected

individually or as a whole to promote reproducibility and replication. Table 2 presents

the implemented XML-RPC functions and brief descriptions.

55

Table 2. XML-RPC messages used by SensorRE.

Function Name Description

FuncVar Set local variable name and type
FuncName Set function name address to string
FuncType Set function type
FuncNameType Set function name and type
Jump Move to the address pointed by ‘addr’
MakeComm Modify comment at the location ‘addr’
SetColor Set the color pointed by ‘addr’
DefineFunc Define a function at the location ‘addr’
UndefineFunc Undefine a function at the location ‘addr’
WriteData Write data to address
AddType Add type to binary
RemoveType Remove type from binary

4.2.2 Communication Modules.

SensorRE supports bidirectional communication between Binary Ninja and the

web browser visualization. Messages are passed using JSON over Transmission Con-

trol Protocol (TCP) sockets. A modular design supports the software independence

between the Binary Ninja and the web browser modules. Moreover, this structure

enables SensorRE to be compatible with other software analysis tools with only minor

changes.

SensorRE transmits data over a predetermined port on the loopback interface.

This approach cuts down on network traffic and is beneficial in malware analysis,

since the machines are typically separated from all networks to promote security.

However, the browser does not have to be co-located with the software analysis tool.

Communication modules are non-blocking, supporting an improved user expe-

rience using TypeScript’s Async/Await construct. When an action occurs in the

application, it sends an asynchronous message to the provenance graph. The graph

constantly listens and responds to such messages. This approach ensures that the

view is responsive to user interactions even when awaiting further input.

56

Figure 20 depicts a sequence diagram representing a day in the life of the SensorRE

system. The user first initiates Binary Ninja, the plugin (which spawns an XMLRPC

server), web server, and web browser. Next, the web server monitors for interaction

events from the Binary Ninja plugin. As the file contents change, unique JSON

messages are transmitted over a TCP socket to the provenance visualization in the web

browser. When the user selects a provenance node on the graph, XMLRPC messages

are transmitted to the server which issues Binary Ninja API command corresponding

to the user’s interaction. Navigating between multiple nodes on the provenance graph

issues each state’s corresponding action sequentially in a non-blocking queue.

4.2.3 Collaboration Support.

Collaboration has become an important focus in reverse engineering analysis.

Users frequently share with another person or a small group [3]. When many users

analyze a specific binary, they can build collective knowledge and identify common

paths of inquiry.

SensorRE supports asynchronous collaboration through the sharing of provenance

graphs (Constraint 3 - Collaboration). Users can import and export provenance data

to support continuity over multiple sessions. At any time, users can save their session

or load a previously saved history.

In a collaborative session, a user may load an existing analysis and extend the

findings, as depicted in Figure 21. When a user first interacts with Binary Ninja,

their actions are recorded and stored. Later, a second user loads the provenance

graph from the first user, automating the re-building of the saved analysis. Each

step can then be inspected individually or as a whole to promote reproducibility and

replication.

57

F
ig

u
re

2
0
.

S
e
n

so
rR

E
d

a
y

in
th

e
li

fe
se

q
u

e
n

c
e

d
ia

g
ra

m
.

58

Figure 21. Two users leverage the provenance framework to asynchronously collaborate
on work in the Binary Ninja application.

4.3 User Interface

The user interface plays an important role in the usability of the captured prove-

nance data. The interface permits navigation, browsing, and annotation capabilities.

SensorRE provides the reverse engineer with a flexible user interface in the form of

a provenance view and storyboard view. These views are dynamically constructed

using the D3.js and Visual Storytelling libraries [115].

4.3.1 Provenance View.

The provenance view depicted in Figure 22 provides a scalable visual history of

analysis actions. The graph offers an overview of the provenance by displaying all

captured states in a vertical tree. The view is also utilized for navigating and selecting

states. Users interact with the provenance graph by left-clicking a node. Selecting a

node triggers the corresponding state navigation in the application.

The provenance graph consists of three components: nodes, edges, and branches.

A node consists of the visualization state. An edge represents actions that transform

one state into another. Branches are pivot points where the user tried different

hypotheses.

59

Figure 22. Provenance graph view.

When an action occurs or the user selects a state, the tree layout changes such that

the currently selected node and its ancestor nodes are right-aligned. The remaining

nodes and branches are then aligned on the left side. Maximizing space for node

labels through layout and re-alignments addresses design Constraint 4 - Scalability.

4.3.2 Story Board View.

Reverse engineers communicate results with other engineers, managers, intelli-

gence analysts, and other interested stakeholders. Translating low-level findings into

60

high-level results for stakeholders can be problematic due to their differing goals and

technical expertise. These different perspectives can cause misunderstandings [33].

Presenting provenance information is a frequent challenge reported in visual an-

alytics studies [116, 117]. As provenance graphs grow in size with each captured

interaction, they become increasingly difficult to understand. Presenting the findings

through storytelling is therefore an effective strategy.

SensorRE presents a storyboard visualization allowing users to create a narrative

based on personalized annotations and captured analysis states. Annotations allow

users to record their thinking, providing semantically rich information. The story-

board view can also be used to prepare a post-analysis replay of captured provenance

data. Figure 23 displays the storyboard view loaded with a single state.

Figure 23. Story board view.

The menu panel along the top includes rewind, play, and fast forward buttons.

Selecting rewind navigates the story board to the state that directly precedes the

active state. Selecting play initiates an interactive session where the set of actions

loaded in the storyboard are played sequentially. Selecting fast forward advances the

active storyboard to a subsequent loaded state.

The duration that the application spends on each action can be modified by

selecting the bottom edge of the state and dragging, shown in Figure 24. By default,

each state is set to view for one second. The state duration is shown along the left

hand side of the vertical timeline in seconds. The transition duration between states

can be adjusted by selecting the top edge of a state and dragging, as shown in Figure

61

25. The default transition duration is zero seconds. The transition duration is shown

within each state in seconds. Modifying the state and transition duration creates a

more personalized story telling presentation of the findings.

Figure 24. SensorRE story board state duration change.

Figure 25. SensorRE story board transition duration change.

4.4 Usage Scenario

The functionality and effectiveness of SensorRE is described in a typical scenario

in which an analyst is attempting to solve a simple “crackme” binary by deducing the

embedded password. The provenance graph updates during the scenario are captured

in Figure 26.

An initialized provenance graph is displayed in Figure 26 (a). Next, the user

begins analyzing the binary by dissecting a high-level function. The user hypothesizes

62

F
ig

u
re

2
6
.

P
ro

v
e
n

a
n

c
e

g
ra

p
h

s
d

u
ri

n
g

u
sa

g
e

sc
e
n

a
ri

o
.

63

that the function handles user input and annotates the hypothesis by creating a

comment in the Binary Ninja application (“Comm: input fxn?”) and renaming the

function label (“Func: setup fxn()?”) (see Figure 26 [b]). Later in the analysis, the

user determines that the prior hypothesis was incorrect when they find the actual

setup function, so the user backtracks to the “View: Graph:PE” node (reverting

the previous actions) and modifies the actual function name appropriately. From

the setup function, the user also identifies and renames the main function (“Func:

main()”), where the program starts its execution.

Next, the user studies the strings in the binary (“View: Strings”) and identifies

an entry of interest with a comment annotation “Comm: password#1”. The user

navigates to the calling function using the string’s cross reference and examines how

the local variables are being used. The user hypothesizes that argument 1 contains

a yet-to-be determined data buffer and that argument 2 may be the password of

interest. Therefore, the user modifies the variable name labels corresponding with

the hypothesis, as depicted in Figure 26 (c). As the user continues to examine how

the arguments used by the function, the hypothesis is reconsidered. Argument 2 is

understood to be the size of the password buffer. Renaming the variable creates a

new primary branch in the provenance tree which records the alternate hypothesis

in-case the user wants to re-visit their analysis.

The analyst identifies that the password of interest is contained in argument 3

“Var: arg3–>password” and that the variable type is char* instead of the assembler

default type of int32 t. The final state of the usage scenario is depicted in Figure 26

(d).

At the end of the session, the user develops a story board to present the findings

to the stakeholders (Figure 27). Each action state along the main branch is added

to the story board in order. The user then adjusts the transition times between each

64

state to present the results in a clear manner, and adds customized annotations to the

specific views. Finally, the results are replayed with those stakeholders in a remote

or local setting.

Figure 27. Story board scenario results.

In the above example, the user started the analysis by investigating high-level

details in the reversing application. During the course of analysis, the user considered

several other aspects of the binary before forming the initial hypothesis action. This

corresponds to the user’s information interests. These interests vary over time as

the user gains familiarity with the piece of software. During the exploration process,

users’ evolving interests are captured in an action trails. The knowledge from the

65

analyst’s session is encoded as a network structure with nodes representing actions

and links representing associations among the actions.

4.5 Chapter Summary

This chapter presented SensorRE an analytic provenance tool supporting software

reverse engineers. The user needs study presented in Chapter 3 led to the development

of mission constraints for the system. Next, we discussed SensorRE’s overview in-

cluding its integration with an existing reverse engineering application, Binary Ninja.

The capture, replay, and communication modules were discussed using screenshots

and descriptions, as well as how these features were implemented. SensorRE’s prove-

nance graph and storyboard views are implemented in a web browser, making the

prototype lightweight and portable.

We ended the chapter by demonstrating SensorRE through an example usage

scenario. The user analyzed a “crackme” program while the prototype captured and

visualized their actions as provenance data. Then, the user then created a storyboard

of their actions and hypotheses.

This chapter addresses our second research question: How can an analytic prove-

nance tool be designed and developed to support software reverse engineers? This

encompasses Phase 3 of the dissertation. The next chapter describes user-centered

evaluations of the proof-of-concept SensorRE tool.

66

V. Evaluation

In the previous chapter, SensorRE was introduced as an analytic provenance tool

supporting the reverse engineers’ cognitive processes. SensorRE was designed to aid

recall, replication, collaboration, and presentation activities. This chapter addresses

the final research question: Is the analytic provenance prototype effective at supporting

software reverse engineers?

This chapter presents two studies evaluating the prototype with subject matter

experts and graduate students. Each participant is observed performing reverse engi-

neering tasks while screen capture and think-aloud data are collected. Survey results

from the participants are analyzed within their respective studies.

5.1 Study Design

As the first analytic provenance system for software reverse engineers, there is

no baseline to compare. Instead, the researchers examine the system’s usability and

its effect on the participants’ processes during a series of practical reversing tasks.

The participants were asked to reconstruct a program’s functionality by figuring out

how the program is structured from its assembly language representation and the

accompanying provenance graphs.

Since analytic provenance systems for reverse engineers have not been previously

developed, sensemaking research in the domain guided the selection of tasks. Bryant

[3] described how complex reverse engineering tasks (e.g., vulnerability analysis, mal-

ware analysis, or software protection) require significant domain knowledge which

limits what could be learned in a sensemaking study. Such tasks may have additional

concerns due to classification or legal restrictions. As such, the tasks selected for this

study were designed to highlight the impact of the provenance system.

67

We considered numerous studies evaluating provenance systems when defining our

specific tasks [5, 118, 119]. These studies explored characteristics of provenance sys-

tems during domain-specific challenges at different levels of detail. Concrete tasks

are well-defined, low-level operational tasks representative of typical actions that a

practitioner would perform. They mark an efficient method for evaluating the us-

ability of the interface. However, analyzing only concrete tasks are not sufficient for

understanding a user’s comprehension. Abstract tasks are discovery-focused and seek

to elicit high-level comprehension.

Participants were asked to complete both concrete and abstract tasks. Concrete

tasks were graded with a prepared answer key with only one correct answer per

question. In contrast, abstract tasks evaluated the higher-level understanding of the

scenario and therefore did not have binary right or wrong answers.

Before performing the studies, the researchers performed experimental process

reviews (including the tutorial and scenarios), and made revisions accordingly. To

minimize the risk of bias, we asked two reverse engineering professionals with an

average of 7 years of experience to inspect our approach. The experts provided

feedback on issues encountered and we made revisions accordingly. To reduce external

confounding factors, these tests used the same equipment and location.

5.2 Selection of Participants

Four subject matter experts participated in the study (listed in Table 3). Each

expert works in the field of software reverse engineering related to cybersecurity with

an average of 11 years of experience. Two of the participants were members of the

interviews for the user-centered elicitation process (Chapter 3). All experts identified

themselves as currently working within the federal government with prior experience

in the private sector ranging from three to 10 years.

68

Table 3. Expert reverse engineer participants demographic survey.

Participant Age Education Experience

E1 20-29 MSc 6-10 years
E2 30-39 PhD 11-15 years
E3 20-29 MSc 6-10 years
E4 40-49 MSc 16-20 years

Participants in the second study are listed in Table 4. Eleven university stu-

dents were recruited from Computer Science and Cyberspace Operations graduate

programs. We recruited only students who had successfully completed a graduate-

level software reverse engineering course. This ensured the students possessed the

minimum skills required [3, 19]. In the demographic survey, all participants reported

they were familiar with the reverse engineering process but lacked experience (i.e.,

they knew the concepts, but had not practiced outside of coursework).

Table 4. Graduate student participant demographic survey.

Participant Degree Education RE Experience

P1 Comp Sci PhD >5 years
P2 Comp Sci Masters <1 year
P3 CSO Masters <1 year
P4 CSO Masters 1-2 years
P5 CSO Masters 1-2 years
P6 CSO PhD <1 year
P7 Comp Sci Masters <1 year
P8 Comp Sci Masters <1 year
P9 Comp Sci Masters <1 year
P10 Comp Sci PhD <1 year
P11 CSO Masters <1 year

5.3 Apparatus and Materials

A desktop computer with Windows 10, a 19” LCD display, and standard pe-

ripheral devices (keyboard and mouse) was used for this study. The screen capture

69

software OBS: Open Broadcasting Software recorded user activities. The executable

was loaded into Binary Ninja v1.2.192 with an adjacent Chrome browser running the

provenance visualization.

A crackme program was selected for this study because they are available with a

free-use license. They also range in size and difficulty, with the tasks readily under-

standable and solvable within an hour. This choice of the dataset allows the researcher

to tailor the difficulty to the participants’ experience. White Rabbit is a level-2 dif-

ficulty crackme. The program was developed in C/C++ for the Windows operating

system. It is 6.7 MB in size, and has approximately 30,000 assembly instructions and

750 functions.

5.4 Procedure

The procedure for each user experiment is outlined in Figure 28. There were four

phases to both studies: 1) the experimental setup, 2) the training phase, 3) the task

observation phase, and 4) the post-study survey phase.

Figure 28. Phases of tool evaluation.

70

5.4.1 Experimental Setup.

In any experiment, properly controlled conditions are necessary to obtain reliable

results. A written protocol was followed describing the researcher’s actions during

each phase of the experiment. The protocol specifies how to introduce the users

to the experiment, provides instructions on setting up the workstation, and how to

interact with participants if they encounter an issue. This protocol ensured that the

experiments proceeded smoothly and consistently, reducing the likelihood of mishaps

that might affect user performance.

5.4.2 Training Phase.

The training session was designed to build the participants’ familiarity with the

tools before the evaluation. The protocol included a description of the motivations

driving the development of the tool, demonstrating Binary Ninja interface navigation,

and showing the participant a short video demonstration of the prototype. Partic-

ipants were provided as much time as necessary to complete the training and ask

questions. The training phase took approximately 10 minutes for each participants.

First, the researcher asked participants to read a brief background paper on vi-

sual analytics and provenance systems, shown in Appendix E. This ensured that all

participants possessed a basic understanding of provenance and the motivations for

the research.

Next, in a guided session with the researcher, participants were familiarized with

the basic operation of the Binary Ninja application. Participants were expected to

have prior experience with the IDA Pro disassembler in the x86 environment, but not

with Binary Ninja. Therefore, this training session was necessary to ensure that the

participants possessed a baseline level of knowledge with Binary Ninja needed to carry

out the tasks. Lastly, the participants were asked to watch a video demonstrating

71

the SensorRE tool during which they were instructed on how to interact with the

provenance graph and storyboard views.

All participants received identical training material to ensure uniformity. During

the training session, to ensure understanding, the participants were encouraged to

ask as many questions as they wanted.

5.4.3 Task Phase.

The users were given the task descriptions and the questions they needed to answer

in print form, refer to Appendix E. It should be noted that the scenarios described

below do not cover all possible use cases for analytic provenance systems in reverse

engineering. However, the scenarios presented are representative of the types of sup-

portive tasks applicable to the provenance prototype.

During the experiment, the facilitator actively listened to the concerns, challenges,

problems, and findings raised during the participants’ analysis. The facilitator initi-

ated a dialogue when the participants elicited verbal or non-verbal frustration (e.g.,

participants shaking their head or verbalizing “I’m stuck.”). The participants were

free to use any features of SensorRE and to ask questions during the scenarios.

The first scenario evaluated the tool’s support for validating collaborator findings.

It asked users to answer a set of questions based on an existing provenance graph de-

veloped by an imaginary colleague. The questions required the participant to inspect

the provided provenance graph for clues. The graph consisted of approximately 15

steps, including branches, that were captured during the colleague’s analysis. Partic-

ipants were encouraged to inspect the graphs and binary using Binary Ninja but not

to extend or modify them. After the participants submitted answers to the questions,

they were able to view the correct solutions to the tasks.

Scenario 2 evaluated the tool’s support for extending a collaborator’s analysis.

72

Participants were asked to complete the partial analysis from Scenario 1. The partic-

ipants were asked to identify the encryption routine and rename the calling function

(as opposed to the default naming scheme). The chosen name would be used to

communicate the functionality back to the original collaborator. As participants

completed this exploration task their findings were automatically recorded in the

provenance tool. There were no right or wrong answers to this abstract task.

In Scenario 3, participants present their results from Scenario 2 using SensorRE’s

storyboard. The participants selected the steps in the provenance graph visualiza-

tion and added them to the storyboard. The scenario was complete when the user

presented the facilitator with the finished product.

Since SensorRE is a prototype, software errors during the experiment were possi-

ble. Equipment or software failures during the experiment were mitigated by having

a virtual backup system in a standby state. If the study ends prematurely due to a

software error, the time for that task was restarted once the researcher sets the backup

system up for that specific task. If the subject’s participation ends prematurely, the

results up to that point were evaluated for potential inclusion in the data analysis.

5.4.4 Post-Study Survey Phase.

The post-study surveys assessed common usability study metrics such as learn-

ability, ease of use, useful features, features missing, and limitations to adoption. The

responses are meant to gather feedback on how to improve SensorRE in the future.

All participants were asked to answer the following survey questions:

1. What was particularly useful about the tool?

2. Do you think the tree diagram is a useful representation of the provenance

graph?

73

3. Are there other artifacts you would like to add to the provenance graph?

4. Are there any features missing?

5. Are there any limitations of the system which would hinder its adoption?

In addition to the open-ended textual responses, the graduate student participants

submitted usability feedback through questionnaires adapted from the Computer Sys-

tem Usability Questionnaire (CSUQ) [120]. The expert participants were asked to

provide qualitative feedback on SensorRE but were not given the usability question-

naire. The CSUQ contained the following five questions on a 7-point Likert scale in

Figure 29.

Figure 29. Likert-scale questionnaire.

74

5.5 Data Analysis

The participants’ think aloud data, recorded screen activities, and facilitator notes

were used to create a detailed timeline of the participants’ actions. The timeline is

the researchers interpretation and might not perfectly reflect the participant’s internal

reasoning process. The coded data was transcribed with a conscious effort to minimize

human bias. The resulting transcript represents the ground truth of each participant’s

actions during the experiment.

Data analysis in a mixed-methods design study consists of analyzing both qual-

itative and quantitative data. Based on a review of related research, this is the

approach that is most frequently used to evaluate provenance prototypes in other

domains [1, 5, 7, 121, 122, 123]. Qualitative data sources include the researcher’s

observations of verbal and non-verbal data during the problem-solving process, the

participants’ interactions with SensorRE recorded through screen capture, and open-

ended task and survey responses. Quantitative data sources include completion times

for each scenario, task errors, and Likert-scale scores from the post-study survey.

5.6 Results and Observations

5.6.1 User Study 1 - Experts.

During the interviews, each of the four experts agreed that the provenance view

helped them clearly see their analysis process. Experts found the real-time record-

ing and visualization of findings provided a quick, context rich view of data that is

otherwise masked in reversing applications. Expert 3 stated that action logging in

reversing applications is often very rudimentary, and commented that the visualiza-

tion and context of actions provided by SensorRE would be of immediate benefit.

The provenance graph view helped visualize their hypotheses, notes, and assertions.

75

Expert 1 said: “The ability to step through and replay the analysis of a binary is

extremely useful. Especially, when you can export a file of your analysis and share

it with someone else.” Expert 4 referred to the provenance graph as “a cleaner view

of my thinking process.” The expert commented that, he frequently navigates be-

tween multiple parts of a binary, occasionally resulting in getting “stuck down the

rabbit hole” and saw immediate potential in using SensorRE to reduce the burden of

mentally tracking each step.

The experts expressed confidence that the tool helped them to be more thorough,

systematic, and organized. Expert 2 noted that the graphical representation was a

great starting point to get an overview of the binary and to determine where analysis

might still be needed. The sequence in the provenance view was important, since it

represents the workflow. The expert wanted to rearrange, group together, and purge

certain states to create an optimum analysis workflow template. This was particularly

important since the expert has to frequently re-evaluate earlier hypotheses during the

course of analysis and didn’t want to overly clutter the visualization. Reducing the

quantity of visual artifacts in the provenance graph would improve system scalability.

Expert 3 liked the level of detail provided by the provenance graph because it helped

him quickly remember the context of his notes.

During the collaboration case, the experts loaded a saved provenance graph and

then navigated through the analysis, validating the results. The experts verbalized

details about how the collaborator analyzed the binary, as well as assessing the ac-

curacy of their findings. Experts 1 and 4 stated that they have to regularly audit

team members’ analyses, and complimented the system for its transparency and ease

of navigation. Expert 1 was compelled to share a previous experience with an al-

ternate collaboration tool which he tried out but found the tool integration lacking.

With SensorRE, the expert commented that he was able to quickly navigate between

76

collaborator’s analysis steps with no discernible slow-down or latency. Our findings

suggest that SensorRE aided the experts’ reconstruction of their thought process with

almost immediate benefit.

Towards the end of the interview, the experts suggested a few improvements to

the system. Expert 1 suggested that “more collaborative features should be added,”

expressing a lack of collaborative reverse engineering tools. The expert stressed that

collaborative tools are desperately needed for reverse engineering teams. He suggested

the development of a shared provenance graph between team members, so long as the

inputs are easily distinguishable. Expert 4 described the story board panel as “a nice

feature” but suggested adding annotations to each node for additional context.

The experts found the provenance display simple yet effective in providing prove-

nance data. However, several experts recommended adding scalability features. Ex-

perts 1 and 3 suggested a grouping feature for similar nodes (i.e., actions residing

within a single function) for space saving. Expert 2 recommended adding an input

string field for text searching. Other potentially beneficial features suggested included

semantic zooming or tagging in the provenance display for different analysis tasks.

How to design and implement such new features without making the interface overly

complex and reducing its usability is a challenging problem, and is left for future

work.

Overall, all four experts reported that they liked the tool and found it easy to use.

The experts also stated they would consider using it their workplace, and one asked

us after the study when the tool would be released for use.

5.6.2 User Study 2 - Graduate Students.

Analysis Tasks. The researcher’s focused on the accuracy of the task, how many

queries were viewed, and how quickly the participants resolved each task. Tables 5

77

6 report the observed metrics from each participant. Most of the participants com-

pleted the exploration tasks, correctly identifying the relevant functions and forming

a general understanding of the program. From the experiments, the researchers drew

a few key observations.

Table 5. Observed results of the user study.

P1 P2 P3 P4 P5

Scenario 1 Accuracy 100% 50% 100% 0% 100%
Time Taken 18:13 15:40 16:26 20:32 17:10
Number of queries 18 10 11 15 7

Scenario 2 Time Taken 7:35 8:39 10:20 10:41 9:47

Scenario 3 Time Taken 6:21 4:50 5:42 7:18 4:30

Table 6. Observed results of the user study (continued).

P6 P7 P8 P9 P10 P11

Scenario 1 Accuracy 100% 100% 0% 100% 50% 100%
Time Taken 18:08 16:22 18:50 12:18 16:27 15:41
Number of queries 12 16 22 12 10 15

Scenario 2 Time Taken 14:28 12:24 18:28 8:29 9:11 8:24

Scenario 3 Time Taken 4:52 4:27 5:15 5:04 6:12 5:48

In scenario 1, three participants (P1, P4, P8) began their exploration by using

Binary Ninja to search for the functions of interest. The remaining eight participants

went directly to the provenance graph to trace the results of the fictional collaborator,

resulting in slightly faster completion times. These participants used the graph to

review the embedded hypotheses and their relative connections within the binary.

Four participants (P2, P4, P8, P10) incorrectly answered at least one of the concrete

tasks; however, their poor accuracy on the concrete, graded tasks did not impede their

completion of the abstract tasks. Multiple participants commented on the immediate

benefits provided by SensorRE:

78

Making connections between my findings is the most difficult part. It was

great to be able to visualize all of my changes step by step - it clearly shows

the thought process of the engineer. (P8)

It is usually difficult to connect current information to what I read previ-

ously. There is just too much data to sort through. Displaying the history

of either my own analysis or someone else’s is really useful. It helps me

switch back and forth and piece together the story. (P1)

During scenario 2, three of the participants (P4, P6, P8) reported that they did

not know where to begin resulting in relatively slower performance. The remaining

eight participants correctly identified the software function and completed the task

without assistance. The strategy eventually used by all participants was Shneider-

man’s InfoVis mantra: “overview first, filter, and detail on demand” [124]. When

examining the performance of those who did well, we found they spent more time

reading the task description and organizing information before exploring the binary.

Following the experiment, participants reported how reviewing the provenance graph

improved their sensemaking.

Exploring the provenance graph was really helpful. At first, I started looking at

each item in sequence starting from the first element, but at some point I jumped

around to the ‘comment’ nodes, and found those were much more helpful to make

sense of the binary. The overall list of findings helped me organize what parts of the

binary were responsible for different activities and complete the task quickly. (P9)

Multiple participants noted the usefulness of the provenance graph when assessing

new information. Those participants who initially attempted to figure out the task

without the assistance of SensorRE completed the task, but were more frustrated:

I find that I’m always trying to manage too much information when reversing.

79

Working through a binary, I have to keep revisiting previous points because I need to

understand how these pieces work together. It can be really easy to get off track and

lose focus. (P11)

In scenario 3, the participants constructed a presentation of their results using

SensorRE’s storyboard view. They selected the steps in the provenance graph and

added them to the view. All participants correctly used the storyboard to present

their results. P3 remarked during the scenario that the feature was “very useful for

creating a coherent flow of logic.”

Survey Results. Figure 30 displays the results of the 7-point Likert-scale ques-

tionnaire. There were nearly universal positive opinions about the usefulness of Sen-

sorRE for understanding the provenance of existing analyses. Ninety percent of the

participants agreed or strongly agreed that the tool was easy for them to use. Un-

fortunately, during P1’s experiment, an anomaly during setup required restarting the

scenario resulting in a relatively low usability rating on Q1 (4 - Neutral). However, all

of the participants strongly agreed that SensorRE was easy to learn, improved pro-

cesses, and could improve the validation of collaborators’ findings. In addition, 72%

found the prototype would improve the communication of findings among teams. P4

stated, “the provenance graph makes it easy to quickly assess where you or someone

else is in their analysis,” and “the interface is simple (not too distracting or busy),

as well as intuitive to use.“ At the conclusion of the experiment, eight of the par-

ticipants expressed that SensorRE would have really helped them in their graduate

reverse engineering course studies.

As a proof of concept, SensorRE can still be improved. Participant P1 experienced

a software malfunction that required restarting the scenario. As such, P1’s feedback

described the need for improving Binary Ninja integration. Another participant (P3)

stated that the visualization lacked certain features, such as time-stamps and user-

80

Figure 30. The average ratings (marked X) for the Likert-scale questions (1 - Strongly
disagree, 7 - Strongly agree).

selected labels for nodes. Three participants (P7, P10, P11) also felt the asynchronous

design could prove difficult for multiple users collaborating in parallel.

5.7 Limitations and Threats to Validity

Designing empirical studies to evaluate program comprehension tools is a challeng-

ing endeavor. There is tension between evaluating the tool in the users’ traditional

work setting and the desire to test in a controlled environment. Due to security con-

cerns with the experts’ work location, we were required to perform the experiment

off-site.

Iterative design. The software development life-cycle in an industrial or commer-

cial context typically requires multiple iterations on the design and implementation

with users to meet their objectives. To the extent possible during development, we

solicited feedback on the tool by both subject matter experts in reverse engineering,

and human factors researchers.

External validity. The subject’s participation in the experiment is entirely volun-

81

tary among the participant pools. Although using students for empirical studies is

standard practice [125, 126], this can affect the generalizability of the experiment to

other populations. This threat was mitigated by including experts in the evaluation.

Internal validity. An internal threat to validity is that participants are aware of

the researchers’ observations at all times, which may introduce a Hawthorne effect

[127]. This occurs when participants improve or modify an aspect of their behavior

simply because they know they are being studied. We attempt to mitigate this threat

through the introductory protocol, establishing the tool and not the user as the focus

of the study.

5.8 Chapter Summary

This chapter detailed the results of two studies testing the efficacy of the Sen-

sorRE tool with expert and graduate student reverse engineers. All participants

found the visual representation and interaction with the tool intuitive to use. Sen-

sorRE helped the participants organize findings, quickly navigate to the provenance

data they wanted, and effectively communicate their findings.

This chapter concludes the last phase of our research, answering the final question:

Is the developed analytic provenance tool effective at supporting software reverse engi-

neers? The next chapter summarizes the contributions of this dissertation, discusses

the implications, presents future research directions.

82

VI. Conclusions

Reverse engineering is a cognitively challenging activity involving reconstruct-

ing assembly instructions into meaningful representations. Whereas high-level pro-

gramming languages have expressive representations (e.g., variable names, functions,

classes, and objects), in assembly these representations are stripped during the com-

pilation process. Further complicating the analysis process is the large volume of

assembly code in software binaries. Even experienced reverse engineers may face

difficulty reversing given the sheer amount of data.

This dissertation developed and evaluated a fully functional analytic provenance

tool supporting the cognitive processes of reverse engineers. Two studies confirmed

the efficacy of the tool through qualitative analysis of the post-study survey data.

Overall, this research confirmed the hypothesis that an analytic provenance tool offers

cognitive support reverse engineers during exploration, collaboration, and presenta-

tion tasks. This chapter summarizes the research contributions, discusses implications

and lessons learned, and concludes with a presentation of future research opportuni-

ties.

6.1 Research Contributions

Chapter 3 presented a case study that explored the visualization problem space

with experienced reverse engineers. The study investigated the current visualization

needs, tools, timelines, and collaboration needs through semi-structured interviews.

By doing so, it identified a current capability gap in binary exploration: lack of

workflow support. When reverse engineers analyze a complex binary, they need to

organize their findings, hypotheses, and evidence. They also need to share that

information with their collaborators, and coordinate activities among team members.

83

The interviewed participants currently document their results through screenshots

and raw notes. Static images, however, cannot convey information about the explo-

ration process. New tools should not just communicate results, but also describe

how these results were derived. Given the separation of tools, it is inefficient for the

engineer to work back from an artifact being developed for presentation to the explo-

ration stage. The lack of a back-link from the results to the exploration stage and the

underlying data makes it difficult to reproduce and verify the findings explained in a

report and to extend an exploration to make new discoveries. Based on the interview

data, analytic provenance techniques were explored to address these problems.

Chapter 4 contributes a novel analytic provenance tool for software reverse engi-

neers, SensorRE. SensorRE provides facilities to capture, store, use, and share reverse

engineering provenance data for a given binary. The visualization uses a tree layout

that maintains branches for previously failed hypotheses. It also provides for fluid

interaction with the Binary Ninja reverse engineering platform, supporting users in

performing various sensemaking activities.

Chapter 5 contributes a user-centered methodology for evaluating the SensorRE

tool. The evaluation focuses on the tool’s support for validating and extending col-

laborator findings, reducing repetitive analyses, and presenting findings. SensorRE

helped the participants organize their workflow, quickly navigate to the provenance

data they wanted, and effectively communicate their findings.

6.2 Implications and Lessons Learned

SensorRE was designed with the goal of improving reverse engineers’ access to

provenance data. However, SensorRE is still in its infancy with much to be explored.

The participants provided valuable feedback on the effectiveness of our prototype

and how it could be further improved. This section discusses implications and lessons

84

learned to aid future researchers.

6.2.1 Tool Integration.

Integrating independently developed tools is a challenging endeavor. Developers

must assess the degree of integration required as well as the tools’ automated scripting

potential. For reverse engineering tools such as the ones described in this research,

the following patterns provide strong return on investment:

Modularity: SensorRE is modularly developed, separating the visualization from

the messaging and application components. This early design decision allowed for

iterative development in each component area, while reducing overall complexity.

To investigate our research goals efficiently we leveraged an existing reversing

analysis tool instead of developing our own. Ideally the provenance visualizations

could be fully integrated into the reversing platform to further reduce the impact

on the user’s workflow. Unfortunately, reversing platforms are highly-specialized

tools currently limited in their graphing capabilities. We briefly explored developing

the provenance visualization as a stand-alone application (e.g., OpenGL). This idea

was dismissed because deploying a new application into the users’ existing workflow

becomes more complex and risks lowering the adoptability of the tool [128].

Common API: Among static reversing platforms including IDA Pro and Ghidra,

Binary Ninja stood out as the leader in accessible API control and automation. While

similar solutions may be possible with other applications, the same level of user

provenance data is not readily available. Common APIs enable access to shared

data. Applications with restricted or negligible APIs would hinder tool developers.

SensorRE’s design is specific to static analysis provenance data. Extending the

system to other reversing techniques may be possible. For example, visualized prove-

nance data collected during dynamic analysis may prove possible for future develop-

85

ment.

6.2.2 Challenges Building Tools.

Visual analytic tool building is a complex design activity. A critical success factor

is creating visual and interaction models that fit the users’ mental map. Examining

interactions with the visualization is not sufficient to comprehend the user’s intent

[80]. Characterizing user goals and tasks should be considered as a part of the study:

examining why a user executed a task, the purpose of the task, and how the user

executed it. Future research could categorize reverse engineering tasks into patterns

for cognitive analysis mapping.

Lightweight systems are considerably simpler to build, deploy, and use. When vi-

sualization requirements increase, so do the requirements of the input capture. Several

iterations of the GUI design were explored prior to selecting the node-link layout com-

mon in other provenance applications [6, 5, 7]. In examining exiting toolkits, Visual

Storytelling emerged in ease of use, flexibility, and layout quality. While originally

developed for tracking provenance in web applications, its design allowed for exter-

nally provided provenance data. The researchers developed the modules necessary

to support bi-directional links with the reversing application. The following points

highlight some of the difficulties encountered:

Visual clutter: Graphs are often used for representing software structures such

as functions, data types, and subsystems. However, as the complexity of software

systems increase, so too does the visual clutter. Tools should quickly and succinctly

answer the user’s questions to speed up the process of program comprehension. The

SensorRE prototype adopted a minimalist design to reduce interface complexity, es-

pecially when multiple branches were opened. Some participants commented that

the level of information shown was helpful. They could easily see an overview of

86

the analysis while hiding irrelevant branch data. For future work, we plan to add

additional features to reduce clutter including filtering, dynamic search, and visual

markers for nodes.

Visual scalability: We addressed scalability in the design of the tool in several

ways. We created a visually scalable solution by supporting vertical scrolling, hiding

labels in non-active branches, and by re-aligning trees based on the user’s selection.

While the examples exhibit a small number of nodes, there are circumstances in which

the number is much higher. Scalable solutions are still a challenge in visual analytics

research [10]. A potential solution could be to incorporate a hierarchical arrangement

of nodes while providing the means to collapse or expand parts according to the user’s

needs.

6.2.3 Evaluating Provenance Tools.

Provenance tools can be benchmarked through user studies by comparing tools

against each other [129, 130], or measuring its usability [73]. Since SensorRE is

the first reverse engineering provenance tool there were no systems to compare it to.

Instead, we evaluated the system through usability metrics. Certain reverse engineer-

ing specialties, such as malware analysts, benefit extensively from knowledge gained

through their interactions and annotations [53]. By providing a general provenance

tool, the externalized knowledge can be studied to improve user performance among

multiple specialties.

In highly-studied provenance domains, technical performance in user tasks (e.g.,

speed or accuracy) can be compared between systems using standard datasets. How-

ever, in reverse engineering, standard datasets are lacking [3, 23]. Measuring the tool’s

usefulness is helpful but complex since usefulness is highly context specific and prone

to bias [2]. Therefore, research into standardized datasets for the reverse engineering

87

domain should be investigated.

6.3 Future Work

This research showed that analytic provenance tools can effectively support reverse

engineers’ sensemaking process. We suggest the following future research directions

to have a high impact supporting reverse engineers through analytic provenance:

• Analyzing provenance histories may not only be used to communicate findings

but to serve as a training aid or performance-critiquing tool to identify efficient

lines of reasoning. Provenance histories may contribute to our understanding of

common analysis patterns. Larger-scale analysis of these patterns may improve

our understanding of the sensemaking process and suggest enhanced interface

designs supporting the domain. With a large corpus of history data, machine

learning approaches may be useful in identifying optimal analysis paths for the

human reverse engineer working with unknown binaries.

• SensorRE captures all user actions in real time, but what if the sensemaking

actions could be predicted before they are completed? Machine learning ap-

proaches may prove useful in identifying optimal analysis paths in unknown

binaries. This could significantly improve the reverse engineering landscape by

leveraging automation to improve the human-computer interface.

• The evaluation of SensorRE only scratches the surface for collaborative com-

munication among analysts. Further research is needed to explore the rich

context of the reverse engineers’ sensemaking process and how they collaborate

in teams. Analysis patterns may reveal cognitive profiles that could be useful for

team selection, bringing together analysts with different styles to complement

each other when put together as a unit.

88

• The collaboration method provided by SensorRE is asynchronous. However,

the system could be further expanded to support synchronous collaboration,

wherein the user’s analysis is automatically updated to a live database for shar-

ing with other users. Further research could examine synchronous communica-

tion approaches closely and potentially merge the capability into the existing

provenance tool.

• Binary Ninja provided an ideal platform for interface development due to its

powerful and flexible API. However, there are a variety of other popular reverse

engineering platforms such as IDA Pro, Radare 2.0, and Ghidra. Developing

modules supporting these platforms should attract more research effort.

• Although the SensorRE provenance graph and story board views support mul-

tiple detail levels, the design and implementation of a truly scalable provenance

visualization was not the main focus here and is therefore open for future re-

search.

6.4 Closing Remarks

Software reverse engineers are more in demand now than ever before. New cog-

nitive assistance tools are needed to rapidly train and support these engineers to

counter growing malicious threats. This research presented SensorRE, the first ana-

lytic provenance system designed for software reverse engineers. A user needs study

with subject matter experts helped shape the design and implementation details of

the system. The resulting prototype automatically captures, manages, and visual-

izes reverse engineering provenance data in a common disassembly tool. Combining

the quantitative and qualitative results from both experts and graduate student user

studies revealed that all participants found the prototype easy to use. The system

89

helped the participants organize their workflow, quickly navigate to the provenance

data they wanted, and effectively communicate their findings.

Analyzing provenance histories can contribute to our understanding of common

analysis patterns and foster the creation of enhanced interface designs. Provenance

histories may also prove useful as a training aide or performance critiquing tool to

identify efficient lines of reasoning. SensorRE has the potential to provide a new and

powerful approach for supporting reverse engineers.

90

Appendix A. Request for Human Experimentation

7 Aug 2018

MEMORANDUM FOR AFIT EXEMPT DETERMINATION OFFICIAL

FROM: AFIT/ENG
2950 Hobson Way
Wright Patterson AFB OH 45433-7765

SUBJECT: Request for exemption from human experimentation requirements
(32 CFR 219, DoDD 3216.2 and AFI 40-402) for Requirements Elicitation in
Software Reverse Engineering

1. The purpose of this study is to gain a better understanding of the soft-
ware reverse engineering environment and work practices to inform the design of a
future visualization tool. We are trying to learn more about the typical workflow
in their environment. This information will be useful in designing better reverse
engineering tools or visualizations that address current needs of reverse engineers.
The results are intended to be published in peer-reviewed venues as well as in the
doctoral dissertation.

2. This request is based on the Code of Federal Regulations, title 32, part
219, section 101, paragraph (b)(2) Research activities that involve the use of
educational tests (cognitive, diagnostic, aptitude, achievement), survey procedures,
interview procedures, or observation of public behavior unless: (i) Information
obtained is recorded in such a manner that human subjects can be identified, directly
or through identifiers linked to the subjects; and (ii) Any disclosure of the human
subjects’ responses outside the research could reasonably place the subjects at risk
of criminal or civil liability or be damaging to the subjects’ financial standing,
employability, or reputation.

3. The following information is provided to show cause for such an exemp-
tion:

a) Equipment and facilities: The equipment for this study will include a personal
laptop and audio recording of the subject’s responses for analysis by the researcher.
The interviews will take place in person at the Air Force Institute of Technology in
a pre-reserved conference room.

b) Subjects: The requirements elicitation interview will consist of up to 15
volunteers solicited by the researcher. The target population have existing voluntary
activities collaborating with AFIT researchers and are under no internal or external

91

pressure to participate. Participants may include a mix of active duty military, DoD
civilians, and potentially DoD contractors. Subjects are expected to vary in skill
level from journeyman (two to five years) up to subject matter experts (typically
five to seven years). Subjects with fewer than two years of hands-on experience in
reverse engineering will be excluded.

Factors such as age, sex, race, or job designation will not be used to include or
exclude candidates.

c) Timeframe: The study will be conducted over the period of two months (not
including data analysis). Individual interview sessions are expected to be between
one to two hours. After two hours, the interview session will be terminated.

d) Data collected: Demographic data will be collected including the subject’s
educational background and experience in the reverse engineering domain. This
information will only be used to outline potential sources of bias or excluding criteria
in the research.

I understand that any names and associated data I collect must be protected at all
times, only be known to the researchers, and managed according to AFIT interview
protocol. All interview data will only be handled by the following researchers: Major
Wayne Henry, Dr. Gilbert Peterson. At the conclusion of the study, all data will be
turned over to Dr. Peterson and all other copies will be destroyed.

Research data will include audio and written recordings of each participant as he
or she responds to the interview. The interview protocol is attached.

e) Risks to subjects: The risk to subjects includes the potential accidental
disclosure of collected data on their background and experience. Steps will be taken
to protect the subject’s identity including masking participants’ names and avoiding
reference to their specific organization. The data will not provide any other purpose
besides establishing the subject’s experience in the target domain. If the participant
inadvertently releases personally identifiable information during the interview, it will
be sanitized by the researcher.

f) Informed consent: All subjects will be self-selected to volunteer to participate
in the interview. No adverse action is taken against those who choose not to
participate. Subjects are made aware of the nature and purpose of the research,
sponsors of the research, and disposition of the results. A copy of the Privacy Act
Statement of 1974 is presented for their review.

g) Adverse Impact: If a subject’s future response reasonably places them at risk
of criminal or civil liability or is damaging to their financial standing, employability

92

or reputation, I understand that I am required to immediately file an adverse event
report with the IRB office.

4. If you have any questions about this request, please contact Major Wayne
Henry – Phone 785-3636, ext. 6146; E-mail – wayne.henry@afit.edu.

//SIGNED//
GILBERT L. PETERSON, Ph.D.
Faculty Advisor, AFIT/ENG
Principal Investigator

//SIGNED//
WAYNE C. HENRY, Major, USAF
Graduate Student, AFIT/ENG

Attachments: 1. Interview Protocol

93

Appendix B. User Needs Survey Interview Protocol

Interview Protocol

Investigator: Maj Wayne Henry, AFIT/ENG
Date:

Introduction:
Hello, my name is Maj Wayne “Chris” Henry. This research is related to

doctoral work at the Air Force Institute of Technology’s Department of Electrical
and Computer Engineering.

You have been selected to speak with us today because you have been identified
as someone with working knowledge in the field of software reverse engineering in the
security field. This interview will focus on gaining a better understanding of your
environment and work practices. Our study does not aim to evaluate your specific
techniques or any protected information. Instead, we are trying to learn more about
the workflow to better understand the processes used by reverse engineers in a
security setting. This information will be useful to inform the design of a future
visualization capability.

To facilitate our note-taking, we would like to audio record our conversations
today. Your information will be held confidential and you may stop at any time
you feel uncomfortable with the question. Given the security environment where
you work, if at any time you feel you cannot answer the question without revealing
classified information, please refrain from answering.

We have planned this interview to last approximately one to two hours. During
this time, we have several questions that we would like to cover. If you need a break,
please let me know and we will take a 10- minute break. If time begins to run short,
it may be necessary to interrupt you in order to push ahead and complete the line of
questioning. Thank you for agreeing to participate.

Interview Questions

1. Interviewee Background:

(a) How long have you been practicing software reverse engineering?

(b) What is your highest degree?

(c) What is your field of study?

(d) How would you rate your skill level in software reverse engineering?

94

2. General Program Understanding:

(a) Can you describe your typical reverse engineering workflow focusing on
key decision points you make in your analysis?

(b) What questions are you trying to satisfy?

(c) What are your goals?

(d) What key characteristics are you looking for in the binary?

3. Tools:

(a) What tools do you regularly use (primary and secondary)?

(b) Do you use program summary tools (API Monitor, CFF Explorer, BinDiff,
Lighthouse) in your workflow?

(c) What do you consider the best features about these tools?

(d) What deficiencies or challenges do you have with tools you commonly use?

(e) What tools are most needed? (wish list)

4. Visualizations:

(a) What visualizations do you regularly use?

(b) How do they help to solve current tasks?

(c) What visualization features are most useful?

(d) What deficiencies or challenges do you have with current visualizations?
(worst features)

(e) Where are visualizations most needed? (wish list)

(f) What phase of the workflow?

(g) What challenges or usage barriers exist for visualization tools in reverse
engineering? (adoption)

(h) Are visualizations more useful for novices than experts? (limitations)

5. Time constraints:

(a) How important are time constraints in your analysis?

(b) What impact does available time have on your processes or workflow?

(c) How much time does a typical assessment take?

(d) How long does an initial assessment require? What do you look for?

6. Results and Collaboration:

(a) What products are created from your analysis (reports, other programs,
etc.)?

95

(b) How important is collaboration in reverse engineering?

(c) What is the size of a typical team?

(d) What artifacts or resources are common for transferring knowledge be-
tween the team?

(e) What impediments to collaboration exist in the environment?

96

Appendix C. Ethics Approval - User Needs Survey

This appendix provides the approval for the exemption request for human experi-

mentation requirements protocol number REN2018031R from the Air Force Institute

of Technology. The study was approved on 31 August, 2018.

97

DEPARTMENT OF THE AIR FORCE
AIR FORCE INSTITUTE OF TECHNOLOGY

WRIGHT-PATTERSON AIR FORCE BASE OHIO

31 August 2018

MEMORANDUM FOR GILBERT L. PETERSON, PHD

FROM: William A. Cunningham, Ph.D.
 AFIT IRB Research Reviewer
 2950 Hobson Way
 Wright-Patterson AFB, OH 45433-7765

SUBJECT: Approval for exemption request from human experimentation requirements (32 CFR
219, DoDD 3216.2 and AFI 40-402) for your study on Requirements Elicitation in Software Reverse

Engineering, package number REN2018031R Peterson.

1. Your request was based on the Code of Federal Regulations, title 32, part 219, section 101,
paragraph (b) (2) Research activities that involve the use of educational tests (cognitive,
diagnostic, aptitude, achievement), survey procedures, interview procedures, or observation of
public behavior unless: (i) Information obtained is recorded in such a manner that human
subjects can be identified, directly or through identifiers linked to the subjects; and (ii) Any
disclosure of the human subjects’ responses outside the research could reasonably place the
subjects at risk of criminal or civil liability or be damaging to the subjects’ financial standing,
employability, or reputation.

2. Your study qualifies for this exemption because you are not collecting sensitive data, which
could reasonably damage the subjects’ financial standing, employability, or reputation. Further,
the demographic data you are utilizing and the way that you plan to report it cannot realistically
be expected to map a given response to a specific subject.

3. This determination pertains only to the Federal, Department of Defense, and Air Force
regulations that govern the use of human subjects in research. Further, if a subject’s future
response reasonably places them at risk of criminal or civil liability or is damaging to their
financial standing, employability, or reputation, you are required to file an adverse event report
with this office immediately.

 WILLIAM A CUNNINGHAM, PH.D.
 AFIT Exempt Determination Official

Appendix D. Software Listings

Binary Ninja Plugin - autocollect.py

1 Copyright 2020 Wayne C. Henry

2

3 Licensed under the Apache License , Vers ion 2 .0 (the "License") ; you may

not use this f i l e except in compliance with the L icense . You may

obta in a copy o f the L icense at

4

5 http : //www.apache.org/licenses/LICENSE -2.0

6

7 Unless r equ i r ed by a p p l i c a b l e law or agreed to in wri t ing , so f tware

d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an "AS IS" BASIS ,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or

impl i ed . See the L icense f o r the s p e c i f i c language governing

permi s s i ons and l i m i t a t i o n s under the L icense .

8

9 import thread ing

10 import sys

11 import gc

12 import os , sys

13 import b ina ryn in ja as bn

14 import ctypes

15 import j s on

16 from b inaryn in ja import s c r i p t i n g p r o v i d e r

17 import t e m p f i l e

18 import time

19 import d i f f l i b

20 from c o l l e c t i o n s import d e f a u l t d i c t , OrderedDict

21 import c o l l e c t i o n s

22

23 cur rent addr = 0x401000

99

24 cur r ent v i ew = "Graph:PE"

25 v a r s t a t e = None

26 func name = None

27 comment state = None

28 h i g h l i g h t s t a t e = None

29 d a t a s t a t e = None

30 d i c t f u n c s = None

31 func type = None

32 event func2 = time . time ()

33

34 de f s e r i a l i z e (obj) :

35 """JSON serializer for objects not serializable by default json code

"""

36

37 return obj . d i c t

38

39 de f printJSONFile (data) :

40

41 f u l l p a t h = "jsondata.json"

42

43 json dump = json . dumps(data , s o r t k e y s=True)

44

45 try :

46 j f = open (fu l l p a th , "a+")

47 j f . wr i t e (json dump + "\n")

48 j f . c l o s e ()

49 except IOError :

50 p r i n t ("ERROR: Unable to open/write to {}" . format (f u l l p a t h))

51 return

52

53 class OrderedSet (c o l l e c t i o n s . Set) :

54 de f i n i t (s e l f , i t e r a b l e =()) :

100

55 s e l f . d = c o l l e c t i o n s . OrderedDict . fromkeys (i t e r a b l e)

56 de f l e n (s e l f) :

57 return l en (s e l f . d)

58 de f c o n t a i n s (s e l f , e lement) :

59 return element in s e l f . d

60 de f i t e r (s e l f) :

61 return i t e r (s e l f . d)

62

63 de f type lookup (var type) :

64 t y p e l i s t = [’int16_t’ , ’int24_t’ , ’int32_t’ , ’char’ , ’void’ , ’

uint16_t’ ,’uint24_t’ ,’uint32_t’ ,

65 ’float8’ ,’float16’ ,’float24’ ,’float’ , ’double’ ,’float72’ ,’long

double’ ,

66 ’void*’ ,’void* const’ ,’void* volatile’ ,’void&’ ,’int32_t*’]

67

68 i f (t y p e l i s t . count (var type) > 0) :

69 p r i n t ("found var: {}" . format (var type))

70 return True

71 else :

72 return False

73

74

75 de f setValue (bip , bv) :

76 g l o b a l current addr , selChanged , current v iew , va r s t a t e , func name ,

comment state , h i g h l i g h t s t a t e , da ta s ta t e , d i c t f u n c s ,

func type

77 valueChanged = current addr != bip . cur rent addr

78 i f (valueChanged) :

79 p r i n t ("valueChanged")

80 update ns (bip , bv)

81 cur rent addr = bip . cur rent addr

82 cur r ent v i ew = bv . f i l e . view

101

83 try :

84 i f (bv . f i l e . view == "Graph:PE" or bv . f i l e . view == "Linear:PE") :

85 v a r s t a t e = bip . c u r r e n t f u n c . vars

86 func name = bip . c u r r e n t f u n c . symbol . name

87 func type = bip . c u r r e n t f u n c . r e tu rn type

88 comment state = bip . c u r r e n t f u n c . comments

89 h i g h l i g h t s t a t e = bip . c u r r e n t f u n c . g e t i n s t r h i g h l i g h t (

cur rent addr)

90 d i c t f u n c s = func type s (bv)

91

92 i f (bv . f i l e . view == "Hex:PE") :

93 d a t a s t a t e = bv . read (bip . current addr , 1)

94 except Exception as e :

95 p r i n t ("Found setValue exception {}" . format (e))

96

97 de f update ns (bip , bv) :

98 """Updates the namespace of the running kernel with the binja magic

variables"""

99

100 g l o b a l current addr , cur r ent v i ew

101

102 p r i n t ("[*] Printing view updates!")

103 cur rent addr = hex (i n t (bip . cur rent addr))

104 cur r ent v i ew = bv . f i l e . view

105

106 return

107

108 de f func type s (bv) :

109 s = []

110 tup master = ()

111 f o r func in bv . f u n c t i o n s :

112 tup temp = (s t r (func) [11 : −1] , s t r (func . r e tu rn type))

102

113 s . append (tup temp)

114 tup temp2 = (s t r (func) [11 : −1] , s t r (func . name))

115 s . append (tup temp2)

116

117 d = d e f a u l t d i c t (l i s t)

118 f o r k , v in s :

119 d [k] . append (v)

120 return d

121

122 de f d i f f f u n c t y p e s (a , b) :

123 # Change function type

124 address = 0

125 d i f f c h a n g e = 0

126 s e t d i f f = None

127

128 f o r i in a :

129 d i f f = s e t (a [i]) − s e t (b [i])

130 i f (l en (d i f f) > 0) :

131 address = i

132 d i f f c h a n g e = d i f f

133 s e t d i f f = s e t (a [i])

134

135 return address , d i f f chan ge , s e t d i f f

136

137 de f s ta r t watch (bv) :

138

139 obj = [o f o r o in gc . g e t o b j e c t s () i f i s i n s t a n c e (o ,

s c r i p t i n g p r o v i d e r . PythonScr ipt ingIns tance . Inte rpre te rThread)]

140 i f l en (obj) == 1 :

141 bip = obj [0]

142 else :

143 r a i s e Exception ("Couldn’t find scriptingprovider. Sure you are

103

in the right kernel?")

144

145 setValue (bip , bv)

146 thread ing . Timer (1 , s tar t watch , [bv]) . s t a r t ()

147

148 de f func updated (bv , function) :

149 g l o b a l eventfunc2 , va r s t a t e , current addr , func name , comment state

, h i g h l i g h t s t a t e , d i c t f u n c s

150 data = OrderedDict ()

151 temp name = 0

152 temp type = 0

153

154 try :

155 i f (event func2 + 1 < time . time ()) :

156 #Check f o r var name c o l l i s i o n

157 i f (s t r (bv . g e t f u n c t i o n s c o n t a i n i n g (cur rent addr) [0]) != s t r

(function)) :

158 v a r s t a t e = function . vars

159

160 # Local Var name/ type change

161 f o r item , var in enumerate (v a r s t a t e) :

162 i f (s t r (v a r s t a t e [item] . name) != s t r (function . vars [item

] . name)) and temp name == 0 :

163 p r i n t ("[] Name change: {} {}" . format (function . vars [

item] . name , item))

164 var type new , var name new , index = function . vars [

item] . type , function . vars [item] . name , item

165 var type o ld , var name old = v a r s t a t e [item] . type ,

v a r s t a t e [item] . name

166 temp name = 1

167 i f (s t r (v a r s t a t e [item] . type) != s t r (function . vars [item

] . type)) and temp type == 0 :

104

168 p r i n t ("[] Type change: {} {}" . format (function . vars [

item] . type , item))

169 var type new , var name new , index = function . vars [

item] . type , function . vars [item] . name , item

170 var type o ld , var name old = v a r s t a t e [item] . type ,

v a r s t a t e [item] . name

171 temp type = 1

172

173 # Local Var name/ type change

174 i f (temp name == 1 and temp type == 1) :

175 p r i n t ("[*] Var_Updated: func:{} func_addr:{}

var_name_new:{} var_type_new:{} var_name_old:{}

var_type_old:{}"

176 . format (function . symbol . name , s t r (function)

[11 : −1] , var name new , var type new ,

var name old , v a r t y p e o l d))

177 data = {

178 ’type’ : ’var_updated’ ,

179 ’function’ : s t r (function . symbol . name) ,

180 ’func_addr’ : s t r (function) [11 : −1] ,

181 ’var_name_new’ : s t r (var name new) ,

182 ’var_type_new’ : s t r (var type new) ,

183 ’var_name_old’ : s t r (var name old) ,

184 ’var_type_old’ : s t r (v a r t y p e o l d) ,

185 ’index’ : s t r (index) ,

186 ’view’ : cu r r ent v i ew

187 }

188 printJSONFile (data)

189 e l i f temp type == 1 :

190 data = {

191 ’type’ : ’var_type_updated’ ,

192 ’function’ : s t r (function . symbol . name) ,

105

193 ’func_addr’ : s t r (function) [11 : −1] ,

194 ’var_name_new’ : s t r (var name new) ,

195 ’var_type_new’ : s t r (var type new) ,

196 ’var_name_old’ : s t r (var name old) ,

197 ’var_type_old’ : s t r (v a r t y p e o l d) ,

198 ’index’ : s t r (index) ,

199 ’view’ : cu r r ent v i ew

200 }

201 printJSONFile (data)

202 e l i f temp name == 1 :

203 data = {

204 ’type’ : ’var_name_updated’ ,

205 ’function’ : function . symbol . name ,

206 ’func_addr’ : s t r (function) [11 : −1] ,

207 ’var_name_new’ : s t r (var name new) ,

208 ’var_type_new’ : s t r (var type new) ,

209 ’var_name_old’ : s t r (var name old) ,

210 ’var_type_old’ : s t r (v a r t y p e o l d) ,

211 ’index’ : s t r (index) ,

212 ’view’ : cu r r ent v i ew

213 }

214 printJSONFile (data)

215 v a r s t a t e = function . vars

216

217 #Function name change (from a c a l l)

218 d i c t func s new = func type s (bv)

219 new key change , new key d i f f , n e w s e t d i f f = d i f f f u n c t y p e s

(d i c t funcs new , d i c t f u n c s)

220 i f (n e w k e y d i f f > 0) :

221

222 p r i n t (’[*] Updating function name {name}’ . format (name=

function . symbol . name))

106

223 p r i n t ("func_new: {} {} {}" . format (new key change ,

new key d i f f , n e w s e t d i f f))

224 old key change , o l d k e y d i f f , o l d s e t d i f f =

d i f f f u n c t y p e s (d i c t f u n c s , d i c t func s new)

225 p r i n t ("func_old: {} {} {}" . format (o ld key change ,

o l d k e y d i f f , o l d s e t d i f f))

226

227 i f (o ld key change != 0 and new key change != 0) :

228 # Name change

229 p r i n t ("keydiff: {} {}" . format (o l d k e y d i f f ,

n e w k e y d i f f))

230 i f (s t r (o l d k e y d i f f) != s t r (n e w k e y d i f f)) :

231 p r i n t ("**** Name updated****")

232 i f (s t r (l i s t (n e w s e t d i f f) [1]) == s t r (l i s t (

o l d s e t d i f f) [1])) :

233 data = {

234 ’type’ : ’func_name_updated’ ,

235 ’func_addr’ : s t r (o ld key change) ,

236 ’function_name_new’ : s t r (n e w k e y d i f f)

[6 : −3] ,

237 ’function_name_old’ : s t r (o l d k e y d i f f)

[6 : −3] ,

238 ’function_type_new’ : s t r (l i s t (

n e w s e t d i f f) [1]) ,

239 ’function_type_old’ : s t r (l i s t (

o l d s e t d i f f) [1]) ,

240 ’view’ : cu r r ent v i ew

241 }

242 else :

243 data = {

244 ’type’ : ’func_name_updated’ ,

245 ’func_addr’ : s t r (o ld key change) ,

107

246 ’function_name_new’ : s t r (n e w k e y d i f f)

[6 : −3] ,

247 ’function_name_old’ : s t r (o l d k e y d i f f)

[6 : −3] ,

248 ’function_type_new’ : s t r (l i s t (

n e w s e t d i f f) [1]) ,

249 ’function_type_old’ : s t r (l i s t (

o l d s e t d i f f) [0]) ,

250 ’view’ : cu r r ent v i ew

251 }

252 # Name and Type change

253 e l i f (l en (l i s t (n e w k e y d i f f)) > 1) :

254 p r i n t ("**** Name and Type change ****")

255 i f (type lookup (l i s t (o l d k e y d i f f) [0])) :

256 # F i r s t element in o ld s e t i s the type

257 data = {

258 ’type’ : ’func_name_type_updated’ ,

259 ’func_addr’ : s t r (o ld key change) ,

260 ’function_name_new’ : s t r (l i s t (

n e w s e t d i f f) [0]) ,

261 ’function_name_old’ : s t r (l i s t (

o l d k e y d i f f) [1]) ,

262 ’function_type_new’ : s t r (l i s t (

n e w s e t d i f f) [1]) ,

263 ’function_type_old’ : s t r (l i s t (

o l d s e t d i f f) [0]) ,

264 ’view’ : cu r r ent v i ew

265 }

266 else :

267 # Second element in o ld s e t i s the type

268 data = {

269 ’type’ : ’func_name_type_updated’ ,

108

270 ’func_addr’ : s t r (o ld key change) ,

271 ’function_name_new’ : s t r (l i s t (

n e w s e t d i f f) [0]) ,

272 ’function_name_old’ : s t r (l i s t (

o l d k e y d i f f) [0]) ,

273 ’function_type_new’ : s t r (l i s t (

n e w s e t d i f f) [1]) ,

274 ’function_type_old’ : s t r (l i s t (

o l d s e t d i f f) [1]) ,

275 ’view’ : cu r r ent v i ew

276 }

277

278 # Type change

279 else :

280 p r i n t ("**** Type updated****")

281 data = {

282 ’type’ : ’func_type_updated’ ,

283 ’func_addr’ : s t r (o ld key change) ,

284 ’function_name_new’ : s t r (l i s t (n e w s e t d i f f)

[0]) ,

285 ’function_name_old’ : s t r (l i s t (o l d s e t d i f f)

[0]) ,

286 ’function_type_new’ : s t r (l i s t (n e w s e t d i f f)

[1]) ,

287 ’function_type_old’ : s t r (l i s t (o l d s e t d i f f)

[1]) ,

288 ’view’ : cu r r ent v i ew

289 }

290 d i c t f u n c s = d i c t func s new

291 event func2 = time . time ()

292 printJSONFile (data)

293

109

294

295 #Comment s t a t e change

296 i f ((comment state != function . comments)) :

297 address , comment , comment text = None , None , None

298 comment state len = len (comment state)

299 new comment len = len (function . comments)

300 p r i n t ("Comment change {} {}" . format (comment state len ,

new comment len))

301 p r i n t ("comment_state: {}" . format (comment state))

302 p r i n t ("function.comments: {}" . format (function . comments))

303 # Added

304 i f (comment state len < new comment len or

comment state len == new comment len) :

305 f o r item in function . comments . i tems () :

306 i f item not in comment state . i tems () :

307 address = item [0]

308 comment = item [1]

309 comment text = "comment_changed"

310 p r i n t ("[*] Comment changed: {}" . format (

comment))

311

312

313 i f not comment state . va lue s () :

314 data = {

315 ’type’ : comment text ,

316 ’func’ : s t r (function) [11 : −1] ,

317 ’addr’ : hex (i n t (address)) ,

318 ’comment_new’ : comment ,

319 ’comments_old’ : "" ,

320 ’view’ : cu r r ent v i ew

321 }

322 else :

110

323 data = {

324 ’type’ : comment text ,

325 ’func’ : s t r (function) [11 : −1] ,

326 ’addr’ : hex (i n t (address)) ,

327 ’comment_new’ : comment ,

328 ’comments_old’ : comment state . va lue s () . pop

(0) ,

329 ’view’ : cu r r ent v i ew

330 }

331

332 # Removed comment

333 e l i f (comment state len > new comment len) :

334 f o r item in comment state . i tems () :

335 i f item not in function . comments . i tems () :

336 address = item [0]

337 comment = item [1]

338 comment text = "comment_removed"

339 p r i n t ("[*] Comment removed: {}" . format (

comment))

340 data = {

341 ’type’ : comment text ,

342 ’func’ : s t r (function) [11 : −1] ,

343 ’addr’ : hex (i n t (address)) ,

344 ’comment_new’ : "" ,

345 ’comments_old’ : comment ,

346 ’view’ : cu r r ent v i ew

347 }

348 comment state = function . comments

349 printJSONFile (data)

350

351 # High l i gh t change :

352 i f (s t r (h i g h l i g h t s t a t e) != s t r (function . g e t i n s t r h i g h l i g h t

111

(cur rent addr))) :

353 p r i n t ("[*] Highlight change: {} {}" . format (hex (i n t (

cur rent addr)) , function . g e t i n s t r h i g h l i g h t (

cur rent addr)))

354 p r i n t ("highlight_state: {}" . format (h i g h l i g h t s t a t e))

355 p r i n t ("get_instr_highlight: {}" . format (function .

g e t i n s t r h i g h l i g h t (cur rent addr)))

356

357 c o l o r o l d , co lor new = co lor match ing (s t r (

h i g h l i g h t s t a t e) , s t r (function . g e t i n s t r h i g h l i g h t (

cur rent addr)))

358

359 data = {

360 ’type’ : "highlight" ,

361 ’func’ : s t r (function) [11 : −1] ,

362 ’addr’ : hex (i n t (cur rent addr)) ,

363 ’color_new’ : c o l o r o l d ,

364 ’color_old’ : co lor new ,

365 ’view’ : cu r r ent v i ew

366 }

367 h i g h l i g h t s t a t e = function . g e t i n s t r h i g h l i g h t (

cur rent addr)

368 printJSONFile (data)

369

370 else :

371 p r i n t ("Skipping func_updated1")

372 # else :

373 # p r in t ("Skipping func_updated2")

374 except Exception as e :

375 p r i n t ("Exception: skipping func_update: {}" . format (e))

376

377 de f co lo r match ing (c o l o r o l d , co lor new) :

112

378 c o l o r s d i c t = {’none’ : ’NoHighlightColor’ , ’black’ : ’

BlackHighlightColor’ , ’blue’ : ’BlueHighlightColor’ ,

379 ’cyan’ : ’CyanHighlightColor’ , ’green’ : ’

GreenHighlightColor’ , ’magenta’ : ’

MagentaHighlightColor’ ,

380 ’orange’ : ’OrangeHighlightColor’ , ’red’ : ’

RedHighlightColor’ , ’white’ : ’

WhiteHighlightColor’ ,

381 ’yellow’ : ’YellowHighlightColor’}

382

383 o l d c o l o r=c o l o r o l d . s p l i t (’:’) [1] . s p l i t () [0] [: − 1]

384 new co lo r=co lor new . s p l i t (’:’) [1] . s p l i t () [0] [: − 1]

385

386 p r i n t (o l d c o l o r , new co lo r)

387 o l d c o l o r = c o l o r s d i c t . get (o l d c o l o r , c o l o r o l d)

388 new co lor = c o l o r s d i c t . get (new co lor , co lor new)

389

390 return o l d c o l o r , new co lor

391

392 de f func added (bv , function) :

393 g l o b a l event func2

394

395 i f (event func2 + 2 < time . time ()) :

396 data = OrderedDict ()

397 p r i n t ("[*] Function Added: {}" . format (function . symbol . name))

398 data = {

399 ’type’ : ’func_added’ ,

400 ’function’ : function . symbol . name ,

401 ’func_addr’ : s t r (function) [11 : −1] ,

402 ’view’ : cu r r ent v i ew

403 }

404 event func2 = time . time ()

113

405 printJSONFile (data)

406

407 de f func removed (bv , function) :

408 g l o b a l event func2

409

410 i f (event func2 + 1 < time . time ()) :

411 data = OrderedDict ()

412 p r i n t ("[*] Function Removed: {}" . format (function . symbol . name))

413 data = {

414 ’type’ : ’func_removed’ ,

415 ’function’ : function . symbol . name ,

416 ’func_addr’ : s t r (function) [11 : −1] ,

417 ’view’ : cu r r ent v i ew

418 }

419 event func2 = time . time ()

420 printJSONFile (data)

421

422 de f da ta wr i t t en (bv , address , l ength) :

423 g l o b a l eventfunc2 , d a t a s t a t e #, event func

424

425 i f (event func2 + 1 < time . time ()) :

426 data = OrderedDict ()

427 p r i n t (’[*] Data Written <0x{name:x}> {length}’ . format (name=

address , l ength=length))

428

429 data new = bv . read (address , 1)

430 p r i n t ("new data: {} old data: {}" . format (data new , d a t a s t a t e))

431 data = {

432 ’type’ : ’data_written’ ,

433 ’address’ : "0x{:x}" . format (i n t (address)) ,

434 ’length’ : s t r (l ength) ,

435 ’data_old’ : s t r (d a t a s t a t e) ,

114

436 ’data_new’ : s t r (data new) ,

437 ’view’ : cu r r ent v i ew

438 }

439

440 printJSONFile (data)

441 event func2 = time . time ()

442

443 else :

444 pass

445

446 event = time . time ()

447

448 de f type de f i n ed (bv , name , type) :

449 g l o b a l event , event func2

450

451 i f (event + 1 < time . time ()) :

452 i f (event func2 + 1 < time . time ()) :

453 data = OrderedDict ()

454 p r i n t (’[*] Type Defined’)

455 event = time . time ()

456 data = {

457 ’type’ : ’type_defined’ ,

458 ’name’ : s t r (name) ,

459 ’type_defined’ : s t r (type) ,

460 ’view’ : cu r r ent v i ew

461 }

462

463 printJSONFile (data)

464

465 else :

466 p r i n t (’[*] Type Defined - skipping’)

467 pass

115

468

469 de f type unde f ined (bv , name , type) :

470 g l o b a l event , event func2

471

472 i f (event + 1 < time . time ()) :

473 i f (event func2 + 1 < time . time ()) :

474 data = OrderedDict ()

475 p r i n t (’[*] Type Undefined’)

476 p r i n t (event)

477 data = {

478 ’type’ : ’type_undefined’ ,

479 ’name’ : s t r (name) ,

480 ’type2’ : s t r (type) ,

481 ’view’ : cu r r ent v i ew

482 }

483

484 printJSONFile (data)

485

486 else :

487 p r i n t (’[*] Type Undefined - skipping’)

488 pass

489

490 de f data var added (bv , var) :

491 g l o b a l event func2

492

493 i f (event func2 + 1 < time . time ()) :

494 data = OrderedDict ()

495 p r i n t (’[*] Data_var_added’)

496 data = {

497 ’type’ : ’data_var_added’ ,

498 ’var’ : s t r (var) ,

499 ’view’ : cu r r ent v i ew

116

500 }

501 event func2 = time . time ()

502 printJSONFile (data)

503

504 else :

505 p r i n t (’[*] Data Var Added - skipping’)

506 pass

507

508 de f data var removed (bv , var) :

509 g l o b a l event func2

510

511 i f (event func2 + 1 < time . time ()) :

512 data = OrderedDict ()

513 p r i n t (’[*] Data_var_removed’)

514 data = {

515 ’type’ : ’data_var_removed’ ,

516 ’var’ : s t r (var) ,

517 ’view’ : cu r r ent v i ew

518 }

519 event func2 = time . time ()

520 printJSONFile (data)

521 else :

522 p r i n t (’[*] Data Var Removed - skipping’)

523 pass

Binary Ninja Plugin - init .py

1 Copyright 2020 Wayne C. Henry

2

3 Licensed under the Apache License , Vers ion 2 .0 (the "License") ; you may

not use this f i l e except in compliance with the L icense . You may

obta in a copy o f the L icense at

117

4

5 http : //www.apache.org/licenses/LICENSE -2.0

6

7 Unless r equ i r ed by a p p l i c a b l e law or agreed to in wri t ing , so f tware

d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an "AS IS" BASIS ,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or

impl i ed . See the L icense f o r the s p e c i f i c language governing

permi s s i ons and l i m i t a t i o n s under the L icense .

8

9 from c o l l e c t i o n s import OrderedDict

10 from SimpleXMLRPCServer import SimpleXMLRPCRequestHandler ,

SimpleXMLRPCServer , l i s t p u b l i c m e t h o d s

11 import threading , s t r i ng , in spec t , copy , socket , xmlrpc l ib

12 import b ina ryn in ja as bn

13 import time

14 import a u t o c o l l e c t

15

16 HOST, PORT = "0.0.0.0" , 1337

17 DEBUG = True

18 HL NO COLOR = bn . Highl ightStandardColor . NoHighl ightColor

19 HL BP COLOR = bn . Highl ightStandardColor . RedHighl ightColor

20 HL CUR INSN COLOR = bn . Highl ightStandardColor . GreenHighl ightColor

21

22 s t a r t e d = False

23 t = None

24 c u r r e n t i n s t r u c t i o n = 0

25 func ho ld = "test"

26 t y p e f l a g = 0

27

28 PAGE SZ = 0x1000

29

30 de f expose (f) :

118

31 "Decorator to set exposed flag on a function."

32 f . exposed = True

33 return f

34

35 de f i s e x p o s e d (f) :

36 "Test whether another function should be publicly exposed."

37 return g e t a t t r (f , ’exposed’ , False)

38

39 de f i shex (s) :

40 return s . s t a r t s w i t h ("0x") or s . s t a r t s w i t h ("0X")

41

42 class RequestHandler (SimpleXMLRPCRequestHandler) :

43 rpc paths = ("/RPC2" ,)

44

45 de f do OPTIONS(s e l f) :

46 s e l f . s end re sponse (200)

47 s e l f . end headers ()

48

49 de f end headers (s e l f) :

50 s e l f . send header ("Access-Control-Allow-Headers" ,

51 "Origin, X-Requested -With, Content-Type, Accept")

52 s e l f . send header ("Access-Control-Allow-Origin" , "*")

53 SimpleXMLRPCRequestHandler . end headers (s e l f)

54

55 de f s t a r t s e r v i c e (host , port , bv) :

56 p r i n t ("[+] Starting service on {}:{}" . format (host , port))

57 s e r v e r = SimpleXMLRPCServer ((host , port) ,

58 requestHandler=RequestHandler ,

59 logRequests=False ,

60 a l low none=True)

61 s e r v e r . r e g i s t e r i n t r o s p e c t i o n f u n c t i o n s ()

62 s e r v e r . r e g i s t e r i n s t a n c e (Bookmark (se rver , bv) , a l low dotted names=True

119

)

63 p r i n t ("[+] Registered {} functions." . format (l en (s e r v e r .

sys tem l i s tMethods ())))

64 while True :

65 i f hasa t t r (s e rver , "shutdown") and s e r v e r . shutdown==True : break

66 s e r v e r . hand l e r eque s t ()

67 return

68

69 de f s t a r t s e r v e r (bv) :

70 g l o b a l t , s t a r t e d

71 t = thread ing . Thread (t a r g e t=s t a r t s e r v i c e , a rgs=(HOST, PORT, bv))

72 t . daemon = True

73 p r i n t ("[+] Creating new thread {}" . format (t . name))

74 t . s t a r t ()

75

76 s t a r t e d = True

77 return

78

79 de f s t o p s e r v e r (bv) :

80 g l o b a l t

81 t . j o i n ()

82 t = None

83 p r i n t ("[+] Server stopped")

84 return

85

86 de f s e r v e r s t a r t s t o p (bv) :

87 i f t i s None :

88 s t a r t s e r v e r (bv)

89 bn . show message box ("Serv" ,"Service successfully started, you can

now connect to it" ,

90 bn . MessageBoxButtonSet . OKButtonSet , bn . MessageBoxIcon .

In format ionIcon)

120

91 r e g i s t e r s t u f f (bv)

92 else :

93 t ry :

94 c l i = xmlrpc l ib . ServerProxy ("http://{:s}:{:d}" . format (HOST, PORT))

95 c l i . shutdown ()

96 except socket . e r r o r :

97 pass

98 s t o p s e r v e r (bv)

99 bn . show message box ("Serv" , "Service successfully stopped" ,

100 bn . MessageBoxButtonSet . OKButtonSet , bn . MessageBoxIcon .

In format ionIcon)

101 return

102

103 class Bookmark :

104 """

105 Top level class where exposed methods are declared.

106 """

107

108 de f i n i t (s e l f , s e rver , bv , ∗ args , ∗∗kwargs) :

109 s e l f . s e r v e r = s e r v e r

110 s e l f . view = bv

111 s e l f . base = bv . en t ry po in t & ˜(PAGE SZ−1)

112 s e l f . v e r s i o n = ("Binary Ninja" , bn . c o r e v e r s i o n)

113 s e l f . o ld bps = s e t ()

114 return

115

116 de f d i spa t ch (s e l f , method , params) :

117 """

118 Plugin dispatcher

119 """

120 func = g e t a t t r (s e l f , method)

121 i f not i s e x p o s e d (func) :

121

122 r a i s e NotImplementedError (’Method "%s" is not exposed’ % method)

123

124 i f DEBUG:

125 p r i n t ("[+] Executing %s(%s)" % (method , params))

126 return func (∗params)

127

128 de f l i s tMethods (s e l f) :

129 """

130 Class method listing (required for introspection API).

131 """

132 m = []

133 f o r x in l i s t p u b l i c m e t h o d s (s e l f) :

134 i f x . s t a r t s w i t h ("_") : cont inue

135 i f not i s e x p o s e d (g e t a t t r (s e l f , x)) : cont inue

136 m. append (x)

137 return m

138

139 de f methodHelp (s e l f , method) :

140 """

141 Method help (required for introspection API).

142 """

143 f = g e t a t t r (s e l f , method)

144 return i n s p e c t . getdoc (f)

145

146 @expose

147 de f shutdown (s e l f) :

148 """ shutdown() => None

149 Cleanly shutdown the XML-RPC service.

150 Example: binaryninja shutdown

151 """

152 s e l f . s e r v e r . s e r v e r c l o s e ()

153 p r i n t ("[+] XMLRPC server stopped")

122

154 s e t a t t r (s e l f . s e rver , "shutdown" , True)

155 return 0

156

157 @expose

158 de f v e r s i on (s e l f) :

159 """ version() => None

160 Return a tuple containing the tool used and its version

161 Example: binaryninja version

162 """

163 return s e l f . v e r s i o n

164

165 de f begin undo (s e l f) :

166 p r i n t ("[+] Begin Undo")

167 return s e l f . view . beg in undo ac t i ons ()

168

169 de f commit undo (s e l f) :

170 p r i n t ("[+] Commit Undo")

171 return s e l f . view . commit undo act ions ()

172

173 @expose

174 de f Undo(s e l f) :

175 """ Undo() => None

176 Undo most recent action

177 Example: binaryninja Undo

178 """

179 a u t o c o l l e c t . event func2 = time . time ()

180 return s e l f . view . undo ()

181

182 @expose

183 de f Redo (s e l f) :

184 """ Redo() => None

185 Redo most recent action

123

186 Example: binaryninja Redo

187 """

188 s e l f . begin undo ()

189 a u t o c o l l e c t . event func2 = time . time ()

190 s e l f . r e d o h e l p e r ()

191 return s e l f . commit undo ()

192

193 de f r e d o h e l p e r (s e l f) :

194 return s e l f . view . redo ()

195

196 de f var lookup (s e l f , var type) :

197 arch = s e l f . view . arch

198 t y p e d i c t = {’int16_t’ : bn . Type . i n t (2) , ’int24_t’ : bn . Type . i n t (3) , ’

int32_t’ : bn . Type . i n t (4) , ’char’ : bn . Type . char () ,

199 ’void’ : bn . Type . void () , ’uint16_t’ : bn . Type . i n t (2 , 0) , ’uint24_t

’ : bn . Type . i n t (3 , 0) , ’uint32_t’ : bn . Type . i n t (4 , 0) ,

200 ’float8’ : bn . Type . f l o a t (1) , ’float16’ : bn . Type . f l o a t (2) , ’

float24’ : bn . Type . f l o a t (3) , ’float’ : bn . Type . f l o a t (4) ,

201 ’double’ : bn . Type . f l o a t (8) , ’float72’ : bn . Type . f l o a t (9) , ’long

double’ : bn . Type . f l o a t (10) ,

202 ’void*’ : bn . Type . po in t e r (arch , bn . Type . void () , False , False ,

False) ,

203 ’void* const’ : bn . Type . po in t e r (arch , bn . Type . void () ,True ,

False , False) ,

204 ’void* volatile’ : bn . Type . po in t e r (arch , bn . Type . void () , False ,

True , False) ,

205 ’void&’ : bn . Type . po in t e r (arch , bn . Type . void () , False , False ,

True) ,

206 ’int32_t*’ : bn . Type . po in t e r (arch , bn . Type . i n t (4) , False , False

, False) }

207

208 new type = t y p e d i c t . get (var type)

124

209 return new type

210

211 @expose

212 de f FuncVar (s e l f , func addres s , var type , var name , index) :

213 """ FuncVar(str func_address , string type (int32_t), string var_name

, int var index

214 s.FuncVar(’0x401000’, ’uint32_t’, ’var_14’, 0)

215 """

216 a u t o c o l l e c t . event func2 = time . time ()

217 func = s e l f . view . g e t f u n c t i o n a t (i n t (func addres s , 1 6))

218 va r type = s e l f . var lookup (var type)

219 s e l f . Jump(func addres s , ’Graph:PE’)

220 return func . c r e a t e u s e r v a r (func . vars [i n t (index)] , var type ,

var name)

221

222 @expose

223 de f FuncName(s e l f , address , funcName) :

224 """ SetFunc(int address, string funcName) => None

225 Set Function name address to string

226 s.FuncName(’0x40102c’, "new")

227 """

228 a u t o c o l l e c t . event func2 = time . time ()

229 s e l f . Jump(address , ’Graph:PE’)

230 func = s e l f . view . g e t f u n c t i o n a t (i n t (address , 1 6)) #Only works f o r

main function , not c a l l e d

231 func . name = funcName

232

233 @expose

234 de f FuncNameType(s e l f , address , funcName , var type) :

235 """ SetFunc(int address, string funcName) => None

236 Set Function name address to string

237 import xmlrpclib

125

238 s = xmlrpclib.ServerProxy(’http://localhost:1337’)

239 s.FuncNameType(’0x40102c’, "new",’uint32_t’)

240 """

241 a u t o c o l l e c t . event func2 = time . time ()

242 s e l f . Jump(address , ’Graph:PE’)

243 func = s e l f . view . g e t f u n c t i o n a t (i n t (address , 1 6)) #Only works f o r

main function , not c a l l e d

244 func . name = funcName

245 temp var = s e l f . var lookup (var type)

246 func . r e tu rn type = temp var

247

248 @expose

249 de f FuncType (s e l f , address , var type) :

250 """ s.FuncType(’0x401021’,’int32_t’)

251 """

252 a u t o c o l l e c t . event func2 = time . time ()

253 func = s e l f . view . g e t f u n c t i o n a t (i n t (address , 1 6))

254 temp var = s e l f . var lookup (var type)

255 func . r e tu rn type = temp var

256

257 @expose

258 de f Jump(s e l f , address , view) :

259 """ Jump(int addr) => None

260 Move the EA pointer to the address pointed by ‘addr‘.

261 s.Jump(’0x4049de’,’Graph:PE’)

262 """

263 s e l f . view . f i l e . nav igate (view , i n t (address , 1 6))

264

265 @expose

266 de f MakeComm(s e l f , address , comment , function) :

267 """ MakeComm(str addr, string comment) => None

268 Add a comment at the location ‘address ‘.

126

269 s.MakeComm(’0x401019’, " Important c a l l here ! ", ’0x401000’)

270 """

271 a u t o c o l l e c t . event func2 = time . time ()

272 func = s e l f . view . g e t f u n c t i o n a t (i n t (function , 1 6))

273 s e l f . Jump(address , ’Graph:PE’)

274 return func . set comment at (i n t (address , 1 6) , comment)

275

276 de f do command(s e l f , cmd) :

277 p r i n t (cmd)

278 return eva l (cmd)

279

280 @expose

281 de f SetColor (s e l f , address , c o l o r) :

282 """ SetColor(int addr, string color) => None

283 Set the location pointed by ‘address‘ with ‘color‘.

284 Example: s.SetColor(’0x401000’, ’CyanHighlightColor’)

285 """

286 a u t o c o l l e c t . event func2 = time . time ()

287 s t a r t a d d r = s e l f . view . g e t p r e v i o u s f u n c t i o n s t a r t b e f o r e (i n t (

address , 1 6))

288 func = s e l f . view . g e t f u n c t i o n a t (s t a r t a d d r)

289 i f func i s None : return

290 co lor new = "bn.HighlightStandardColor."+c o l o r

291 func . s e t u s e r i n s t r h i g h l i g h t (i n t (address , 1 6) , eva l (co lor new))

292

293 @expose

294 de f DefineFunc (s e l f , address) :

295 """ str address must be the address of the function

296 s.DefineFunc(’0x401000’)

297 """

298 a u t o c o l l e c t . event func2 = time . time ()

299 s e l f . view . c r e a t e u s e r f u n c t i o n (i n t (address , 1 6))

127

300 s e l f . view . f i l e . nav igate (’Graph:PE’ , i n t (address , 1 6))

301

302 @expose

303 de f UndefineFunc (s e l f , address) :

304 """ str address must be the address of the function

305 s.UndefineFunc(’0x401000’)

306 """

307 a u t o c o l l e c t . event func2 = time . time ()

308 func = s e l f . view . g e t f u n c t i o n a t (i n t (address , 1 6))

309 s e l f . view . r emove use r func t i on (func)

310 s e l f . view . f i l e . nav igate (’Linear:PE’ , i n t (address , 1 6))

311

312 @expose

313 de f WriteData (s e l f , address , data) :

314 s e l f . view . f i l e . nav igate (’Hex:PE’ , i n t (address , 1 6))

315 s e l f . view . wr i t e (i n t (address , 16) , data)

316

317 @expose

318 de f AddType(s e l f , name , var type) :

319

320 va r type = s e l f . var lookup (var type)

321 s e l f . view . d e f i n e u s e r t y p e (name , va r type)

322

323 @expose

324 de f RemoveType(s e l f , name) :

325 s e l f . view . u n d e f i n e u s e r t y p e (name)

326

327 #Reg i s t e r N o t i f i c a t i o n s

328 class myNot i f i ca t ion (bn . B inaryDataNot i f i ca t i on) :

329 de f i n i t (s e l f , view) :

330 s e l f . view = view

331 pass

128

332

333 de f da ta wr i t t en (s e l f , view , o f f s e t , l ength) :

334 p r i n t ("data_written: " , view , o f f s e t , l ength)

335 a u t o c o l l e c t . da ta wr i t t en (view , o f f s e t , l ength)

336 pass

337 de f d a t a i n s e r t e d (s e l f , view , o f f s e t , l ength) :

338 p r i n t ("data_inserted: " , view , o f f s e t , l ength)

339 pass

340 de f data removed (s e l f , view , o f f s e t , l ength) :

341 p r i n t ("data_removed: " , o f f s e t , l ength)

342 pass

343 de f funct ion added (s e l f , view , func) :

344 p r i n t ("function_added: " , func)

345 a u t o c o l l e c t . func added (view , func)

346 pass

347 de f funct ion removed (s e l f , view , func) :

348 p r i n t ("function_removed: " , func)

349 a u t o c o l l e c t . func removed (view , func)

350 pass

351 de f funct ion updated (s e l f , view , func) :

352 # p r in t ("function_updated")

353 a u t o c o l l e c t . func updated (view , func)

354 pass

355 de f data var added (s e l f , view , var) :

356 a u t o c o l l e c t . data var added (view , var)

357 p r i n t ("var_added: " , var)

358 pass

359 de f data var removed (s e l f , view , var) :

360 a u t o c o l l e c t . data var removed (view , var)

361 p r i n t ("var_removed: " , var)

362 pass

363 de f data var updated (s e l f , view , var) :

129

364 p r i n t ("var_updated: " , var)

365 pass

366 de f s t r i n g f o u n d (s e l f , view , s t r i n g t y p e , o f f s e t , l ength) :

367 p r i n t ("string_found: " , s t r i n g t y p e , o f f s e t , l ength)

368 pass

369 de f s t r ing removed (s e l f , view , s t r i n g t y p e , o f f s e t , l ength) :

370 p r i n t ("string_removed: " , s t r i n g t y p e , o f f s e t , l ength)

371 pass

372 de f type de f i n ed (s e l f , view , name , type) :

373 g l o b a l t y p e f l a g

374 a u t o c o l l e c t . t ype de f i n ed (view , s t r (name) , type)

375 p r i n t ("type_defined: " , name , type)

376 pass

377 de f type unde f ined (s e l f , view , name , type) :

378 g l o b a l t y p e f l a g

379 a u t o c o l l e c t . type unde f ined (view , s t r (name) , type)

380 p r i n t ("type_undefined: " , name , type)

381 pass

382

383 de f on complete (s e l f) :

384 p r i n t ("Analysis Complete")

385

386 de f r e g i s t e r s t u f f (bv) :

387 n o t i f i c a t i o n = myNot i f i ca t ion (bv)

388 bv . r e g i s t e r n o t i f i c a t i o n (n o t i f i c a t i o n)

389 a u t o c o l l e c t . s ta r t watch (bv)

390

391 bn . PluginCommand . r e g i s t e r ("Binja Start/Stop XML Server" , "Start/Stop XML

Server." , s e r v e r s t a r t s t o p)

JavaScript - fileChange.py

130

1 Copyright 2020 Wayne C. Henry

2

3 Licensed under the Apache License , Vers ion 2 .0 (the "License") ; you may

not use this f i l e except in compliance with the L icense . You may

obta in a copy o f the L icense at

4

5 http : //www.apache.org/licenses/LICENSE -2.0

6

7 Unless r equ i r ed by a p p l i c a b l e law or agreed to in wri t ing , so f tware

d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an "AS IS" BASIS ,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or

impl i ed . See the L icense f o r the s p e c i f i c language governing

permi s s i ons and l i m i t a t i o n s under the L icense .

8

9 import { XmlRpcRequest } from "./mimic" ;

10

11 import {

12 Act ionFunct ionRegistry ,

13 ProvenanceGraph ,

14 ProvenanceTracker ,

15 ProvenanceGraphTraverser ,

16 Revers ib leAct ion ,

17 I r r e v e r s i b l e A c t i o n ,

18 StateNode ,

19 Action ,

20 i sReve r s i b l eAc t i on ,

21 } from ’@visualstorytelling/provenance -core’ ;

22

23

24 class FileChangeApp {

25 pub l i c method : s t r i n g = "Starting..." ;

131

26

27 pub l i c async FuncNameUpdated (address : s t r i ng , funcName : s t r i n g) {

28 this . method = "FuncNameUpdate" ;

29 conso l e . l og ("FileChangeApp " + this . method) ;

30 const c a l l = "FuncName" ;

31 l e t r eque s t = new (XmlRpcRequest as any) ("http://localhost:1337/

RPC2" , c a l l) ;

32 r eque s t . addParam(address) ;

33 r eque s t . addParam(funcName) ;

34 l e t re sponse = await r eque s t . send () ;

35 conso l e . l og (re sponse) ;

36 }

37 pub l i c async funcType (address : s t r i ng , var type : s t r i n g) {

38 this . method = "FuncTypeUpdate" ;

39 conso l e . l og ("FileChangeApp " + this . method) ;

40 const c a l l = "FuncType" ;

41 l e t r eque s t = new (XmlRpcRequest as any) ("http://localhost:1337/

RPC2" , c a l l) ;

42 r eque s t . addParam(address) ;

43 r eque s t . addParam(var type) ;

44 l e t re sponse = await r eque s t . send () ;

45 conso l e . l og (re sponse) ;

46 }

47 pub l i c async funcNameType (address : s t r i ng , funcName : s t r i ng ,

var type : s t r i n g) {

48 this . method = "FuncNameTypeUpdate" ;

49 conso l e . l og ("FileChangeApp " + this . method) ;

50 const c a l l = "FuncNameType" ;

51 l e t r eque s t = new (XmlRpcRequest as any) ("http://localhost:1337/

RPC2" , c a l l) ;

52 r eque s t . addParam(address) ;

53 r eque s t . addParam(funcName) ;

132

54 reque s t . addParam(var type) ;

55 l e t re sponse = await r eque s t . send () ;

56 conso l e . l og (re sponse) ;

57 }

58 pub l i c async LocalVarUpdate (funcAddress : s t r i ng , var type : s t r i ng ,

var name : s t r i ng , index : s t r i n g) {

59 this . method = "LocVarUpdate" ;

60 const c a l l = "FuncVar" ;

61 l e t r eque s t = new (XmlRpcRequest as any) ("http://localhost:1337/

RPC2" , c a l l) ;

62 r eque s t . addParam(funcAddress) ;

63 r eque s t . addParam(var type) ;

64 r eque s t . addParam(var name) ;

65 reque s t . addParam(index) ;

66 l e t re sponse = await r eque s t . send () ;

67 conso l e . l og (re sponse) ;

68 conso l e . l og ("FileChangeApp " + this . method) ;

69 }

70 pub l i c async CommentUpdated(address : s t r i ng , message : s t r i ng ,

functionAddr : s t r i n g) {

71 this . method = "CommentUpdated" ;

72 const c a l l = "MakeComm" ;

73 l e t r eque s t = new (XmlRpcRequest as any) ("http://localhost:1337/

RPC2" , c a l l) ;

74 r eque s t . addParam(address) ;

75 r eque s t . addParam(message) ;

76 r eque s t . addParam(functionAddr)

77 l e t re sponse = await r eque s t . send () ;

78 conso l e . l og (re sponse) ;

79 conso l e . l og ("FileChangeApp " + this . method) ;

80 }

81 pub l i c async h i g h l i g h t (address : s t r i ng , c o l o r : s t r i n g) {

133

82 this . method = "highlight" ;

83 const c a l l = "SetColor" ;

84 l e t r eque s t = new (XmlRpcRequest as any) ("http://localhost:1337/

RPC2" , c a l l) ;

85 r eque s t . addParam(address) ;

86 r eque s t . addParam(c o l o r) ;

87 l e t re sponse = await r eque s t . send () ;

88 conso l e . l og (re sponse) ;

89 conso l e . l og ("FileChangeApp " + this . method) ;

90 }

91 pub l i c async def ineFunc (address : s t r i n g) {

92 this . method = "defineFunc" ;

93 const c a l l = "DefineFunc" ;

94 l e t r eque s t = new (XmlRpcRequest as any) ("http://localhost:1337/

RPC2" , c a l l) ;

95 r eque s t . addParam(address) ;

96 l e t re sponse = await r eque s t . send () ;

97 conso l e . l og (re sponse) ;

98 conso l e . l og ("FileChangeApp " + this . method) ;

99 }

100 pub l i c async undefineFunc (address : s t r i n g) {

101 this . method = "undefineFunc" ;

102 const c a l l = "UndefineFunc" ;

103 l e t r eque s t = new (XmlRpcRequest as any) ("http://localhost:1337/

RPC2" , c a l l) ;

104 reque s t . addParam(address) ;

105 l e t re sponse = await r eque s t . send () ;

106 conso l e . l og (re sponse) ;

107 conso l e . l og ("FileChangeApp " + this . method) ;

108 }

109 pub l i c async dataWritten (address : s t r i ng , data : s t r i n g) {

110 this . method = "dataWritten" ;

134

111 const c a l l = "WriteData" ;

112 l e t r eque s t = new (XmlRpcRequest as any) ("http://localhost:1337/

RPC2" , c a l l) ;

113 reque s t . addParam(address) ;

114 reque s t . addParam(data) ;

115 l e t re sponse = await r eque s t . send () ;

116 conso l e . l og (re sponse) ;

117 conso l e . l og ("FileChangeApp " + this . method) ;

118 }

119 pub l i c async addType (typeName : s t r i ng , typeDef ined : s t r i n g) {

120 this . method = "addType" ;

121 const c a l l = "AddType" ;

122 l e t r eque s t = new (XmlRpcRequest as any) ("http://localhost:1337/

RPC2" , c a l l) ;

123 reque s t . addParam(typeName) ;

124 reque s t . addParam(typeDef ined) ;

125 l e t re sponse = await r eque s t . send () ;

126 conso l e . l og (re sponse) ;

127 conso l e . l og ("FileChangeApp " + this . method) ;

128 }

129 pub l i c async removeType (typeName : s t r i n g) {

130 this . method = "removeType" ;

131 const c a l l = "RemoveType" ;

132 l e t r eque s t = new (XmlRpcRequest as any) ("http://localhost:1337/

RPC2" , c a l l) ;

133 reque s t . addParam(typeName) ;

134 l e t re sponse = await r eque s t . send () ;

135 conso l e . l og (re sponse) ;

136 conso l e . l og ("FileChangeApp " + this . method) ;

137 }

138 pub l i c async view (address : s t r i ng , viewMode : s t r i n g) { //Jump

action for Revert

135

139 this . method = "view" ;

140 const c a l l = "Jump" ;

141 l e t r eque s t = new (XmlRpcRequest as any) ("http://localhost:1337/

RPC2" , c a l l) ;

142 reque s t . addParam(address) ;

143 reque s t . addParam(viewMode) ;

144 l e t re sponse = await r eque s t . send () ;

145 conso l e . l og (re sponse) ;

146 conso l e . l og ("FileChangeApp " + this . method) ;

147 }

148 }

149

150 export class DataTypes {

151 //JSON Types: func_name_updated

152 pub l i c datablock : s t r i n g ;

153 pub l i c type : s t r i n g ;

154 pub l i c view : s t r i n g ;

155

156 //JSON Types: func_name_updated

157 pub l i c oldFuncName : s t r i n g ;

158 pub l i c newFuncName : s t r i n g ;

159 pub l i c address : s t r i n g ;

160 pub l i c oldFuncType : s t r i n g ;

161 pub l i c newFuncType : s t r i n g ;

162

163 // newcomment

164 pub l i c newComment : s t r i n g ;

165 pub l i c oldComment : s t r i n g ;

166 pub l i c functionAddr : s t r i n g ;

167

168 // Var_type updates

169 pub l i c functionName : s t r i n g ;

136

170 pub l i c index : s t r i n g ;

171 pub l i c newVarName : s t r i n g ;

172 pub l i c oldVarName : s t r i n g ;

173 pub l i c newVarType : s t r i n g ;

174 pub l i c oldVarType : s t r i n g ;

175

176 // data_written

177 pub l i c dataNew : s t r i n g ;

178 pub l i c dataOld : s t r i n g ;

179 pub l i c l ength : s t r i n g ;

180

181 // highlight

182 pub l i c colorNew : s t r i n g ;

183 pub l i c co lorOld : s t r i n g ;

184

185 // Types

186 pub l i c typeName : s t r i n g ;

187 pub l i c typeDef ined : s t r i n g ;

188

189 // View

190 pub l i c o ldview : s t r i n g ;

191 pub l i c o ldaddre s s : s t r i n g ;

192

193 cons t ruc to r (datablock : s t r i n g) {

194 this . datablock = datablock ;

195 this . parseJSON (this . datablock) ;

196 }

197

198 p r i v a t e parseJSON (data : s t r i n g) {

199 l e t obj :JSON = JSON. parse (data) ;

200 // func_name_updated

201 i f ((Object . va lue s (obj) [5] == ’func_name_updated’) | |

137

202 (Object . va lue s (obj) [5] == ’func_type_updated’) | |

203 (Object . va lue s (obj) [5] == ’func_name_type_updated’)) {

204 this . oldFuncName = Object . va lue s (obj) [2] ;

205 this . type = Object . va lue s (obj) [5] ;

206 this . newFuncName = Object . va lue s (obj) [1] ;

207 this . address = Object . va lue s (obj) [0] ;

208 this . oldFuncType = Object . va lue s (obj) [2] ;

209 this . newFuncType = Object . va lue s (obj) [3] ;

210 this . view = Object . va lue s (obj) [6] ;

211 conso l e . l og (this . type + ’ ’ + this . newFuncName + ’ ’ + this .

newFuncType) ;

212 }

213 // comment_changed || comment_removed

214 else i f ((Object . va lue s (obj) [4] == ’comment_changed’) | |

215 (Object . va lue s (obj) [4] ==’comment_remove’)) {

216 this . address = Object . va lue s (obj) [0]

217 this . newComment = Object . va lue s (obj) [1] ;

218 this . oldComment = Object . va lue s (obj) [2] ;

219 this . functionAddr = Object . va lue s (obj) [3] ;

220 this . type = Object . va lue s (obj) [4] ;

221 this . view = Object . va lue s (obj) [5] ;

222 conso l e . l og (this . type + ’ ’ + this . newComment + ’ ’ + this .

oldComment + ’ ’ + this . address) ;

223 }

224 // ’var_type_updated’ || ’var_updated’ || ’var_name_updated’

225 else i f ((Object . va lue s (obj) [3] == ’var_type_updated’) | |

226 (Object . va lue s (obj) [3] == ’var_updated’) | |

227 (Object . va lue s (obj) [3] == ’var_name_updated’)) {

228 this . functionAddr = Object . va lue s (obj) [0] ;

229 this . functionName = Object . va lue s (obj) [1] ;

230 this . index = Object . va lue s (obj) [2] ;

231 this . type = Object . va lue s (obj) [3] ;

138

232 this . newVarName = Object . va lue s (obj) [4] ;

233 this . oldVarName = Object . va lue s (obj) [5] ;

234 this . newVarType = Object . va lue s (obj) [6] ;

235 this . oldVarType = Object . va lue s (obj) [7] ;

236 this . view = Object . va lue s (obj) [8] ;

237 conso l e . l og (this . type + ’ ’ + this . functionAddr + ’ ’ + this

. newVarName + ’ ’ + this . newVarType) ;

238 }

239 // data_written

240 else i f (Object . va lue s (obj) [4] == ’data_written’) {

241 this . type = Object . va lue s (obj) [4] ;

242 this . address = Object . va lue s (obj) [0] ;

243 this . dataNew = Object . va lue s (obj) [1] ;

244 this . dataOld = Object . va lue s (obj) [2] ;

245 this . l ength = Object . va lue s (obj) [3] ;

246 this . view = Object . va lue s (obj) [5] ;

247 conso l e . l og (this . type + ’ ’ + this . address + ’ ’ + this .

dataNew) ;

248 }

249 // highlight

250 else i f (Object . va lue s (obj) [4] == ’highlight’) {

251 this . address = Object . va lue s (obj) [0] ;

252 this . colorNew = Object . va lue s (obj) [1] ;

253 this . co lorOld = Object . va lue s (obj) [2] ;

254 this . functionAddr = Object . va lue s (obj) [3] ;

255 this . type = Object . va lue s (obj) [4] ;

256 this . view = Object . va lue s (obj) [5] ;

257 conso l e . l og (this . type + ’ ’ + this . address + ’ ’ + this .

colorNew) ;

258 }

259 // func_removed || func_added

260 else i f (Object . va lue s (obj) [2] == ’func_removed’ | |

139

261 Object . va lue s (obj) [2] ==’func_added’) {

262 this . functionAddr = Object . va lue s (obj) [0] ;

263 this . functionName = Object . va lue s (obj) [1] ;

264 this . type = Object . va lue s (obj) [2] ;

265 this . view = Object . va lue s (obj) [3] ;

266 conso l e . l og (this . type + ’ ’ + this . functionAddr + ’ ’ + this

. functionName) ;

267 }

268 // type_defined || type_undefined

269 else i f (Object . va lue s (obj) [1] == ’type_defined’ | |

270 Object . va lue s (obj) [1] == ’type_undefined’) {

271 this . typeName = Object . va lue s (obj) [0] ;

272 this . type = Object . va lue s (obj) [1] ;

273 this . typeDef ined = Object . va lue s (obj) [2] ;

274 this . view = Object . va lue s (obj) [3] ;

275 conso l e . l og (this . type + ’ ’ + this . typeName + ’ ’ + this .

typeDef ined) ;

276 }

277 // func_type_updated

278 else i f (Object . va lue s (obj) [0] == ’bv.file.view’) {

279 this . view = Object . va lue s (obj) [0] ;

280 this . o ldview = Object . va lue s (obj) [1] ;

281 this . o ldaddre s s = Object . va lue s (obj) [2] ;

282 this . type = Object . va lue s (obj) [3] ;

283 this . address = Object . va lue s (obj) [4] ;

284 conso l e . l og (this . view + ’ ’ + this . o ldview + ’ ’ +

285 this . address + ’ ’ + this . o ldaddre s s) ;

286 }

287

288 }

289 }

290

140

291 export class FileChange {

292 p r i v a t e graph : ProvenanceGraph ;

293 p r i v a t e r e g i s t r y : Act ionFunct ionRegistry ;

294 p r i v a t e t r a c k e r : ProvenanceTracker ;

295 p r i v a t e t r a v e r s e r : ProvenanceGraphTraverser ;

296 p r i v a t e readonly app : FileChangeApp ;

297

298 cons t ruc to r (

299 graph : ProvenanceGraph ,

300 r e g i s t r y : Act ionFunct ionRegistry ,

301 t r a c ke r : ProvenanceTracker ,

302 t r a v e r s e r : ProvenanceGraphTraverser ,

303) {

304 this . graph = graph ;

305 this . r e g i s t r y = r e g i s t r y ;

306 this . t r a c ke r = t r a c k e r ;

307 this . t r a v e r s e r = t r a v e r s e r ;

308

309 this . app = new FileChangeApp () ;

310

311 this . r e g i s t r y . r e g i s t e r (’FuncNameUpdate’ , this . app .

FuncNameUpdated , this . app) ;

312 this . r e g i s t r y . r e g i s t e r (’FuncTypeUpdate’ , this . app . funcType , this

. app) ;

313 this . r e g i s t r y . r e g i s t e r (’FuncNameTypeUpdate’ , this . app .

funcNameType , this . app) ;

314 this . r e g i s t r y . r e g i s t e r (’CommentUpdated’ , this . app . CommentUpdated

, this . app) ;

315 this . r e g i s t r y . r e g i s t e r (’LocVarUpdate’ , this . app . LocalVarUpdate ,

this . app) ;

316 this . r e g i s t r y . r e g i s t e r (’dataWritten’ , this . app . dataWritten , this

. app) ;

141

317 this . r e g i s t r y . r e g i s t e r (’highlight’ , this . app . h i gh l i gh t , this . app

) ;

318 this . r e g i s t r y . r e g i s t e r (’defineFunc’ , this . app . def ineFunc , this .

app) ;

319 this . r e g i s t r y . r e g i s t e r (’undefineFunc’ , this . app . undefineFunc ,

this . app) ;

320 this . r e g i s t r y . r e g i s t e r (’addType’ , this . app . addType , this . app) ;

321 this . r e g i s t r y . r e g i s t e r (’removeType’ , this . app . removeType , this .

app) ;

322 this . r e g i s t r y . r e g i s t e r (’view’ , this . app . view , this . app) ;

323 }

324

325 pub l i c async makeActionAndApply (

326 r e v e r s i b l e : boolean ,

327 l a b e l : s t r i ng ,

328 doAction : s t r i ng ,

329 doArguments : any [] ,

330 undoAction ? : s t r i ng ,

331 undoArguments ? : any [] ,

332) : Promise<StateNode> {

333 l e t method : Action ;

334 const in t e rmed ia t e : Action = {

335 do : doAction ,

336 doArguments ,

337 metadata : {

338 createdBy : ’me’ ,

339 createdOn : ’now’ ,

340 tags : [] ,

341 u s e r In t en t : doAction ,

342 } ,

343 } ;

344 i f (r e v e r s i b l e) {

142

345 method = {

346 . . . intermediate ,

347 undo : undoAction ,

348 undoArguments ,

349 } as Rever s ib l eAct ion ;

350 } else {

351 method = {

352 . . . intermediate ,

353 } as I r r e v e r s i b l e A c t i o n ;

354 }

355

356 const node = await this . t r a c ke r . applyAction (method) ;

357 node . l a b e l = l a b e l ;

358 return node ;

359 }

360

361 pub l i c cu r r en tS ta t e () : s t r i n g {

362 return this . app . method ;

363 }

364

365 pub l i c async setupBasicGraph () {

366 const intermediateNode = await this . makeActionAndApply (

367 true ,

368 ’View: Graph:PE’ ,

369 ’view’ ,

370 [’0x401000’ , ’Graph:PE’] ,

371 ’view:’ ,

372 [’0x401000’ , ’Graph:PE’] ,

373) ;

374 await this . makeActionAndApply (true , ’Comm: input_fxn?’ , ’

CommentUpdated’ , [’0x402db4’ ,’Starting here’ ,’0x402cc0’] , ’

CommentUpdated’ , [’0x402db4’ ,’’ ,’0x402cc0’] ,)

143

375 await this . makeActionAndApply (true , ’Func: setup_fxn()?’ , ’

CommentUpdated’ , [’0x403c90’ ,’arg1->???’ ,’???’ ,’0x403c90’] , ’

CommentUpdated’ , [’0x403c90’ ,’’ ,’0x403c90’]) ;

376 await this . t r a v e r s e r . toStateNode (intermediateNode . id) ;

377 await this . makeActionAndApply (true , ’Func: setup_fxn()’ ,’

FuncNameUpdate’ , [’0x402cc0’ , ’setup_fxn()’] , ’FuncNameUpdate

’ , [’0x402cc0’ , ’sub_402cc0’]) ;

378 const testNode = await this . makeActionAndApply (true , ’Func: main

()’ ,’FuncNameUpdate’ , [’0x403cd0’ , ’main()’] , ’FuncNameUpdate

’ , [’0x403cd0’ , ’sub_403cd0’]) ;

379 await this . makeActionAndApply (true , ’Comm: password#1’ , ’

CommentUpdated’ , [’0x40354a’ ,’password#1’ ,’0x4034d0’] , ’

CommentUpdated’ , [’0x40354a’ ,’’ ,’0x4034d0’]) ;

380 await this . makeActionAndApply (true , ’Func: pw#1_logic()’ ,’

FuncNameUpdate’ , [’0x4034d0’ , ’pw#1_logic()’] , ’

FuncNameUpdate’ , [’0x4034d0’ , ’sub_4034d0’]) ;

381 const testNode4 = await this . makeActionAndApply (true , ’Func:

xor_decryptor()’ ,’FuncNameUpdate’ , [’0x403c90’ , ’

xor_decryptor()’] , ’FuncNameUpdate’ , [’0x403c90’ , ’

sub_403c90’]) ;

382 await this . makeActionAndApply (true , ’Comm: password#2’ , ’

CommentUpdated’ , [’0x4036f0’ ,’password#2_logic?’ ,’sub_4036f0’

] , ’CommentUpdated’ , [’0x4036f0’ ,’’ ,’0x4034f0’]) ;

383 await this . t r a v e r s e r . toStateNode (testNode4 . id) ;

384 await this . makeActionAndApply (true , ’Var: arg2->size’ , ’

LocVarUpdate’ , [’0x403c90’ ,’int32_t’ ,’size’ ,’6’] , ’

LocVarUpdate’ , [’0x403c90’ ,’int32_t’ ,’arg2’ ,’6’]) ;

385 await this . makeActionAndApply (true , ’Var: arg3->password’ , ’

LocVarUpdate’ , [’0x403c90’ ,’int32_t’ ,’password’ ,’7’] , ’

LocVarUpdate’ , [’0x403c90’ ,’int32_t’ ,’arg3’ ,’7’]) ;

386 }

387 }

144

JavaScript - index.ts

1 Copyright 2020 Wayne C. Henry

2

3 Licensed under the Apache License , Vers ion 2 .0 (the "License") ; you may

not use this f i l e except in compliance with the L icense . You may

obta in a copy o f the L icense at

4

5 http : //www.apache.org/licenses/LICENSE -2.0

6

7 Unless r equ i r ed by a p p l i c a b l e law or agreed to in wri t ing , so f tware

d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an "AS IS" BASIS ,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or

impl i ed . See the L icense f o r the s p e c i f i c language governing

permi s s i ons and l i m i t a t i o n s under the L icense .

8

9 import { XmlRpcRequest } from "./mimic" ;

10 import { FileChange ,

11 DataTypes

12 } from ’./fileChange’ ;

13

14 import {

15 ProvenanceGraph ,

16 ProvenanceTracker ,

17 ProvenanceGraphTraverser ,

18 Act ionFunct ionRegistry ,

19 ProvenanceSl ide ,

20 ProvenanceSl idedeck ,

21 ProvenanceSl idedeckPlayer ,

22 ser ia l i zeProvenanceGraph ,

145

23 restoreProvenanceGraph ,

24 Ser ia l i zedProvenanceGraph

25 } from ’@visualstorytelling/provenance -core’ ;

26

27 import { ProvenanceTreeVisua l i zat ion } from ’@visualstorytelling/

provenance -tree-visualization’ ;

28 import { S l i d e D e c k V i s u a l i z a t i o n } from ’@visualstorytelling/slide-deck-

visualization’ ;

29 import ’normalize.css’ ;

30 import ’./style.scss’ ;

31 import ’@visualstorytelling/slide-deck-visualization/dist/bundle.css’ ;

32 import ∗ as i o from "socket.io-client" ;

33

34 const v i sDiv : HTMLDivElement = document . getElementById (’vis’) as

HTMLDivElement ;

35 const saveDivBtn : HTMLButtonElement = document . getElementById (

36 ’Save’ ,) as HTMLButtonElement ;

37

38 l e t graph = new ProvenanceGraph ({ name : ’FileChange’ , v e r s i on : ’1.0.0’

}) ;

39 const r e g i s t r y = new Act ionFunct ionRegis try () ;

40 const t r a c k e r = new ProvenanceTracker (r e g i s t r y , graph) ;

41 const t r a v e r s e r = new ProvenanceGraphTraverser (r e g i s t r y , graph) ;

42

43 l e t p laye r : ProvenanceSl idedeckPlayer<ProvenanceSl ide >;

44 const playBtn : HTMLButtonElement = document . getElementById (

45 ’play’ ,

46) as HTMLButtonElement ;

47

48 // Setup named pipe with server

49 conso l e . l og ("Try to logon...") ;

50 var socke t = i o . connect (’http://localhost:8082’) ;

146

51

52 socke t . on ("connected" , function (data : any) {

53 conso l e . l og ("Connected User?" , data . accept) ;

54 }) ;

55

56 var r e q u e s t F i l e = socket . on ("fileChanged" , async (data : s t r i n g) => {

57 conso l e . l og ("typeof data: " + typeof data) ;

58 i f (data && data . l ength !== 0) {

59 conso l e . l og (data) ;

60 l e t newNode = new DataTypes (data) ;

61 // Node operations:

62 i f (newNode . type == ’comment_changed’ | | newNode . type == ’

comment_remove’) {

63 const node = await t r a c k e r . applyAction ({

64 do : ’CommentUpdated’ ,

65 doArguments : [newNode . address , newNode . newComment ,

newNode . functionAddr] ,

66 undo : ’CommentUpdated’ ,

67 undoArguments : [newNode . address , newNode . oldComment ,

newNode . functionAddr] ,

68 metadata : {

69 createdBy : ’me’ ,

70 createdOn : ’now’ ,

71 tags : [] ,

72 u s e r In t en t : ’comment’ ,

73 } ,

74 } , true) ;

75 node . l a b e l = "Comment: "+ newNode . address ;

76 }

77 else i f (newNode . type == ’view’) {

78 const node = await t r a c k e r . applyAction ({

79 do : ’view’ ,

147

80 doArguments : [newNode . address , newNode . view] ,

81 undo : ’view’ ,

82 undoArguments : [newNode . o ldaddress , newNode . o ldview] ,

83 metadata : {

84 createdBy : ’me’ ,

85 createdOn : ’now’ ,

86 tags : [] ,

87 u s e r In t en t : ’view’ ,

88 } ,

89 } , true) ;

90 node . l a b e l = "view " + newNode . view + " " + newNode . address ;

91 }

92 else i f (newNode . type == ’func_name_updated’) {

93 conso l e . l og ("Func_name_updated") ;

94 const node = await t r a c k e r . applyAction ({

95 do : ’FuncNameUpdate’ ,

96 doArguments : [newNode . address , newNode . newFuncName] ,

97 undo : ’FuncNameUpdate’ ,

98 undoArguments : [newNode . address , newNode . oldFuncName] ,

99 metadata : {

100 createdBy : ’me’ ,

101 createdOn : ’now’ ,

102 tags : [] ,

103 u s e r In t en t : ’func_name_updated’ ,

104 } ,

105 } , true) ;

106 node . l a b e l = "FuncName: " + newNode . newFuncName ;

107 }

108 else i f (newNode . type == ’func_name_type_updated’) {

109 conso l e . l og ("Func_name_type_updated") ;

110 const node = await t r a c k e r . applyAction ({

111 do : ’FuncNameTypeUpdate’ ,

148

112 doArguments : [newNode . address , newNode . newFuncName ,

newNode . newFuncType] ,

113 undo : ’FuncNameTypeUpdate’ ,

114 undoArguments : [newNode . address , newNode . oldFuncName ,

newNode . oldFuncType] ,

115 metadata : {

116 createdBy : ’me’ ,

117 createdOn : ’now’ ,

118 tags : [] ,

119 u s e r In t en t : ’func_name_type_updated’ ,

120 } ,

121 } , true) ;

122 node . l a b e l = "FuncNameType: " + newNode . newFuncName + " " +

newNode . newFuncType ;

123 }

124 else i f (newNode . type == ’func_type_updated’) {

125 conso l e . l og ("Func_type_updated") ;

126 const node = await t r a c k e r . applyAction ({

127 do : ’FuncTypeUpdate’ ,

128 doArguments : [newNode . address , newNode . newFuncType] ,

129 undo : ’FuncTypeUpdate’ ,

130 undoArguments : [newNode . address , newNode . oldFuncType] ,

131 metadata : {

132 createdBy : ’me’ ,

133 createdOn : ’now’ ,

134 tags : [] ,

135 u s e r In t en t : ’func_type_updated’ ,

136 } ,

137 } , true) ;

138 node . l a b e l = "FuncType: " + newNode . newFuncType ;

139 }

140 else i f (newNode . type == ’func_removed’) {

149

141 const node = await t r a c k e r . applyAction ({

142 do : ’undefineFunc’ ,

143 doArguments : [newNode . functionAddr] ,

144 undo : ’defineFunc’ ,

145 undoArguments : [newNode . functionName , newNode . functionAddr

] ,

146 metadata : {

147 createdBy : ’me’ ,

148 createdOn : ’now’ ,

149 tags : [] ,

150 u s e r In t en t : ’func_removed’ ,

151 } ,

152 } , true) ;

153 node . l a b e l = "UndefineFunc: "+newNode . functionAddr ;

154 }

155 else i f (newNode . type == ’func_added’) {

156 const node = await t r a c k e r . applyAction ({

157 do : ’defineFunc’ ,

158 doArguments : [newNode . functionName , newNode . functionAddr] ,

159 undo : ’undefineFunc’ ,

160 undoArguments : [newNode . functionAddr] ,

161 metadata : {

162 createdBy : ’me’ ,

163 createdOn : ’now’ ,

164 tags : [] ,

165 u s e r In t en t : ’func_added’ ,

166 } ,

167 } , true) ;

168 node . l a b e l = "DefineFunc: "+newNode . functionName ;

169 }

170 else i f (newNode . type == ’type_defined’) {

171 const node = await t r a c k e r . applyAction ({

150

172 do : ’addType’ ,

173 doArguments : [newNode . typeName , newNode . typeDef ined] ,

174 undo : ’removeType’ ,

175 undoArguments : [newNode . typeName] ,

176 metadata : {

177 createdBy : ’me’ ,

178 createdOn : ’now’ ,

179 tags : [] ,

180 u s e r In t en t : ’type_defined’ ,

181 } ,

182 } , true) ;

183 node . l a b e l = "type_defined "+newNode . typeName ;

184 }

185 else i f (newNode . type == ’type_undefined’) {

186 const node = await t r a c k e r . applyAction ({

187 do : ’removeType’ ,

188 doArguments : [newNode . typeName] ,

189 undo : ’addType’ ,

190 undoArguments : [newNode . typeName , newNode . typeDef ined] ,

191 metadata : {

192 createdBy : ’me’ ,

193 createdOn : ’now’ ,

194 tags : [] ,

195 u s e r In t en t : ’type_undefined’ ,

196 } ,

197 } , true) ;

198 node . l a b e l = "type_undefined "+newNode . typeName ;

199 }

200 else i f (newNode . type == ’data_written’) {

201 const node = await t r a c k e r . applyAction ({

202 do : ’dataWritten’ ,

203 doArguments : [newNode . address , newNode . dataNew] ,

151

204 undo : ’dataWritten’ ,

205 undoArguments : [newNode . address , newNode . dataOld] ,

206 metadata : {

207 createdBy : ’me’ ,

208 createdOn : ’now’ ,

209 tags : [] ,

210 u s e r In t en t : ’data_written’ ,

211 } ,

212 } , true) ;

213 node . l a b e l = "DataWritten: "+newNode . dataNew ;

214 }

215 else i f (newNode . type == ’highlight’) {

216 const node = await t r a c k e r . applyAction ({

217 do : ’highlight’ ,

218 doArguments : [newNode . address , newNode . colorNew] ,

219 undo : ’highlight’ ,

220 undoArguments : [newNode . address , newNode . co lorOld] ,

221 metadata : {

222 createdBy : ’me’ ,

223 createdOn : ’now’ ,

224 tags : [] ,

225 u s e r In t en t : ’highlight’ ,

226 } ,

227 } , true) ;

228 node . l a b e l = "Highlight: "+newNode . address ;

229 }

230 else i f ((newNode . type == ’var_type_updated’) | | (newNode . type

== ’var_updated’) | | (newNode . type == ’var_name_updated’)) {

231 const node = await t r a c k e r . applyAction ({

232 do : ’LocVarUpdate’ ,

233 doArguments : [newNode . functionAddr , newNode . newVarType ,

newNode . newVarName , newNode . index] ,

152

234 undo : ’LocVarUpdate’ ,

235 undoArguments : [newNode . functionAddr , newNode . oldVarType ,

newNode . oldVarName , newNode . index] ,

236 metadata : {

237 createdBy : ’me’ ,

238 createdOn : ’now’ ,

239 tags : [] ,

240 u s e r In t en t : ’varNameType_updated’ ,

241 } ,

242 } , true) ;

243 node . l a b e l = "LocVarUpdate: " + newNode . newVarName + " " +

newNode . newVarType ;

244 }

245 }

246 }) ;

247

248 function download (content : any , f i leName : any , contentType : any) {

249 var a = document . createElement ("a") ;

250 var f i l e = new Blob ([content] , { type : contentType }) ;

251 a . h r e f = URL. createObjectURL (f i l e) ;

252 a . download = fi leName ;

253 a . c l i c k () ;

254 }

255

256 saveDivBtn . addEventListener (’click’ , async () => {

257 const s e r i a l i z a b l e G r a p h = ser ia l i z eProvenanceGraph (graph) ;

258 const act ionsDiv = JSON. s t r i n g i f y (s e r i a l i z a b l e G r a p h) ;

259 download (act ionsDiv , ’json.txt’ , ’application/json’) ;

260 }) ;

261

262 document . getElementById ("file-input") . addEventListener ("change" , async (

e) => {

153

263 var f i l e = (<HTMLInputElement>e . t a r g e t) . f i l e s [0] ;

264 var reader = new Fi leReader () ;

265 reader . onload = f i l e => {

266 var contents : any = f i l e . t a r g e t ;

267 this . t ex t = contents . r e s u l t ;

268 conso l e . l og (this . t ex t . t oS t r i ng ()) ;

269

270 var graphLoad : Ser ia l i zedProvenanceGraph = JSON. parse (this . t ex t) ;

271 graph = restoreProvenanceGraph (graphLoad) ;

272 } ;

273 reader . readAsText (f i l e) ;

274 } , fa l se) ;

275

276 const f i l eChange = new FileChange (graph , r e g i s t r y , t racker , t r a v e r s e r) ;

277

278 l e t provenanceTreeVi sua l i za t ion : ProvenanceTreeVisua l i zat ion ;

279

280 f i l eChange . setupBasicGraph () . then (() => {

281 provenanceTreeVi sua l i za t ion = new ProvenanceTreeVisua l i zat ion (

282 t r a ve r s e r ,

283 visDiv ,

284) ;

285

286 const s l ideDeck = new ProvenanceSl idedeck (

287 { name : ’fileChange’ , v e r s i on : ’1.0.0’ } ,

288 t r a ve r s e r ,

289) ;

290

291 const provenanceS l idedeckVis = new S l i d e D e c k V i s u a l i z a t i o n (

292 s l ideDeck ,

293 document . getElementById (’slidedeck_root’) as HTMLDivElement ,

294) ;

154

295

296 p laye r = new ProvenanceSl idedeckPlayer (

297 s l ideDeck . s l i d e s as ProvenanceSl ide [] ,

298 (s l i d e) => (s l ideDeck . s e l e c t e d S l i d e = s l i d e) ,

299) ;

300

301 i f (playBtn) {

302 playBtn . addEventListener (’click’ , () => {

303 p laye r . s e t S l i d e I n d e x (s l ideDeck . s l i d e s . indexOf (s l ideDeck .

s e l e c t e d S l i d e)) ;

304 p laye r . play () ;

305 }) ;

306 }

307 }) ;

HTML - index.html

1 Copyright 2020 Wayne C. Henry

2

3 Licensed under the Apache License , Vers ion 2 .0 (the "License") ; you may

not use this f i l e except in compliance with the L icense . You may

obta in a copy o f the L icense at

4

5 http : //www.apache.org/licenses/LICENSE -2.0

6

7 Unless r equ i r ed by a p p l i c a b l e law or agreed to in wri t ing , so f tware

d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an "AS IS" BASIS ,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or

impl i ed . See the L icense f o r the s p e c i f i c language governing

permi s s i ons and l i m i t a t i o n s under the L icense .

8

9 <!DOCTYPE html>

155

10 <html>

11 <head>

12 <t i t l e >Reverse Engineer ing Provenance</ t i t l e >

13 <s c r i p t s r c="https://code.jquery.com/jquery -3.3.1.min.js" type="text

/javascript"></s c r i p t >

14 < l i n k r e l="icon" h r e f="/favicon.ico">

15 <meta http−equiv="Content-Type" content="text/html; charset=utf-8"

/>

16

17 </s c r i p t >

18 </head>

19 <body>

20

21 <button id="Save">Save</button>

22 <input type="file" id="file-input">

23 <div id="vis"></div>

24 <div id="slidedeck_root"></div>

25

26 </body>

27

28 <s c r i p t >

29 (function () {

30 var isChrome = /Chrome / . t e s t (nav igator . userAgent) && /Google Inc / .

t e s t (nav igator . vendor) ;

31 i f (! isChrome) {

32 a l e r t (’This application was designed to be used in Google Chrome

.\nRunning the application in other browsers might result in

performance issues or other misbehavior.’) ;

33 }

34 }) () ;

35 </s c r i p t >

36

156

37 </html>

Minimal JS server - fileupdate.js

1

2 Copyright 2020 Wayne C. Henry

3

4 Licensed under the Apache License , Vers ion 2 .0 (the "License") ; you may

not use this f i l e except in compliance with the L icense . You may

obta in a copy o f the L icense at

5

6 http : //www.apache.org/licenses/LICENSE -2.0

7

8 Unless r equ i r ed by a p p l i c a b l e law or agreed to in wri t ing , so f tware

d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an "AS IS" BASIS ,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or

impl i ed . See the L icense f o r the s p e c i f i c language governing

permi s s i ons and l i m i t a t i o n s under the L icense .

9

10 var PORT = 8082 ;

11 var i o = r e q u i r e ("socket.io") . l i s t e n (PORT) ;

12 var f s = r e q u i r e ("fs") ;

13 Ta i l = r e q u i r e (’tail’) . Ta i l ; // https://github.com/lucagrulla/node-tail

14

15 conso l e . l og ("dir" , d i rname) ;

16 const l o g f i l e = ’jsondata.json’ ;

17 var temp = ’’ ;

18

19 try {

20 i o . s o ck e t s . on (’connection’ , function (socke t) {

21 conso l e . l og ("Connected!") ;

22 socke t . emit (’connected’ , { accept : true }) ;

157

23

24 conso l e . l og ("Trying to send the content to a client...") ;

25 conso l e . l og ("dir" , d i rname) ;

26

27 t a i l = new Tai l (l o g f i l e) ;

28 t a i l . on ("line" , function (data) {

29 i f (data != temp) { // Watch for repeated entries

30 conso l e . l og ("Content:" , data) ;

31 socke t . emit ("fileChanged" , data) ;

32 }

33 temp = data ;

34 })

35 t a i l . on ("error" , function (e r r o r) {

36 conso l e . l og (’ERROR: ’ , e r r o r) ;

37 })

38 }) ;

39 } catch (e r r o r)

40 {

41 conso l e . l og (’Error: ’ , e r r o r) ;

42 }

158

Appendix E. Ethics Approval - Evaluation

This appendix provides the data collection materials for the SensorRE evaluation.

159

Reverse Engineering Provenance Prototype Evaluation

Demographic Survey:

1. What is your age?

a. 18-24

b. 25-34

c. 35-44

d. 45-54

e. 55 or older

2. What is the highest level of education you have completed?

a. High School degree

b. Associate’s degree

c. Bachelor’s degree

d. Master’s degree

e. Doctorate degree

3. What is your field of study?

4. How much experience do you have with software reverse engineering?

a. No experience

b. Less than one year

c. Between one to three years

d. Greater than three years

5. What educational experience do you have in software reverse engineering? (Circle all that apply)

a. N/A

b. Certificates achieved

c. Courses completed

d. Degrees

Explain your response:

Reverse Engineering Provenance Prototype Evaluation

6. How would you subjectively rate your skill level in reverse engineering (x86)?

a. No Knowledge

b. Novice

c. Intermediate

d. Advanced

Reverse Engineering Provenance Prototype Evaluation

Case Study Tasks

Instructions: Please read each scenario description carefully and complete the tasks by
answering the questions or using the provenance tool. If you have any questions or issues
completing the tasks, please ask the researcher.

Scenario 1: Auditing a collaborator’s analysis

The first scenario presents the SensorRE provenance graph in a state where a collaborator has
already made several relevant discoveries about the particular binary. You are asked to answer a
set of statements based on the existing provenance graph. The statements are related to the
overall function of the software executable. You are encouraged to inspect the graph and
associated binary using Binary Ninja but not to extend or modify them.

What functions has the collaborator examined according to the provenance graph?

What system calls are made in the previously examined functions of the binary?

Scenario 2: Extending the collaborator’s analysis

In this scenario, extend the previous analysis from Scenario 1. First, locate the function which
calls the Windows encryption routine. Rename the calling function to be more representative of
the activity within (change sub_XXXXX). Choose a name which would be used to communicate
the behavior of the function back to the original collaborator.

Using annotations in the provenance graph, record (1) what you expected to see from the data
(hypotheses), and (2) what you actually saw and thought (finding).

Reverse Engineering Provenance Prototype Evaluation

Scenario 3: Present results using the Storyboard view

In this task, use the Storyboard view to present the active branch of the provenance graph. Select
the applicable steps in the graph and add them to the storyboard in order and modify the
presentation timing. Show the researcher the finished product.

Reverse Engineering Provenance Prototype Evaluation

Post-Task Survey

Instructions: Reflecting on the tasks you were asked to complete, please answer each
statement with a rating from Strongly Disagree to Strongly Agree.

 Statement
Strongly
Disagree

Disagree
Slightly
Disagree

Neutral
Slightly
Agree

Agree
Strongly

Agree

1 This tool was easy to use.

2 This tool was easy to learn.

3
This tool could improve the
recall of findings, strategies
and methods.

4
This tool could improve
validating findings from
others.

5

This tool could improve
communicating findings
among teams of reverse
engineers.

(Continued)

Reverse Engineering Provenance Prototype Evaluation

1. What was particularly useful about the tool?

2. Do you think the tree diagram is a useful representation of the provenance graph?

3. Are there other artifacts you would like to add to the provenance graph?

4. Are there any features missing?

5. Are there any limitations of the system which would hinder its adoption?

Bibliography

1. P. H. Nguyen, “Visualization of analytic provenance for sensemaking,” Ph.D.
dissertation, Middlesex University, 2017.

2. P. Pirolli and S. Card, “The sensemaking process and leverage points for analyst
technology as identified through cognitive task analysis,” in Proceedings of the
International Conference on Intelligence Analysis, vol. 5, 2005, pp. 2–4.

3. A. R. Bryant, “Understanding how reverse engineers make sense of programs
from assembly language representations,” PhD Dissertation, Air Force Institute
of Technology, 2012.

4. D. Gotz and M. X. Zhou, “Characterizing users’ visual analytic activity for
insight provenance,” Information Visualization, vol. 8, no. 1, pp. 42–55, 2009.

5. Y. B. Shrinivasan and J. J. van Wijk, “Supporting the analytical reasoning
process in information visualization,” Proceeding of the Conference on Human
factors in Computing Systems, p. 1237, 2008.

6. H. Stitz, S. Gratzl, H. Piringer, T. Zichner, and M. Streit, “KnowledgePearls:
Provenance-Based Visualization Retrieval,” IEEE Transactions on Visualization
and Computer Graphics, vol. 25, no. 1, pp. 120–130, 2019.

7. S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove, and M. Streit, “From visual ex-
ploration to storytelling and back again,” in Computer Graphics Forum, vol. 35,
no. 3. Wiley Online Library, 2016, pp. 491–500.

8. J. W. Creswell and V. L. P. Clark, Designing and conducting mixed methods
research. Thousand Oaks, CA: Sage Publications, 2017.

9. Binary Ninja Python API Documentation. 2019. [Online]. Available:
https://api.binary.ninja/

10. K. Xu, S. Attfield, T. Jankun-Kelly, A. Wheat, P. H. Nguyen, and N. Selvaraj,
“Analytic provenance for sensemaking: A research agenda,” IEEE Computer
Graphics and Applications, vol. 35, no. 3, pp. 56–64, 2015.

11. DARPA - Computers and Humans Exploring Software Se-
curity. 2018. [Online]. Available: https://www.darpa.mil/program/
computers-and-humans-exploring-software-security

12. J. Cowley, “Job analysis results for malicious-code reverse engineers: A case
study,” Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU/SEI-2014-TR-002, 2014.

13. M. K. Tennor, “Reverse engineering cognition,” MITRE, Tech. Rep. 15-2630,
2015.

14. A. Telea, H. Byelas, and L. Voinea, “A framework for reverse engineering large
C++ code bases,” Electronic Notes in Theoretical Computer Science, vol. 233,
pp. 143–159, 2009.

166

15. V. Fix, S. Wiedenbeck, and J. Scholtz, “Mental representations of programs by
novices and experts,” in Proceedings of the ACM Conference on Human Factors
in Computing Systems, 1993, pp. 74–79.

16. H. N. Huang, E. Verbeek, D. German, M.-A. Storey, and M. Salois, “Atlantis:
Improving the Analysis and Visualization of Large Assembly Execution Traces,”
in International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2017, pp. 623–627.

17. M. Polino, A. Scorti, F. Maggi, and S. Zanero, “Jackdaw: Towards automatic
reverse engineering of large datasets of binaries,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
2015, pp. 121–143.

18. D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A new approach to com-
puter security via binary analysis,” in International Conference on Information
Systems Security. Springer, 2008, pp. 1–25.

19. J. Baldwin, P. Sinha, M. Salois, and Y. Coady, “Progressive user interfaces for
regressive analysis: Making tracks with large, low-level systems,” in Proceedings
of the Australasian User Interface Conference. Australian Computer Society,
Inc., 2011, pp. 47–56.

20. D. Snowden, “Multi-ontology sense making: a new simplicity in decision mak-
ing,” Journal of Innovation in Health Informatics, vol. 13, no. 1, pp. 45–53,
2005.

21. D. M. Russell, R. Jeffries, and L. Irani, “Sensemaking for the rest of us,” in
Sensemaking Workshop at CHI, 2008.

22. S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in Information
Visualization: Using Vision to Think. San Francisco: Morgan Kaufmann Pub-
lishers, 1999.

23. H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley, and K. Wong,
“Reverse engineering: A roadmap,” in Proceedings of the Conference on the
Future of Software Engineering, 2000, pp. 47–60.

24. D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary anal-
ysis platform,” in International Conference on Computer Aided Verification.
Springer, 2011, pp. 463–469.

25. J. Kinable and O. Kostakis, “Malware classification based on call graph cluster-
ing,” Journal in Computer Virology, vol. 7, no. 4, pp. 233–245, 2011.

26. C. S. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and
obfuscation-tools for software protection,” IEEE Transactions on Software En-
gineering, vol. 28, no. 8, pp. 735–746, 2002.

27. D. Votipka, S. Rabin, K. Micinski, J. S. Foster, and M. L. Mazurek, “An ob-
servational investigation of reverse engineers’ process and mental models,” in
Extended Abstracts of the Conference on Human Factors in Computing Systems,
2019, pp. 1–6.

167

28. F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis.
Berlin, Heidelberg: Springer, 2015.

29. G. Conti and E. Dean, “Visual forensic analysis and reverse engineering of binary
data,” in Proceedings of Black Hat USA, 2008.

30. A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware
detection,” in Proceedings of the Computer Security Applications Conference.
IEEE, 2007, pp. 421–430.

31. E. Eilam, Reversing: Secrets of Reverse Engineering. Indianapolis, IN: Wiley
Publishing Inc., 2011.

32. A. S. Tanenbaum and A. S. Woodhull, Operating systems: design and imple-
mentation. Englewood Cliffs, NJ: Prentice-Hall Professional, 1987, vol. 2.

33. J. Trümper, “Visualization techniques for the analysis of software behavior and
related structures,” PhD Dissertation, University of Potsdam, 2014.

34. B. Blunden, The Rootkit Arsenal: Escape and evasion in the dark corners of the
system. Burlington, MA: Jones & Bartlett Publishers, 2012.

35. E. Skoudis and L. Zeltser, Malware: Fighting malicious code. Englewood Cliffs,
NJ: Prentice Hall Professional, 2004.

36. G. Hoglund and J. Butler, Rootkits: Subverting the Windows Kernel. Addison-
Wesley Professional, 2006.

37. K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping johnny
to analyze malware,” IEEE Security & Privacy (Oakland), San Jose, CA, 2016.

38. T. Munzner, “A nested process model for visualization design and validation,”
Transactions on Visualization & Computer Graphics, no. 6, pp. 921–928, 2009.

39. Binary Ninja. 2020. [Online]. Available: https://binary.ninja/

40. IDA Pro Disassembler. 2019. [Online]. Available: https://hex-rays.com/

41. Ghidra software reverse engineering framework. 2019. [Online]. Available:
https://github.com/NationalSecurityAgency/ghidra

42. R. Koschke, “Software visualization in software maintenance, reverse engineer-
ing, and re-engineering: A research survey,” Journal of Software Maintenance
and Evolution: Research and Practice, vol. 15, no. 2, pp. 87–109, 2003.

43. S. Bassil and R. K. Keller, “Software visualization tools: Survey and analysis,”
in International Workshop on Program Comprehension. IEEE, 2001, pp. 7–17.

44. S. E. Sim, C. L. Clarke, and R. C. Holt, “Archetypal source code searches: A sur-
vey of software developers and maintainers,” in Proceedings of the International
Workshop on Program Comprehension. IEEE, 1998, pp. 180–187.

45. H. M. Kienle and H. A. Müller, “Rigi: An environment for software reverse engi-
neering, exploration, visualization, and redocumentation,” Science of Computer
Programming, vol. 75, no. 4, pp. 247–263, 2010.

168

46. A. Telea, A. Maccari, and C. Riva, “An open visualization toolkit for reverse
architecting,” in Proceedings of the International Workshop on Program Com-
prehension. IEEE, 2002, pp. 3–10.

47. M.-A. Storey, C. Best, and J. Michand, “SHriMP Views: An Interactive En-
vironment for Exploring Java Programs,” in Proceedings of the International
Workshop on Program Comprehension. IEEE, 2001, pp. 111–112.

48. D. L. Moise, K. Wong, and D. Sun, “Integrating a reverse engineering tool with
microsoft visual studio. net,” in Proceedings of the Eighth European Conference
on Software Maintenance and Reengineering. IEEE, 2004, pp. 85–92.

49. D. W. Pucsek, “Visualization and analysis of assembly code in an integrated
comprehension environment,” Master’s thesis, University of Victoria, 2013.

50. C. Bennett, D. Myers, M.-A. Storey, D. M. German, D. Ouellet, M. Salois,
and P. Charland, “A survey and evaluation of tool features for understanding
reverse-engineered sequence diagrams,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 20, no. 4, pp. 291–315, 2008.

51. Eclipse Open Source Rich Client Platform. 2018. [Online]. Available:
https://www.eclipse.org/community/rcpos.php

52. B. Cleary, M.-A. Storey, L. Chan, M. Salois, and F. Painchaud, “Atlantis - As-
sembly Trace Analysis Environment,” in Working Conference on Reverse Engi-
neering. IEEE, 2012, pp. 505–506.

53. M. Wagner, A. Rind, N. Thür, and W. Aigner, “A Knowledge-assisted Vi-
sual Malware Analysis System: Design, Validation, and Reflection of KAMAS,”
Computers & Security, vol. 67, pp. 1–15, 2017.

54. D. A. Quist and L. M. Liebrock, “Visualizing compiled executables for malware
analysis,” in Proceedings of the International Workshop on Visualization for
Cyber Security. IEEE, 2009, pp. 27–32.

55. D. Holten, “Hierarchical edge bundles: Visualization of Adjacency Relations in
Hierarchical Data,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 12, no. 5, pp. 741–748, 2006.

56. JHotDraw. 2018. [Online]. Available: http://www.jhotdraw.org/

57. OpenGL - The Industry Standard for High Performance Graphics. 2018.
[Online]. Available: https://opengl.org/

58. C. Treude, F. Figueira Filho, M.-A. Storey, and M. Salois, “An exploratory
study of software reverse engineering in a security context,” in Proceedings of
the Working Conference on Reverse Engineering (WCRE), 2011, pp. 184–188.

59. J. Baldwin, A. Teh, E. Baniassad, D. Van Rooy, and Y. Coady, “Requirements
for tools for comprehending highly specialized assembly language code and how
to elicit these requirements,” Requirements Engineering, vol. 21, no. 1, pp. 131–
159, 2016.

60. H. M. Kienle and H. A. Müller, “The tools perspective on software reverse
engineering: requirements, construction, and evaluation,” in Advances in Com-
puters. Elsevier, 2010, vol. 79, pp. 189–290.

169

61. H. M. Kienle and H. A. Muller, “Requirements of software visualization tools:
A literature survey,” in 2007 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis. IEEE, 2007, pp. 2–9.

62. M. Ceccato, P. Tonella, C. Basile, B. Coppens, B. De Sutter, P. Falcarin, and
M. Torchiano, “How professional hackers understand protected code while per-
forming attack tasks,” in Proceedings of the 25th International Conference on
Program Comprehension. IEEE, 2017, pp. 154–164.

63. T. C. Summers, “How hackers think: A mixed method study of mental models
and cognitive patterns of high-tech wizards,” PhD Dissertation, Case Western
Reserve University, 2015.

64. G. Chin Jr, O. A. Kuchar, and K. E. Wolf, “Exploring the analytical processes
of intelligence analysts,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2009, pp. 11–20.

65. B. Dervin, An Overview of Sense-making Research: Concepts, Methods, and
Results to Date. Dervin, Brenda, 1983.

66. K. E. Weick, Sensemaking in organizations. Sage, 1995, vol. 3.

67. D. M. Russell, M. J. Stefik, P. Pirolli, and S. K. Card, “The cost structure of
sensemaking,” in Proceedings of the Conference on Human factors in Computing
Systems. ACM, 1993, pp. 269–276.

68. G. Klein, J. K. Phillips, E. L. Rall, and D. A. Peluso, “A data-frame theory
of sensemaking,” in Proceedings of the International Conference on Naturalistic
Decision Making. New York, NY, USA: Lawrence Erlbaum, 2007, pp. 113–155.

69. A. Telea, O. Ersoy, and L. Voinea, “Visual analytics in software maintenance:
Challenges and opportunities,” in Proceedings of EuroVAST, EuroVis, 2010, pp.
65–70.

70. W. S. Humphrey, Managing the software process. Addison-Wesley Longman
Publishing Co., Inc., 1989.

71. L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska,
S. Miles, P. Missier, J. Myers et al., “The open provenance model core specifica-
tion (v1.1),” Future Generation Computer Systems, vol. 27, no. 6, pp. 743–756,
2011.

72. E. D. Ragan, A. Endert, J. Sanyal, and J. Chen, “Characterizing provenance
in visualization and data analysis: an organizational framework of provenance
types and purposes,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 22, no. 1, pp. 31–40, 2016.

73. P. H. Nguyen, K. Xu, A. Wheat, B. W. Wong, S. Attfield, and B. Fields,
“Sensepath: Understanding the sensemaking process through analytic prove-
nance,” IEEE transactions on visualization and computer graphics, vol. 22, no. 1,
pp. 41–50, 2015.

74. C. North, R. Chang, A. Endert, W. Dou, R. May, B. Pike, and G. Fink, “Ana-
lytic provenance: process+ interaction+ insight,” in Extended Abstracts on the
Conference for Human Factors in Computing Systems, 2011, pp. 33–36.

170

75. K. A. Cook and J. J. Thomas, Illuminating the path: The research and devel-
opment agenda for visual analytics. Pacific Northwest National Lab, Richland,
WA, 2005.

76. L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger, C. T. Silva,
and H. T. Vo, “Vistrails: Enabling interactive multiple-view visualizations,” in
IEEE Visualization. IEEE, 2005, pp. 135–142.

77. C. Dunne, N. Henry Riche, B. Lee, R. Metoyer, and G. Robertson, “Graph-
trail: Analyzing large multivariate, heterogeneous networks while supporting
exploration history,” in Proceedings of the Conference on Human Factors in
Computing Systems, 2012, pp. 1663–1672.

78. N. Kadivar, V. Chen, D. Dunsmuir, E. Lee, C. Qian, J. Dill, C. Shaw, and
R. Woodbury, “Capturing and supporting the analysis process,” in IEEE Sym-
posium on Visual Analytics Science and Technology, 2009, pp. 131–138.

79. W. A. Pike, J. Stasko, R. Chang, and T. A. O’Connell, “The science of interac-
tion,” Information Visualization, vol. 8, no. 4, pp. 263–274, 2009.

80. T. Blascheck, M. John, K. Kurzhals, S. Koch, and T. Ertl, “VA2: A visual ana-
lytics approach for evaluating visual analytics applications,” IEEE Transactions
on Visualization and Computer Graphics, vol. 22, no. 1, pp. 61–70, 2015.

81. T. Jankun-Kelly, K. L. Ma, and M. Gertz, “A model for the visualization ex-
ploration process,” in Proceedings of the Conference on Visualization. IEEE,
2002, pp. 323–330.

82. Y. Kim, K. Wongsuphasawat, J. Hullman, and J. Heer, “Graphscape: A model
for automated reasoning about visualization similarity and sequencing,” in Pro-
ceedings of the Conference on Human Factors in Computing Systems, 2017, pp.
2628–2638.

83. J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala, “Graphical histories for visu-
alization: Supporting analysis, communication, and evaluation,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 14, no. 6, pp. 1189–1196,
2008.

84. K. Brodlie, A. Poon, H. Wright, L. Brankin, G. Banecki, and A. Gay, “Grasparc:
A problem solving environment integrating computation and visualization,” in
Proceedings of the Conference on Visualization. IEEE Computer Society, 1993,
pp. 102–109.

85. W. Javed and N. Elmqvist, “Explates: Spatializing interactive analysis to scaf-
fold visual exploration,” in Computer Graphics Forum, vol. 32, no. 3pt4. Wiley
Online Library, 2013, pp. 441–450.

86. M. C. Chuah and S. F. Roth, “Visualizing common ground,” in Proceedings of
the International Conference on Information Visualization. IEEE, 2003, pp.
365–372.

87. P. Isenberg and D. Fisher, “Collaborative brushing and linking for co-located
visual analytics of document collections,” in Computer Graphics Forum, vol. 28,
no. 3. Wiley Online Library, 2009, pp. 1031–1038.

171

88. J. Heer, F. B. Viégas, and M. Wattenberg, “Voyagers and voyeurs: Support-
ing asynchronous collaborative information visualization,” in Proceedings of the
Conference on Human Factors in Computing Systems. ACM, 2007, pp. 1029–
1038.

89. W. Willett, J. Heer, J. Hellerstein, and M. Agrawala, “Commentspace: struc-
tured support for collaborative visual analysis,” in Proceedings of the Conference
on Human Factors in Computing Systems. ACM, 2011, pp. 3131–3140.

90. J. Lu, Z. Wen, S. Pan, and J. Lai, “Analytic trails: supporting provenance, col-
laboration, and reuse for visual data analysis by business users,” in Conference
on Human-Computer Interaction. Springer, 2011, pp. 256–273.

91. F. B. Viegas, M. Wattenberg, F. Van Ham, J. Kriss, and M. McKeon,
“Manyeyes: A site for visualization at internet scale,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, no. 6, pp. 1121–1128, 2007.

92. M. Wattenberg and J. Kriss, “Designing for social data analysis,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 12, no. 4, pp. 549–557,
2006.

93. W. Willett, J. Heer, and M. Agrawala, “Scented widgets: Improving navigation
cues with embedded visualizations,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 6, pp. 1129–1136, 2007.

94. Y. Chen, J. Alsakran, S. Barlowe, J. Yang, and Y. Zhao, “Supporting effective
common ground construction in asynchronous collaborative visual analytics,” in
IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE,
2011, pp. 101–110.

95. R. Walker, A. Slingsby, J. Dykes, K. Xu, J. Wood, P. H. Nguyen, D. Stephens,
B. W. Wong, and Y. Zheng, “An extensible framework for provenance in human
terrain visual analytics,” IEEE Transactions on Visualization and Computer
Graphics, vol. 19, no. 12, pp. 2139–2148, 2013.

96. P. H. Nguyen, K. Xu, R. Walker, and B. W. Wong, “Schemaline: Timeline
visualization for sensemaking,” in International Conference on Information Vi-
sualisation. IEEE, 2014, pp. 225–233.

97. R. Chang, C. Ziemkiewicz, T. M. Green, and W. Ribarsky, “Defining insight
for visual analytics,” IEEE Computer Graphics and Applications, vol. 29, pp.
14–17, 2009.

98. C. North, “Toward measuring visualization insight,” IEEE Computer Graphics
and Applications, vol. 26, no. 3, pp. 6–9, 2006.

99. J. S. Yi, Y. ah Kang, J. T. Stasko, J. A. Jacko et al., “Toward a deeper under-
standing of the role of interaction in information visualization,” IEEE Transac-
tions on Visualization & Computer Graphics, no. 6, 2007.

100. S. Carpendale, “Evaluating information visualizations,” in Information Visual-
ization. Springer, 2008, pp. 19–45.

101. C. Plaisant, G. G. Grinstein, and J. Scholtz, “Visual-analytics evaluation,” IEEE
Computer Graphics and Applications, vol. 29, no. 3, pp. 16–17, 2009.

172

102. Crossfilter: Fast multidimensional filtering for coordinated views. 2019.
[Online]. Available: https://square.github.io/crossfilter/

103. D3.js. 2018. [Online]. Available: https://d3js.org/

104. dc.js: Dimensional charting javascript library. 2019. [Online]. Available:
https://dc-js.github.io/dc.js/

105. Plotly Technologies Inc. Collaborative data science. 2019. [Online]. Available:
https://plot.ly/

106. Vega: A visualization grammar. 2019. [Online]. Available: https://vega.github.
io/vega/

107. Processing. 2019. [Online]. Available: https://processing.org/

108. Protovis. 2019. [Online]. Available: https://mbostock.github.io/protovis/

109. Visual storytelling. 2019. [Online]. Available: https://github.com/
VisualStorytelling

110. H. F. Hofmann and F. Lehner, “Requirements engineering as a success factor in
software projects,” IEEE Software, no. 4, pp. 58–66, 2001.

111. MaxQDA: Qualitative Data Analysis Software. 2018. [Online]. Available:
https://www.maxqda.com/

112. J. Heer and M. Agrawala, “Design considerations for collaborative visual ana-
lytics,” Information visualization, vol. 7, no. 1, pp. 49–62, 2008.

113. N. Chinchor and W. A. Pike, “The science of analytic reporting,” Information
Visualization, vol. 8, no. 4, pp. 286–293, 2009.

114. XMLRPC server and client modules. 2019. [Online]. Available: https:
//docs.python.org/3/library/xmlrpc.html

115. S. Verhoeven, T. Klaver, H. Stitz, M. van Meersbergen, and P. Pushpanjali,
“Visual storytelling provenance core,” Mar. 2019.

116. K. Madanagopal, E. D. Ragan, and P. Benjamin, “Analytic provenance in prac-
tice: The role of provenance in real-world visualization and data analysis envi-
ronments,” IEEE Computer Graphics and Applications, 2019.

117. J. Heer and B. Shneiderman, “Interactive dynamics for visual analysis,” Queue,
vol. 10, no. 2, p. 30, 2012.

118. A. Rind, W. Aigner, M. Wagner, S. Miksch, and T. Lammarsch, “User tasks
for evaluation: Untangling the terminology throughout visualization design and
development,” in Proceedings of the Workshop on Beyond Time and Errors:
Novel Evaluation Methods for Visualization, 2014, pp. 9–15.

119. O. ElTayeby and W. Dou, “A survey on interaction log analysis for evaluating
exploratory visualizations,” in Proceedings of the Workshop on Beyond Time
and Errors: Novel Evaluation Methods for Visualization, 2016, pp. 62–69.

173

120. J. R. Lewis, “IBM Computer Usability Satisfaction Questionnaires: Psycho-
metric evaluation and instructions for use,” International Journal of Human-
Computer Interaction, vol. 7, no. 1, pp. 57–78, 1995.

121. J. Stasko, C. Görg, and Z. Liu, “Jigsaw: supporting investigative analysis
through interactive visualization,” Information Visualization, vol. 7, no. 2, pp.
118–132, 2008.

122. M.-A. Storey, K. Wong, P. Fong, D. Hooper, K. Hopkins, and H. A. Muller, “On
designing an experiment to evaluate a reverse engineering tool,” in Proceedings
of the Working Conference on Reverse Engineering. IEEE, 1996, pp. 31–40.

123. Y.-a. Kang, C. Gorg, and J. Stasko, “How can visual analytics assist investiga-
tive analysis? Design implications from an evaluation,” IEEE Transactions on
Visualization and Computer Graphics, vol. 17, no. 5, pp. 570–583, 2011.

124. B. Shneiderman, “The eyes have it: A task by data type taxonomy for infor-
mation visualizations,” in Proceedings of the Symposium on Visual Languages.
IEEE, 1996, pp. 336–343.

125. T. Munzner, “Process and pitfalls in writing information visualization research
papers,” in Information Visualization. Springer, 2008, pp. 134–153.

126. M. Di Penta, R. K. Stirewalt, and E. Kraemer, “Designing your next empiri-
cal study on program comprehension,” in Proceedings of the 15th International
Conference on Program Comprehension. IEEE, 2007, pp. 281–285.

127. R. H. Franke and J. D. Kaul, “The hawthorne experiments: First statistical
interpretation,” American Sociological Review, pp. 623–643, 1978.

128. I. Zayour and T. C. Lethbridge, “Adoption of reverse engineering tools: a cog-
nitive perspective and methodology,” in Proceedings of the Working Conference
on Reverse Engineering (WCRE), 2001, pp. 245–255.

129. E. D. Keim, J. Kohlhammer, and G. Ellis, “Mastering the information age:
Solving problems with visual analytics,” Eurographics Association, vol. 2, 2010.

130. D. Reniers, L. Voinea, O. Ersoy, and A. Telea, “The solid* toolset for software
visual analytics of program structure and metrics comprehension: From research
prototype to product,” Science of Computer Programming, vol. 79, pp. 224–240,
2014.

174

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

07–21–2020 Dissertation Sept 2017 — July 2020

ANALYTIC PROVENANCE FOR
SOFTWARE REVERSE ENGINEERS

HR0011940828

Major Wayne C. Henry

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-DS-20-S-010

Air Force Research Laboratory Information Directorate (AFRL/RI)
525 Brooks Rd
Rome Lab AFB, NY 13441
DSN 587-4517
Email: amanda.ozanam@us.af.mil

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Reverse engineering is a time-consuming process essential to software-security tasks such as malware analysis and vulnerability discovery.
During the process, an engineer will follow multiple leads to determine how the software functions. The combination of time and possible
explanations makes it difficult for the engineers to maintain a context of their findings within the overall task. Analytic provenance tools
have demonstrated value in similarly complex fields that require open-ended exploration and hypothesis vetting. However, they have not
been explored in the reverse engineering domain.
This dissertation presents SensorRE, the first analytic provenance tool designed to support software reverse engineers. A semi-structured
interview with experts led to the design and implementation of the system. We describe the visual interfaces and their integration within an
existing software analysis tool. SensorRE automatically captures user’s sensemaking actions and provides a graph and storyboard view to
support further analysis. User study results with both experts and graduate students demonstrate that SensorRE is easy to use and that it
improved the participants’ exploration process.

Reverse Engineering, Visualization, Analytic Provenance, Requirements Elicitation, Collaboration

U U U UU 187

Dr. Gilbert L. Peterson, AFIT/ENG

(937) 255-3636 x4281: gilbert.peterson@afit.edu

	Analytic Provenance for Software Reverse Engineers
	Recommended Citation

	tmp.1600284819.pdf.KwlHf

