9,035 research outputs found

    Revisiting Urban Dynamics through Social Urban Data:

    Get PDF
    The study of dynamic spatial and social phenomena in cities has evolved rapidly in the recent years, yielding new insights into urban dynamics. This evolution is strongly related to the emergence of new sources of data for cities (e.g. sensors, mobile phones, online social media etc.), which have potential to capture dimensions of social and geographic systems that are difficult to detect in traditional urban data (e.g. census data). However, as the available sources increase in number, the produced datasets increase in diversity. Besides heterogeneity, emerging social urban data are also characterized by multidimensionality. The latter means that the information they contain may simultaneously address spatial, social, temporal, and topical attributes of people and places. Therefore, integration and geospatial (statistical) analysis of multidimensional data remain a challenge. The question which, then, arises is how to integrate heterogeneous and multidimensional social urban data into the analysis of human activity dynamics in cities? To address the above challenge, this thesis proposes the design of a framework of novel methods and tools for the integration, visualization, and exploratory analysis of large-scale and heterogeneous social urban data to facilitate the understanding of urban dynamics. The research focuses particularly on the spatiotemporal dynamics of human activity in cities, as inferred from different sources of social urban data. The main objective is to provide new means to enable the incorporation of heterogeneous social urban data into city analytics, and to explore the influence of emerging data sources on the understanding of cities and their dynamics.  In mitigating the various heterogeneities, a methodology for the transformation of heterogeneous data for cities into multidimensional linked urban data is, therefore, designed. The methodology follows an ontology-based data integration approach and accommodates a variety of semantic (web) and linked data technologies. A use case of data interlinkage is used as a demonstrator of the proposed methodology. The use case employs nine real-world large-scale spatiotemporal data sets from three public transportation organizations, covering the entire public transport network of the city of Athens, Greece.  To further encourage the consumption of linked urban data by planners and policy-makers, a set of webbased tools for the visual representation of ontologies and linked data is designed and developed. The tools – comprising the OSMoSys framework – provide graphical user interfaces for the visual representation, browsing, and interactive exploration of both ontologies and linked urban data.   After introducing methods and tools for data integration, visual exploration of linked urban data, and derivation of various attributes of people and places from different social urban data, it is examined how they can all be combined into a single platform. To achieve this, a novel web-based system (coined SocialGlass) for the visualization and exploratory analysis of human activity dynamics is designed. The system combines data from various geo-enabled social media (i.e. Twitter, Instagram, Sina Weibo) and LBSNs (i.e. Foursquare), sensor networks (i.e. GPS trackers, Wi-Fi cameras), and conventional socioeconomic urban records, but also has the potential to employ custom datasets from other sources. A real-world case study is used as a demonstrator of the capacities of the proposed web-based system in the study of urban dynamics. The case study explores the potential impact of a city-scale event (i.e. the Amsterdam Light festival 2015) on the activity and movement patterns of different social categories (i.e. residents, non-residents, foreign tourists), as compared to their daily and hourly routines in the periods  before and after the event. The aim of the case study is twofold. First, to assess the potential and limitations of the proposed system and, second, to investigate how different sources of social urban data could influence the understanding of urban dynamics. The contribution of this doctoral thesis is the design and development of a framework of novel methods and tools that enables the fusion of heterogeneous multidimensional data for cities. The framework could foster planners, researchers, and policy makers to capitalize on the new possibilities given by emerging social urban data. Having a deep understanding of the spatiotemporal dynamics of cities and, especially of the activity and movement behavior of people, is expected to play a crucial role in addressing the challenges of rapid urbanization. Overall, the framework proposed by this research has potential to open avenues of quantitative explorations of urban dynamics, contributing to the development of a new science of cities

    Revisiting Urban Dynamics through Social Urban Data

    Get PDF
    The study of dynamic spatial and social phenomena in cities has evolved rapidly in the recent years, yielding new insights into urban dynamics. This evolution is strongly related to the emergence of new sources of data for cities (e.g. sensors, mobile phones, online social media etc.), which have potential to capture dimensions of social and geographic systems that are difficult to detect in traditional urban data (e.g. census data). However, as the available sources increase in number, the produced datasets increase in diversity. Besides heterogeneity, emerging social urban data are also characterized by multidimensionality. The latter means that the information they contain may simultaneously address spatial, social, temporal, and topical attributes of people and places. Therefore, integration and geospatial (statistical) analysis of multidimensional data remain a challenge. The question which, then, arises is how to integrate heterogeneous and multidimensional social urban data into the analysis of human activity dynamics in cities?  To address the above challenge, this thesis proposes the design of a framework of novel methods and tools for the integration, visualization, and exploratory analysis of large-scale and heterogeneous social urban data to facilitate the understanding of urban dynamics. The research focuses particularly on the spatiotemporal dynamics of human activity in cities, as inferred from different sources of social urban data. The main objective is to provide new means to enable the incorporation of heterogeneous social urban data into city analytics, and to explore the influence of emerging data sources on the understanding of cities and their dynamics.  In mitigating the various heterogeneities, a methodology for the transformation of heterogeneous data for cities into multidimensional linked urban data is, therefore, designed. The methodology follows an ontology-based data integration approach and accommodates a variety of semantic (web) and linked data technologies. A use case of data interlinkage is used as a demonstrator of the proposed methodology. The use case employs nine real-world large-scale spatiotemporal data sets from three public transportation organizations, covering the entire public transport network of the city of Athens, Greece.  To further encourage the consumption of linked urban data by planners and policy-makers, a set of webbased tools for the visual representation of ontologies and linked data is designed and developed. The tools – comprising the OSMoSys framework – provide graphical user interfaces for the visual representation, browsing, and interactive exploration of both ontologies and linked urban data.  After introducing methods and tools for data integration, visual exploration of linked urban data, and derivation of various attributes of people and places from different social urban data, it is examined how they can all be combined into a single platform. To achieve this, a novel web-based system (coined SocialGlass) for the visualization and exploratory analysis of human activity dynamics is designed. The system combines data from various geo-enabled social media (i.e. Twitter, Instagram, Sina Weibo) and LBSNs (i.e. Foursquare), sensor networks (i.e. GPS trackers, Wi-Fi cameras), and conventional socioeconomic urban records, but also has the potential to employ custom datasets from other sources.  A real-world case study is used as a demonstrator of the capacities of the proposed web-based system in the study of urban dynamics. The case study explores the potential impact of a city-scale event (i.e. the Amsterdam Light festival 2015) on the activity and movement patterns of different social categories (i.e. residents, non-residents, foreign tourists), as compared to their daily and hourly routines in the periods  before and after the event. The aim of the case study is twofold. First, to assess the potential and limitations of the proposed system and, second, to investigate how different sources of social urban data could influence the understanding of urban dynamics.  The contribution of this doctoral thesis is the design and development of a framework of novel methods and tools that enables the fusion of heterogeneous multidimensional data for cities. The framework could foster planners, researchers, and policy makers to capitalize on the new possibilities given by emerging social urban data. Having a deep understanding of the spatiotemporal dynamics of cities and, especially of the activity and movement behavior of people, is expected to play a crucial role in addressing the challenges of rapid urbanization. Overall, the framework proposed by this research has potential to open avenues of quantitative explorations of urban dynamics, contributing to the development of a new science of cities

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    A roadmap to integrate astrocytes into Systems Neuroscience.

    Get PDF
    Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease

    Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts

    Get PDF
    Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi‐faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time‐horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer‐term management actions are not missed while urgent threats to ES are given priority
    corecore