164,482 research outputs found

    An expert system for a local planning environment

    Get PDF
    In this paper, we discuss the design of an Expert System (ES) that supports decision making in a Local Planning System (LPS) environment. The LPS provides the link between a high level factory planning system (rough cut capacity planning and material coordination) and the actual execution of jobs on the shopfloor, by specifying a detailed workplan. It is divided in two hierarchical layers: planning and scheduling. At each level, a set of different algorithms and heuristics is available to anticipate different situations.\ud \ud The Expert System (which is a part of the LPS) supports decision making at each of the two LPS layers by evaluating the planning and scheduling conditions and, based on this evaluation, advising the use of a specific algorithm and evaluating the results of using the proposed algorithm.\ud \ud The Expert System is rule-based while knowledge (structure) and data are separated (which makes the ES more flexible in terms of fine-tuning and adding new knowledge). Knowledge is furthermore separated in algorithmic knowledge and company specific knowledge. In this paper we discuss backgrounds of the expert system in more detail. An evaluation of the Expert system is also presented

    An improved approach for automatic process plan generation of complex borings

    Get PDF
    The authors are grateful for funding provided to this project by the French Ministry of Industry, Dassault Aviation, Dassault Systemes, and F. Vernadat for his review and recommendations.The research concerns automated generation of process plans using knowledge formalization and capitalization. Tools allowing designers to deal with issues and specifications of the machining domain are taken into account. The main objective of the current work is to prevent designers from designing solutions that would be expensive and difficult to machine. Among all available solutions to achieve this goal, two are distinguished: the generative approach and the analogy approach. The generative approach is more adapted to generate the machining plans of parts composed of numerous boring operations in interaction. However, generative systems have two major problems: proposed solutions are often too numerous and are only geometrically but not technologically relevant. In order to overcome these drawbacks, two new concepts of feature and three control algorithms are developed. The paper presents the two new features: the Machining Enabled Geometrical Feature (MEGF) and the Machinable Features (MbF). This development is the result of the separation of the geometrical and the technological data contained in one machining feature. The second objective of the paper is to improve the current Process Ascending Generation (PAG) system with control algorithms in order to limit the combinatorial explosion and disable the generation of unusable or not machinable solutions

    Intelligent feature based resource selection and process planning

    Get PDF
    Lien vers la version éditeur: https://www.inderscience.com/books/index.php?action=record&rec_id=755&chapNum=3&journalID=1022&year=2010This paper presents an intelligent knowledge-based integrated manufacturing system using the STEP feature-based modeling and rule based intelligent techniques to generate suitable process plans for prismatic parts. The system carries out several stages of process planning, such as identification of the pairs of feature/tool that satisfy the required conditions, generation of the possible process plans from identified tools/machine pairs, and selection of the most interesting process plans considering the economical or timing indicators. The suitable processes plans are selected according to the acceptable range of quality, time and cost factors. Each process plan is represented in the tree format by the information items corresponding to their CNC Machine, required tools characteristics, times (machining, setup, preparatory) and the required machining sequences. The process simulation module is provided to demonstrate the different sequences of machining. After selection of suitable process plan, the G-code language used by CNC machines is generated automatically. This approach is validated through a case

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Employment in the Online Industry: Personal Reflections on a Nontraditional Library Career

    Get PDF
    published or submitted for publicatio

    TDRSS momentum unload planning

    Get PDF
    A knowledge-based system is described which monitors TDRSS telemetry for problems in the momentum unload procedure. The system displays TDRSS telemetry and commands in real time via X-windows. The system constructs a momentum unload plan which agrees with the preferences of the attitude control specialists and the momentum growth characteristics of the individual spacecraft. During the execution of the plan, the system monitors the progress of the procedure and watches for unexpected problems
    corecore