75 research outputs found

    Random convolution ensembles

    Get PDF
    A novel method for creating diverse ensembles of image classifiers is proposed. The idea is that, for each base image classifier in the ensemble, a random image transformation is generated and applied to all of the images in the labeled training set. The base classifiers are then learned using features extracted from these randomly transformed versions of the training data, and the result is a highly diverse ensemble of image classifiers. This approach is evaluated on a benchmark pedestrian detection dataset and shown to be effective

    Incremental multi-domain learning with network latent tensor factorization

    Full text link
    The prominence of deep learning, large amount of annotated data and increasingly powerful hardware made it possible to reach remarkable performance for supervised classification tasks, in many cases saturating the training sets. However the resulting models are specialized to a single very specific task and domain. Adapting the learned classification to new domains is a hard problem due to at least three reasons: (1) the new domains and the tasks might be drastically different; (2) there might be very limited amount of annotated data on the new domain and (3) full training of a new model for each new task is prohibitive in terms of computation and memory, due to the sheer number of parameters of deep CNNs. In this paper, we present a method to learn new-domains and tasks incrementally, building on prior knowledge from already learned tasks and without catastrophic forgetting. We do so by jointly parametrizing weights across layers using low-rank Tucker structure. The core is task agnostic while a set of task specific factors are learnt on each new domain. We show that leveraging tensor structure enables better performance than simply using matrix operations. Joint tensor modelling also naturally leverages correlations across different layers. Compared with previous methods which have focused on adapting each layer separately, our approach results in more compact representations for each new task/domain. We apply the proposed method to the 10 datasets of the Visual Decathlon Challenge and show that our method offers on average about 7.5x reduction in number of parameters and competitive performance in terms of both classification accuracy and Decathlon score.Comment: AAAI2

    Adding New Tasks to a Single Network with Weight Transformations using Binary Masks

    Full text link
    Visual recognition algorithms are required today to exhibit adaptive abilities. Given a deep model trained on a specific, given task, it would be highly desirable to be able to adapt incrementally to new tasks, preserving scalability as the number of new tasks increases, while at the same time avoiding catastrophic forgetting issues. Recent work has shown that masking the internal weights of a given original conv-net through learned binary variables is a promising strategy. We build upon this intuition and take into account more elaborated affine transformations of the convolutional weights that include learned binary masks. We show that with our generalization it is possible to achieve significantly higher levels of adaptation to new tasks, enabling the approach to compete with fine tuning strategies by requiring slightly more than 1 bit per network parameter per additional task. Experiments on two popular benchmarks showcase the power of our approach, that achieves the new state of the art on the Visual Decathlon Challenge

    Budget-Aware Adapters for Multi-Domain Learning

    Full text link
    Multi-Domain Learning (MDL) refers to the problem of learning a set of models derived from a common deep architecture, each one specialized to perform a task in a certain domain (e.g., photos, sketches, paintings). This paper tackles MDL with a particular interest in obtaining domain-specific models with an adjustable budget in terms of the number of network parameters and computational complexity. Our intuition is that, as in real applications the number of domains and tasks can be very large, an effective MDL approach should not only focus on accuracy but also on having as few parameters as possible. To implement this idea we derive specialized deep models for each domain by adapting a pre-trained architecture but, differently from other methods, we propose a novel strategy to automatically adjust the computational complexity of the network. To this aim, we introduce Budget-Aware Adapters that select the most relevant feature channels to better handle data from a novel domain. Some constraints on the number of active switches are imposed in order to obtain a network respecting the desired complexity budget. Experimentally, we show that our approach leads to recognition accuracy competitive with state-of-the-art approaches but with much lighter networks both in terms of storage and computation.Comment: ICCV 201

    Keypoints-based background model and foreground pedestrian extraction for future smart cameras

    No full text
    International audienceIn this paper, we present a method for background modeling using only keypoints, and detection of foreground moving pedestrians using background keypoints substraction followed by adaBoost classification of foreground keypoints. A first experimental evaluation shows very promising detection performances in real-time

    New Descriptor for Glomerulus Detection in Kidney Microscopy Image

    Get PDF
    Glomerulus detection is a key step in histopathological evaluation of microscopy images of kidneys. However, the task of automatic detection of glomeruli poses challenges due to the disparity in sizes and shapes of glomeruli in renal sections. Moreover, extensive variations of their intensities due to heterogeneity in immunohistochemistry staining are also encountered. Despite being widely recognized as a powerful descriptor for general object detection, the rectangular histogram of oriented gradients (Rectangular HOG) suffers from many false positives due to the aforementioned difficulties in the context of glomerulus detection. A new descriptor referred to as Segmental HOG is developed to perform a comprehensive detection of hundreds of glomeruli in images of whole kidney sections. The new descriptor possesses flexible blocks that can be adaptively fitted to input images to acquire robustness to deformations of glomeruli. Moreover, the novel segmentation technique employed herewith generates high quality segmentation outputs and the algorithm is assured to converge to an optimal solution. Consequently, experiments using real world image data reveal that Segmental HOG achieves significant improvements in detection performance compared to Rectangular HOG. The proposed descriptor and method for glomeruli detection present promising results and is expected to be useful in pathological evaluation
    • 

    corecore