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Abstract. A novel method for creating diverse ensembles of image classifiers is 
proposed. The idea is that, for each base image classifier in the ensemble, a 
random image transformation is generated and applied to all of the images in 
the labeled training set. The base classifiers are then learned using features 
extracted from these randomly transformed versions of the training data, and 
the result is a highly diverse ensemble of image classifiers. This approach is 
evaluated on a benchmark pedestrian detection dataset and shown to be 
effective. 
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1   Introduction 

Methods for the automatic classification of multi-dimensional data objects are one of 
the central themes in pattern recognition research. Although the most common class 
of such object is the two-dimensional array, or image, methods should ideally scale to 
data objects in any number of dimensions. 

In contrast to this, machine learning deals with techniques for classifying one-
dimensional objects, referred to variously as “instances”, “records”, or “feature 
vectors”. The most recent machine learning techniques to date, such as support vector 
machines [1], random forests [2], and instance-based methods (see, e.g. [3]), have 
proven to be extremely effective feature vector classifiers. The main difficulty that 
arises is usually deciding which of the techniques (along with its associated 
parameters) to actually use: currently, this is an empirical problem.  

When it comes to designing image classifiers, there is a second significant degree 
of freedom: how to map the high-dimensional objects in the dataset onto one-
dimensional feature vectors, in order to use machine learning for classification. 
Typically a direct one-to-one mapping of pixels to features is not the best option. 
Numerous solutions have therefore been proposed in the past, from classical colour 
histograms (of which there are many variants, e.g. the colour coherence vector [4]), to 
spatial pyramids [5], to locally receptive fields [6,7]. However, like the problem of 
classifier selection, there are no hard and fast rules when it comes to a particular 
problem. 
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For the remainder of this paper, the term “image classifier”, therefore, will be used 
to denote a system comprising these two main components: a feature extraction 
function for transforming a multi-dimensional object into a one-dimensional feature 
vector, along with a machine learning classifier for making a prediction about the 
image’s class given the feature vector. 

The main contribution of this paper, then, is to propose a new ensemble method 
called Random Convolution Ensembles (RCEs) for enhancing the performance of a 
base image classifier. This method works with any machine learning classifier and 
feature mapping function. The basic idea is that each base image classifier is trained 
on a randomly (but consistently) transformed copy of the entire training image set. 
Each base classifier consequently “sees” a different set of feature vectors extracted 
from the same training images. When all of the base classifiers are trained, the result 
is a diverse set of image classifiers whose performance as an ensemble outperforms 
the performance of any one of the base classifiers individually. 

The basic details and motivation underlying RCEs are given in the next section. 
Section 3 discusses the benchmark pedestrian detection image dataset [7] used to 
evaluate this technique, and Section 4 describes an experiment on the benchmark 
dataset, showing that RCEs are effective image classifiers. In Section 5, we add an 
element of selection to the generation of random image transformations, and describe 
a second experiment showing that performance improves as a result. Section 6 
concludes the paper and discusses the way forward.  

2   Random Convolution Ensembles 

Ensemble methods are extremely popular in machine learning. The rationale behind 
them is to learn not a single classifier, but a group of them, where each member of the 
group is designed to solve the same classification problem. It is important to ensure 
somehow that each individual classifier is different from the others in the group, 
because the more similar their structure (and therefore their predictions), the less 
effective overall the ensemble will be. 

Methods for ensuring ensemble diversity include training each classifier with only 
a random subset of the feature vectors, a method known widely as bagging [8]; 
weighting the feature vectors in the training data differently for each classifier (e.g. 
boosting [9]); or even training completely different types of classifier and then 
combining their predictions in some way (e.g. voting [10] and stacking [11]). 

All of these methods work with one-dimensional data. While standard ensemble 
methods can be used with images (for example, images can be bagged), such 
approaches do not take advantage of the multi-dimensional nature of the data in its 
original form (because, for example, bagging images is the same as bagging the 
feature vectors derived from the images). 

The RCE approach proposed here overcomes this problem by generating diversity 
before the feature extraction step, by producing multiple randomly transformed copies 
of the training images. The basic idea is to take the complete set of training images 
and make n copies of them. N random image transformations are then generated, and 
all the images in the ith copy of the training set (where 1≤i≤n) are transformed by the 



corresponding ith transformation. The result is n copies of the original training set, 
each transformed in a random but consistent way. We then learn n base machine 
learning classifiers, one on each of the feature vector sets extracted from the 
transformed copies of the training images. When a test image is to be classified, all of 
the n base image classifiers make a prediction, and the results are combined by a 
meta-classifier to produce a single, final prediction. 

Figure 1 depicts the architecture of an RCE, from the perspective of a test image I 
about to be classified. In the figure, the random image transformation is convolution 
[13] by a randomly generated kernel, and these kernels are specified by op1, ops2, … 
The Conv(..) function denotes the application of one of them to I to produce a new, 
distorted image. We also assume a uniform feature extraction function Features(.) for 
transforming images into feature vectors. The diversity in the ensemble derives from 
the fact that each of the base machine learning classifiers (Class1..Classn) in the figure 
is trained on a different but complete set of feature vectors. In the figure, there are n 
feature vectors F1…Fn derived from the test image I. A meta-classification step at the 
end combines all of the predictions for each feature vector. 

 

 
Fig. 1. Architecture of a Random Convolution Ensemble when presented with test image I. 

3   Benchmark Dataset 

This new approach to image classification was evaluated against a benchmark image 
dataset developed by Munder & Gavrilla [7]. The dataset was proposed in order to 
compare different solutions to the problem of pedestrian detection in images captured 
from urban, outdoor environments. The classification problem is binary, in that 



images either depict a pedestrian (the positive class) or they do not (the negative 
class). 

The basic version of the benchmark data consists of three training sets and two test 
sets. Each of these sets comprises 800 positive pedestrian images and 5000 negative, 
non-pedestrian images. To equalize the classes, the positive images were copied, 
mirrored and shifted by a few pixels in a random direction to produce five new, 
slightly different, positive examples for each of the original positive examples. This 
resulted in 4800 positive images in total. Figure 2 gives examples of some of the 
images in the datasets. Note that the negative examples were deliberately chosen to be 
challenging, with many vertical lines similar to those in the positive class (as opposed 
to an easier negative class with many uniform textures, which would be 
straightforward to distinguish). The size of each image is a uniform 18x36 grey scale 
pixels. 

To perform an experiment using this dataset, a classifier should trained on the 
union of two of the three training datasets, and tested on one of the test datasets. Thus, 
there are six possible different train/test experiments. The results over all six runs 
should be averaged in order to obtain an overall more reliable and final estimate of 
any classifier’s performance. 

 

           

           
Fig. 2. Examples of positive (top row) and negative (bottom row) images in the pedestrian 
detection dataset proposed by [7]. 

4   Random vs. Standard Convolution Operators in the Ensemble: 
A Comparison 

An RCE classifier as described in Section 2 was implemented in the Java 
programming language, within the WEKA (version 3.5.5) machine learning 
framework [12].  

The random image transformation implemented was convolution [13] using a 
randomly generated 3x3 convolution operator or kernel. For the random operators 
used in this paper, we set each element in the 3x3 kernel to a random number sampled 
uniformly in the range -2.5…2.5.  

The features used in this experiment (extracted by the Features(.) function in Fig. 
1) were determined by the following process. Firstly, the image was divided into 
square blocks of size s*s pixels. The blocks were allowed to overlap by 50% in both 
horizontal and vertical directions, thus ensuring that any important features would not 
be lost due to the boundary between two blocks. The block size parameter s was set to 
one of the values from the set {18, 9, 6}. 



For each block, the sum, mean, variance, skewness, and kurtosis of the pixel values 
were calculated. These statistics basically describe the intensity histogram for the 
block. A feature vector was then constructed for each image by concatenating the 
statistics for all of the blocks in the image. This results, for block size s=18, in 25 
features per image; for s=9 it results in 105 features; and for s=6, there are 275 
features. 

In the experiments performed in this section and the next, the base classifier was 
set to bagged random forests. Random forests [2] are an ensemble classifier in which 
each individual classifier is a decision tree learned from a random subset of the 
features in the dataset. Individual decision trees in the forest average their predictions 
to give a final prediction for the entire ensemble. 

Bagging random forests considerably speeds up the training process, whilst (in our 
initial tests) only slightly impairing performance compared to a single random forest 
classifier trained on the entire dataset. In this experiment, each bag contained 5% of 
the training data, randomly selected. There were 30 bags, meaning that feature vectors 
could be selected for more than one bag. Each random forest classifier consisted of 
ten decision trees. 

The meta-classifier used to combine all of the individual image classifier’s 
predictions was voting [10], which is straightforward averaging. 

The question that the first experiment set out to answer was: does this new method 
work at all? In other words, does randomly convolving the training data in the way 
described actually produce sufficiently variable sets of feature vectors for the purpose 
of creating a diverse ensemble of image classifiers? Or would simply convolving the 
images with standard operators such as edge detectors do just as well? Indeed, does 
this new approach provide any gain at all over the simplest possible approach, that of 
extracting the features directly from the original image and learning only a single base 
image classifier, without any image convolution at all? (This latter approach is 
actually the most common taken in the literature.) 
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Fig. 3. Common standard convolution operators: the null filter (ID), which does nothing; a 
Laplacian peak point detector (PK), which detects bright points; and the Sobel operators for 
edge detection (Gx and Gy). 

Table 1. Convolution operator sets used in Experiment 1. 

OPS1 {ID} 
OPS2 {ID, Gx, Gy, PK} 
OPS3 {R1, R2, R3, R4} 
OPS4 {ID, Gx, Gy, PK, R1, R2, R3, R4} 
OPS5 {R1, R2, R3, R4, R5, R6, R7, R8} 



To set the experiment up, four different convolution operators as depicted in Figure 
3 were grouped, along with some randomly generated operators, into five sets as 
shown in Table 1. Each set in Table 1 effectively defines an RCE of size n, where n is 
the size of the set. OPS1 is clearly the simplest, corresponding to an ensemble with a 
single base image classifier (i.e. n=1 in Figure 1) and no image convolution. OPS2 
corresponds to the set of standard image convolution kernels shown in Figure 3, and 
OPS3 is four randomly generated convolution kernels. OPS4 is the set of size n=8 
obtained by taking the union of OPS2 and OPS3, and this set is a mixture of both 
random and standard convolution operators. OPS5, the last of them, consists of eight 
randomly generated convolution operators. Note that only OPS3 and OPS5 define 
“true” RCEs as per the definition given in the Section 2; the other ensembles are the 
baselines for comparison. 

 

 
Fig. 4. Results of Experiment 1. The set of convolution operators used to construct the 
ensemble is specified on the x-axis, and average AUC after six independent train/test 
experiments is given on the y-axis. The error bars on the columns depict the standard deviation. 
Results are shown for features extracted using blocks of size sxs where s ∈ {18, 9, 6}.  

For each experiment, the Area Under the ROC Curve (AUC) was calculated [14]. 
When using AUC, the worst possible classifier (i.e. a random classifier) should have 
an AUC of 0.5, while the best possible classifier (i.e. a 100% perfect classifier) should 
have an AUC of 1.0. Six train/test runs were performed for each combination of 
convolution operator set OPSi and block size s, and Figure 4 depicts the average 
results. 



First of all, the results clearly show that performance depends on the block size s. 
In every case, RCEs with a smaller block size for feature extraction have a higher 
final AUC. Interestingly, the ensemble with a single base image classifier without 
convolution (as specified by OPS1) is the worst overall performer: AUC values for 
this classifier range from 0.69 to 0.84, and in every case, larger ensembles beat it. 

Most importantly, Figure 4 also shows that the “true” RCEs always outperform 
ensembles defined using standard convolution operators, or mixtures of random and 
standard operators. For example, using OPS3 as the set of convolution operators 
results in considerably better performance than using the set of standard operators, 
OPS2 (the difference is 0.89 AUC compared to 0.85 when the block size s=6). And 
when the ensemble size is n=8, the completely random set OPS5 consistently 
outperforms the set OPS4, a mixture of random and standard operators (compare 0.91 
AUC to 0.89 when s=6). 

A second way important way in which Figure 4 shows that RCEs are superior to 
the other methods is the variance. In Figure 4, each average AUC column is depicted 
with an error bar showing the standard deviation of the AUC over the six train/test 
runs. It turns out that whenever only random operators are used, the standard 
deviation is much smaller. For example, the OPS3 ensemble has a standard deviation 
of 0.06 compared to 0.10 for OPS2, and for the larger ensembles, the standard 
deviation is 0.04 for OPS5 compared to 0.07 for OPS4. This implies that OPS3 and 
OPS5 define ensembles that are not only more accurate than the others, but they are 
also less sensitive to the variations in the quality of the training and testing data. 

5   Random Convolution Ensembles with Selection 

The previous experiment established that RCEs outperform (i) a single base image 
classifier that extracts features directly from the original images, and (ii) similar 
ensembles, differing only in that they use standard convolution operators, or a mixture 
of standard and random operators, as opposed to purely random operators. 

In the next experiment, we wanted to determine if performance could be further 
improved by not only randomly generating image transformations, but also selecting 
them. Previously, if an RCE was of size n, then n random operators were generated. 
No consideration was given to the fact that one or more of the operators could 
potentially be useless, therefore impairing the entire ensemble. For example, a 
randomly generated convolution operator in which all the entries were nearly zero 
would effectively erase the images, making the learning task impossible for that 
particular member of the ensemble. 

To add selection to the generation process, therefore, we performed the following 
steps. For every base image classifier that was required, two base image classifiers 
were considered, each one with a different randomly generated convolution operator. 
Both of them were then evaluated in a stratified two-fold cross-validation experiment 
on the training data. The classifier with the least number of classification errors was 
then retained in the final ensemble, while the other classifier was discarded. In other 
words, if the ensemble size was n, then 2n base image classifiers were generated and 
trained, but only half of them were retained in the final ensemble. 



We considered RCEs of size n=4 and n=8 in order to compare the results of this 
second experiment to the first. Let OPS3* and OPS5* be the final set of convolution 
operators arrived at using generation with selection. The performance of ensembles 
defined by these sets on the pedestrian dataset is depicted in Figure 5, alongside the 
performance of the corresponding ensembles created without selection from the 
previous experiment. 

 

 
Fig. 5. Results of Experiment 2. The set of convolution operators used to construct the 
ensemble is specified on the x-axis, and average AUC after six independent train/test 
experiments is given on the y-axis. The error bars on the columns depict the standard deviation. 
Results are shown for features extracted using blocks of size sxs where s ∈ {18, 9, 6}. 

The results show that adding selection to the generation process does sometimes 
improve the final performance. For block size s=18, selection always leads to an 
improvement in average AUC, while for the smaller block sizes, selection only leads 
to slight improvements in AUC for the n=4 ensemble (i.e., OPS3* performs better 
than OPS3). 

Although the gain due to selection is only slight in this experiment, it is suggestive 
that more sophisticated selection methods would produce much greater gains. 



6   Concluding Remarks 

This main contribution of this paper is a new method for enhancing the performance 
of a base image classifier. RCEs were compared to a more traditional image classifier 
in which features are extracted directly from the original image without using 
convolution and classified, and also to the strategy of extracting features from 
versions of the image convolved in standard ways (e.g. edge-detected versions of the 
training images). Furthermore, adding selection to the random operator generation 
process sometimes improves performance even more. 

We did not compare the results obtained here directly to those of Munder & 
Gavrilla [7], primarily because their focus was on searching for the best features and 
classifier for the sole purpose of pedestrian detection. In contrast, we used different, 
less computationally expensive features and classifier, so as to evaluate this new 
approach. However, the best result (0.91 AUC) is comparable to Munder & Gavrilla’s 
result for same version of the dataset, which they report as a 90% detection rate for a 
10% false positive rate. It would be interesting to implement the same features and 
classifier as Munder & Gavrilla to determine if RCEs can further enhance 
performance. 

Future work in this area will look at more intelligent methods of random 
convolution operator generation and selection. For example, a simple hill-climbing 
algorithm could be used to iteratively improve the quality of a single convolution 
operator after its initial random generation. If this hill-climbing-based classifier is 
then boosted, the result will be an RCE that uses both selection, and weighted voting 
rather than unweighted voting at the meta-classification stage. A more extreme idea in 
the same vein is to simultaneously evolve, from a random starting point, the n 
convolution operators using a genetic algorithm. 

To conclude, the results presented in this paper are a proof-of-concept that the idea 
of randomly transforming training images in order to construct a diverse ensemble of 
image classifiers works. Future work will continue to build on and evaluate this 
promising new approach. We are interested in applying this technique not only to 
pedestrian detection, but also to other standard datasets in the literature, in areas such 
as object detection and natural scene classification. 
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