22,616 research outputs found

    Finite-Block-Length Analysis in Classical and Quantum Information Theory

    Full text link
    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects

    Classification of large partial plane spreads in PG(6,2)PG(6,2) and related combinatorial objects

    Get PDF
    In this article, the partial plane spreads in PG(6,2)PG(6,2) of maximum possible size 1717 and of size 1616 are classified. Based on this result, we obtain the classification of the following closely related combinatorial objects: Vector space partitions of PG(6,2)PG(6,2) of type (31641)(3^{16} 4^1), binary 3Ă—43\times 4 MRD codes of minimum rank distance 33, and subspace codes with parameters (7,17,6)2(7,17,6)_2 and (7,34,5)2(7,34,5)_2.Comment: 31 pages, 9 table

    Spectral Shape of Check-Hybrid GLDPC Codes

    Full text link
    This paper analyzes the asymptotic exponent of both the weight spectrum and the stopping set size spectrum for a class of generalized low-density parity-check (GLDPC) codes. Specifically, all variable nodes (VNs) are assumed to have the same degree (regular VN set), while the check node (CN) set is assumed to be composed of a mixture of different linear block codes (hybrid CN set). A simple expression for the exponent (which is also referred to as the growth rate or the spectral shape) is developed. This expression is consistent with previous results, including the case where the normalized weight or stopping set size tends to zero. Furthermore, it is shown how certain symmetry properties of the local weight distribution at the CNs induce a symmetry in the overall weight spectral shape function.Comment: 6 pages, 3 figures. Presented at the IEEE ICC 2010, Cape Town, South Africa. A minor typo in equation (9) has been correcte

    Spectral Shape of Doubly-Generalized LDPC Codes: Efficient and Exact Evaluation

    Full text link
    This paper analyzes the asymptotic exponent of the weight spectrum for irregular doubly-generalized LDPC (D-GLDPC) codes. In the process, an efficient numerical technique for its evaluation is presented, involving the solution of a 4 x 4 system of polynomial equations. The expression is consistent with previous results, including the case where the normalized weight or stopping set size tends to zero. The spectral shape is shown to admit a particularly simple form in the special case where all variable nodes are repetition codes of the same degree, a case which includes Tanner codes; for this case it is also shown how certain symmetry properties of the local weight distribution at the CNs induce a symmetry in the overall weight spectral shape function. Finally, using these new results, weight and stopping set size spectral shapes are evaluated for some example generalized and doubly-generalized LDPC code ensembles.Comment: 17 pages, 6 figures. To appear in IEEE Transactions on Information Theor

    The Partition Weight Enumerator of MDS Codes and its Applications

    Get PDF
    A closed form formula of the partition weight enumerator of maximum distance separable (MDS) codes is derived for an arbitrary number of partitions. Using this result, some properties of MDS codes are discussed. The results are extended for the average binary image of MDS codes in finite fields of characteristic two. As an application, we study the multiuser error probability of Reed Solomon codes.Comment: This is a five page conference version of the paper which was accepted by ISIT 2005. For more information, please contact the author
    • …
    corecore