70 research outputs found

    An Exact Solution for the Level-Crossing Rate of Shadow Fading Processes Modelled by Using the Sum-of-Sinusoids Principle

    Get PDF
    Published version of an article in the journal: Wireless Personal Communications. The original publication is available at Springerlink. http://dx.doi.org/10.1007/s11277-008-9512-3The focus of this paper is on the higher order statistics of spatial simulation models for shadowing processes. Such processes are generally assumed to follow the lognormal distribution. The proposed spatial simulation model is derived from a non-realizable lognormal reference model with given correlation properties by using Rice's sum-of-sinusoids. Both exact and approximate expressions are presented for the level-crossing rate (LCR) and the average duration of fades (ADF) of the simulation model. It is pointed out that Gudmundson's correlation model results in an infinite LCR. To avoid this problem, two alternative spatial correlation models are proposed. Illustrative examples of the dynamic behavior of shadow fading processes are presented for all three types of correlation models. Emphasis will be placed on two realistic propagation scenarios capturing the shadowing effects in suburban and urban areas

    A study of the influence of shadowing on the statistical properties of the capacity of mobile radio channels

    Get PDF
    This paper studies the influence of shadowing on the statistical properties of the channel capacity. The problem is addressed by using a Suzuki process as an appropriate statistical channel model for land mobile terrestrial channels. Using this model, exact solutions for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades (ADF) of the channel capacity are derived. The results are studied for different levels of shadowing, corresponding to different terrestrial environments. It is observed that the shadowing effect has a significant influence on the variance and the maximum value of the PDF and LCR of the channel capacity, but it has almost no impact on the mean capacity of the channel. The correctness of the theoretical results is confirmed by simulation using a stochastic channel simulator based on the sum-of-sinusoids principle. Š 2008 Springer Science+Business Media, LL

    Design and Simulation of Measurement-Based Correlation Models for Shadow Fading

    Get PDF
    This paper deals with the design of measurement-based correlation models for shadow fading. Based on the correlation model, we design a simulation model using the sum-of-sinusoids (SOS) method to enable the simulation of spatial lognormal processes characterizing real-world shadow fading scenarios. The model parameters of the simulation model are computed by applying the Lp-norm method (LPNM). This method facilitates an excellent fitting of the simulation model’s autocorrelation function (ACF) to that of measured channels. Our study includes an evaluation of all important statistical quantities of the proposed measurement-based simulation model, such as the probability density function (PDF), spatial ACF, decorrelation and coherence distance, as well as the level-crossing rate (LCR) and the average duration of fades (ADF). A comparison with the Gudmundson correlation model shows that the developed measurement-based correlation model outperforms the former one by far in terms of the goodness of fit to the measured data. The proposed measurement-based simulation model allows to study the effects of long-term fading on the performance of mobile communication systems under real-world shadow fading conditions

    Development of a MATLAB Toolbox for Mobile Radio Channel Simulators

    Get PDF
    A profound knowledge of mobile radio channels is required for the development, evaluation, and also assessment at practical conditions of present and future mobile radio communication systems. The modelling, analysis, and simulation of mobile radio channels are important sub area since the initiation of mobile communications. In addition to that knowledge of channel behaviour in mobile radio communication is extensively recommended for the study of transmitter/receiver performances. Our intention in this master's thesis is to develop various kinds of mobile fading channel simulators using MATLAB and embed them into MATLB software as a toolbox. Implemented channel simulators were combined into a user-friendly Matlab toolbox from which users can easily select well-known channel models to test and to study the performance of mobile communication systems. The help file was developed based on HTML. It gives better support for the new users to work on the developed channel simulators, run the test procedures as well as parameter computation. The help file consistent with other supplementary programs like computation of PDF and CDF for different distributions, Rice simulation model, extended Suzuki process type I and II simulator etc. In addition to that each program consists with guidelines embedded with the source code. The help file web interfaces are listed in Appendix- 1.The toolbox can be integrated into the new release of Matlab software. The toolbox contains channel simulators for simulating non-stationary land mobile satellite channel, spatial shadowing processes, MIMO channels, multiple uncorrelated Rayleigh fading channels, mobile to mobile channel, frequency hopping channels etc. We developed set of test procedures, such as the autocorrelation function ACF, average duration of fades ADF, the probability density function PDF, and the level-crossing rate LCR etc., in order to test and to confirm the correctness of the implemented channel simulators. Proposed new algorithms to compute the model parameters of the channel simulators were also implemented in the toolbox to enable the parameterization of the channel simulators under specific propagation conditions. Finally, “how can a channel simulator be tested?” have been address in the thesis as a research question. It was based on the comparison of simulation results with the measured model or the reference model under different scenarios. In addition to that selection of the simulation time duration, sampling rate and size of the samples were considered. Developed test procedures were helped to assess the implemented channel simulators

    Statistical analysis of the capacity of mobile radio channels

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 201

    Design of Mobile Radio Channel Simulators Using the Iterative Nonlinear Least Square Approximation Method with Applications in Vehicle-to-X Communications

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, 2015Vehicle-to-X (V2X) communication systems are expected to provide tremendous benefits associated with the safety and traffic efficiency on roads. The successful deployment of emerging technologies like V2X requires channel models accurately representing fading statistics in environments where those technologies are used. The accuracy is, of course, a major concern when adapting or developing a suitable channel model for test and evaluation purposes. However, it is also important to take into account the simplicity of a channel model, which is crucial for efficient numerical computations and computer simulations. Reconciling simplicity and accuracy is a rather complex task to accomplish, which requires sophisticated parameter computation methods. To the best of our knowledge, only a limited number of investigations address the channel modelling and parametrization problems for vehicular propagation scenarios in the literature. In order to fill this gap, we concentrate on the development of new sophisticated channel modelling approaches and efficient parameter computation methods for the design of V2X communication systems in this dissertation. In general, there are two main applications of channel models: (1) for the design and test of wireless communication systems and (2) for the optimization of existing communication systems. For the design and test purposes, more general statistical models such as Rice and Rayleigh channel models are preferred. Those channel models provide a fundamental insight into propagation phenomena and at the same time they greatly simplify the theoretical and numerical computations to assess the performance of wireless communication systems. For the optimization purposes, however, measurement-based channel models are commonly used. The main advantage of such channel models is that they always accurately reflect the physical reality. In this dissertation, we will focus on the channel models designed for both of those application purposes. A significant part of this dissertation will be devoted to the thorough analysis and design of Rayleigh and Rice fading channel models. We investigate the correlation properties of those channels assuming asymmetrical shapes of Doppler power spectral densities (PSDs). In fact, this is what we often observe in real-world propagation scenarios. In this regard, we will present an analytical expression for the autocorrelation function (ACF) of Rice processes that captures such realistic scenarios. Another important contribution to this topic is the novel iterative nonlinear least square approximation method for the design of Rice and Rayleigh channel simulators based on sum-of-sinusoids (SOS), as well as sum-of-cisoids (SOC) approaches. The idea behind the proposed method is very simple. The parameters of the simulation model are extracted from the reference model, such as the stochastic Rice and Rayleigh channel models, by fitting the statistical properties of interest, e.g. the ACF and the probability density function (PDF). We show that the proposed method outperforms several other methods in designing channel simulators with desired distribution and correlation properties. We also show that the proposed method provides a subtle balance between channel model’s simplicity and accuracy in designing Rayleigh and Rice channel simulators. The parametrization is a process of determining the key parameters specifying the channel model. This process has a great influence on the reliability of the developed channel model. It is therefore highly desirable if those parameters are extracted from measurements. In fact, this idea constitutes the fundamental concept behind measurement-based channel modelling approach. The measurement-based models are important in the sense that they can be used for the optimizations of the wireless communication system. Hence, the problem of computing the channel model parameters from the measurements is of special interest. In this regard, we propose iterative nonlinear least square approximation method for the design of measurementbased channel simulators. Through detailed investigations and comparative studies, we demonstrate that the proposed method is highly flexible and outperforms several other conventional methods in terms of reproducing the correlation characteristics obtained from several measurements. In addition, we introduce a new approach for the design of channel models for V2X communications in tunnel environments, where the number of scatterers contributing to the total received power is relatively small

    Precoding and multiuser scheduling in MIMO broadcast channels

    Get PDF

    An optimised QPSK-based receiver structure for possibly sparse data transmission over narrowband and wideband communication systems

    Get PDF
    In this dissertation an in-depth study was conducted into the design, implementation and evaluation of a QPSK-based receiver structure for application in a UMTS WCDMA environment. The novelty of this work lies with the specific receiver architecture aimed to optimise the BER performance when possibly sparse data streams are transmitted. This scenario is a real possibility according to Verd´u et al [1] and Hagenauer et al [2–6]. A novel receiver structure was conceptualised, developed and evaluated in both narrowband and wideband scenarios, where it was found to outperform conventional receivers when a sparse data stream is transmitted. In order to reach the main conclusions of this study, it was necessary to develop a realistic simulation platform. The developed platform is capable of simulating a communication system meeting the physical layer requirements of the UMTS WCDMA standard. The platform can also perform narrowband simulations. A flexible channel emulator was developed that may be configured to simulate AWGN channel conditions, frequency non-selective fading (either Rayleigh or Rician with a configurable LOS component and Doppler spread), or a full multipath scenario where each path has a configurable LOS component, Doppler spread, path gain and path delay. It is therefore possible to even simulate a complex, yet realistic, COST207-TU channel model. The platform is also capable of simulating MUI. Each interfering user has a unique and independent multipath fading channel, while sharing the same bandwidth. Finally, the entire platform executes all simulations in baseband for improved simulation times. The research outputs of this work are summarised below: A parameter, the sparseness measure, was defined in order to quantify the level by which a data stream differs from an equiprobable data stream. A novel source model was proposed and developed to simulate data streams with a specified amount of sparseness. An introductory investigation was undertaken to determine the effect of simple FEC techniques on the sparseness of an encoded data stream. Novel receiver structures for both narrowband and wideband systems were proposed, developed and evaluated for systems where possibly sparse data streams may be transmitted. Analytic expressions were derived to take the effect of sparseness into account in communication systems, including expressions for the joint PDF of a BPSK branch, the optimal decision region of a detector in AWGN conditions as well as the BER performance of a communication system employing the proposed optimal receiver in both AWGN channel conditions as well as in flat fading channel conditions. Numerous BER performance curves were obtained comparing the proposed receiver structure with conventional receivers in a variety of channel conditions, including AWGN, frequency non-selective fading and a multipath COST207-TU channel environment, as well as the effect of MUI. AFRIKAANS : In hierdie verhandeling word ’n in-diepte studie gedoen rakende die ontwerp, implementasie en evaluasie van ’n KPSK-gebaseerde ontvanger struktuur wat in ’n UMTS WKVVT omgewing gebruik kan word. Die bydrae van hierdie werk lˆe in die spesifieke ontvanger argitektuur wat daarop mik om die BFT werksverrigting te optimeer wanneer yl data strome versend word. Hierdie is ’n realistiese moontlikheid volgens Verd´u et al [1] en Hagenauer et al [2–6]. ’n Nuwe ontvanger struktuur is gekonsepsualiseer, ontwikkel en evalueer vir beide noueband en wyeband stelsels, waar dit gevind is dat dit beter werksverrigting lewer as tradisionele ontvangers wanneer yl data strome versend word. Dit was nodig om ’n realistiese simulasie platform te ontwikkel om die belangrikste gevolgtrekkings van hierdie studie te kan maak. Die ontwikkelde platform is in staat om ’n kommunikasie stelsel te simuleer wat aan die fisiese laag vereistes van die UMTS WKVVT standaard voldoen. Die platform kan ook noueband stelsels simuleer. ’n Aanpasbare kanaal simulator is ontwikkel wat opgestel kan word om SWGR kanaal toestande, plat duining (beide Rayleigh of Ricies met ’n verstelbare siglyn komponent en Doppler verspreiding), sowel as ’n veelvuldige pad omgewing (waar elke unieke pad ’n verstelbare siglyn komponent, Doppler verspreiding, pad wins en pad vertraging het) te emuleer. Dit is selfs moontlik om ’n komplekse, maar steeds realistiese COST207-TU kanaal model te simuleer. Die platform het ook die vermo¨e om VGS te simuleer. Elke steurende gebruiker het ’n unieke en onafhanklike veelvuldige pad deinende kanaal, terwyl dieselfde bandwydte gedeel word. Laastens, alle simulasies van die platvorm word in basisband uitgevoer wat verkorte simulasie periodes verseker. Die navorsingsuitsette van hierdie werk kan as volg opgesom word: ’n Parameter, die ylheidsmaatstaf, is gedefin¨ýeer om dit moontlik te maak om die vlak waarmee die ylheid van ’n datastroom verskil van ’n ewekansige stroom te versyfer. ’n Nuwe bronmodel is voorgestel en ontwikkel om datastrome met ’n spesifieke ylheid te emuleer. ’n Inleidende ondersoek is onderneem om vas te stel wat die effek van VFK tegnieke op die ylheid van ’n enkodeerde datastroom is. Nuwe ontvanger strukture is voorgestel, ontwikkel en evalueer vir beide noueband en wyeband stelsels waar yl datastrome moontlik versend kan word. Analitiese uitdrukkings is afgelei om die effek van ylheid in ag te neem in kommunikasie stelsels. Uitdrukkings vir onder andere die gedeelte WDF van ’n BFVK tak, die optimale beslissingspunt van ’n detektor in SWGR toestande, sowel as die BFT werksverrigting van ’n kommunikasie stelsel wat van die voorgestelde optimale ontvangers gebruik maak, hetsy in SWGR of in plat duinende kanaal toestande. Talryke BFT werksverrigting krommes is verkry wat die voorgestelde ontvanger struktuur vergelyk met die konvensionele ontvangers in ’n verskeidenheid kanaal toestande, insluitend SWGR, plat duinende kanale en ’n veelvuldige pad COST207-TU kanaal omgewing, sowel as in die teenwoordigheid van VGS.</p CopyrightDissertation (MEng)--University of Pretoria, 2010.Electrical, Electronic and Computer Engineeringunrestricte

    Information Technology

    Get PDF
    The new millennium has been labeled as the century of the personal communications revolution or more specifically, the digital wireless communications revolution. The introduction of new multimedia services has created higher loads on available radio resources. These services can be presented in different levels of quality of service. Namely, the task of the radio resource manager is to provide these levels. Radio resources are scarce and need to be shared by many users. The sharing has to be carried out in an efficient way avoiding as much as possible any waste of resources. The main contribution focus of this work is on radio resource management in opportunistic systems. In opportunistic communications dynamic rate and power allocation may be performed over the dimensions of time, frequency and space in a wireless system. In this work a number of these allocation schemes are proposed. A downlink scheduler is introduced in this work that controls the activity of the users. The scheduler is a simple integral controller that controls the activity of users, increasing or decreasing it depending on the degree of proximity to a requested quality of service level. The scheduler is designed to be a best effort scheduler; that is, in the event the requested quality of service (QoS) cannot be attained, users are always guaranteed the basic QoS level provided by a proportional fair scheduler. In a proportional fair scheduler, the user with the best rate quality factor is selected. The rate quality here is the instantaneous achievable rate divided by the average throughput Uplink scheduling is more challenging than its downlink counterpart due to signalling restrictions and additional constraints on resource allocations. For instance, in long term evolution systems, single carrier FDMA is to be utilized which requires the frequency domain resource allocation to be done in such a way that a user could only be allocated subsequent bands. We suggest for the uplink a scheduler that follows a heuristic approach in its decision. The scheduler is mainly based on the gradient algorithm that maximizes the gradient of a certain utility. The utility could be a function of any QoS. In addition, an optimal uplink scheduler for the same system is presented. This optimal scheduler is valid in theory only, nevertheless, it provides a considerable benchmark for evaluation of performance for the heuristic scheduler as well as other algorithms of the same system. A study is also made for the feedback information in a multi-carrier system. In a multi-carrier system, reporting the channel state information (CSI) of every subcarrier will result in huge overhead and consequent waste in bandwidth. In this work the subcarriers are grouped into subbands which are in turn grouped into blocks and a study is made to find the minimum amount of information for the adaptive modulation and coding (AMC) of the blocks. The thesis also deals with admission control and proposes an opportunistic admission controller. The controller gradually integrates a new user requesting admission into the system. The system is probed to examine the effect of the new user on existing connections. The user is finally fully admitted if by the end of the probing, the quality of service (QoS) of existing connections did not drop below a certain threshold. It is imperative to mention that the research work of this thesis is mainly focused on non-real time applications.fi=OpinnäytetyÜ kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Wideband mobile propagation channels: Modelling measurements and characterisation for microcellular environments

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore