3 research outputs found

    A New Optimality Measure for Distance Dominating Sets

    Get PDF
      We study the problem of finding the smallest power of an input graph that has k disjoint dominating sets, where the ith power of an input graph G is constructed by adding edges between pairs of vertices in G at distance i or less, and a subset of vertices in a graph G is a dominating set if and only if every vertex in G is adjacent to a vertex in this subset.   The problem is a different view of the d-domatic number problem in which the goal is to find the maximum number of disjoint dominating sets in the dth power of the input graph.   This problem is motivated by applications in multi-facility location and distributed networks. In the facility location framework, for instance, there are k types of services that all clients in different regions of a city should receive. A graph representing the map of regions in the city is given where the nodes of the graph represent regions and neighboring regions are connected by edges. The problem is how to establish facility servers in the city (each region can host at most one server) such that every client in the city can access a facility server in its region or in a region in the neighborhood. Since it may not be possible to find a facility location satisfying this condition, "a region in the neighborhood" required in the question is modified to "a region at the minimum possible distance d".   In this thesis, we study the connection of the above-mentioned problem with similar problems including the domatic number problem and the d-domatic number problem. We show that the problem is NP-complete for any fixed k greater than two even when the input graph is restricted to split graphs, 2-connected graphs, or planar bipartite graphs of degree four. In addition, the problem is in P for bounded tree-width graphs, when considering k as a constant, and for strongly chordal graphs, for any k. Then, we provide a slightly simpler proof for a known upper bound for the problem. We also develop an exact (exponential) algorithm for the problem, running in time O(2. 73n). Moreover, we prove that the problem cannot be approximated within ratio smaller than 2 even for split graphs, 2-connected graphs, and planar bipartite graphs of degree four. We propose a greedy 3-approximation algorithm for the problem in the general case, and other approximation ratios for permutation graphs, distance-hereditary graphs, cocomparability graphs, dually chordal graphs, and chordal graphs. Finally, we list some directions for future work

    Set partitioning via inclusion-exclusion

    Get PDF
    Το παρόν έργο αποτελεί μελέτη του paper των Andreas Bjorklund, Thore Husfeldt και Mikko Koivisto, ”Set partitioning via inclusion-exclusion”. Κύριος στόχος κατά τη συγγραφή ήταν να καταστούν οι έννοιες που παρουσιάζονται όσο το δυνατόν περισσότερο εύληπτες από προπτυχιακούς φοιτητές. Αποδεικνύουμε την αρχή εγκλεισμού-αποκλεισμού και ορίζουμε το z-μετασχηματισμό ενώ δίνουμε και έναν αλγόριθμο που τον υπολογίζει. Δεδομένου ενός συνόλου N, n στοιχείων και μιας οικογένειας F υποσυνόλων του N καθώς και ενός ακεραίου k, παρέχουμε έναν ακριβή αλγόριθμο που υπολογίζει το πλήθος των k-κατατμήσεων σε εκθετικό χρόνο. Επίσης παρέχουμε και άλλους οι οποίοι λύνουν παρόμοια προβλήματα όπως η καταμέτρηση των k-καλυμμάτων, η άθροιση κατατμήσεων με βάρη και η εύρεση της πιο βαριάς κατάτμησης. Στη συνέχεια παρέχουμε παραδείγματα προβλημάτων τα οποία ανάγονται σε αυτά που λύσαμε παραπάνω και για τα οποία οι αναγωγές δεν απαιτούν πολύ χρόνο. Οι προαναφερθέντες αλγόριθμοι στοχεύουν στον ελάχιστο χρόνο, με τη χωρική πολυ- πλοκότητα να είναι εκθετική. Δεδομένου ότι την ευθύνη για αυτό φέρουν αποκλειστικά οι υπολογισμοί του z-μετασχηματισμού, δίνουμε εναλλακτικούς τρόπους επίλυσης των παραπάνω χωρίς τη χρήση του z-μετασχηματισμού σε πολυωνιμικό χώρο. Το μειονέκτημα αυτών είναι ότι χρειάζονται περισσότερο χρόνο. Κλείνουμε με έναν προσεγγιστικό αλγόριθμο πολυωνυμικού χώρου ο οποίος λύνει το Πρόβλημα Χρωματικού Αριθμού Γραφήματος.The present work is a study of the paper by Andreas Bjorklund, Thore Husfeldt and Mikko Koivisto, ”Set partitioning via inclusion-exclusion”. The main aim of the writer was for the ideas presented to be as accessible as possible to undergraduate students. We prove the principle of inclusion-exclusion and define the zeta transform while also giving an algorithm that computes it. Given a n element set N and a family F of subsets of N we provide an exact algorithm that computes the number of k-partitions in time exponential. We also provide others that solve similar problems like k-covers, sum of weighted partitions and max-weighted partition. We then provide examples of problems which are reducible to the ones solved above and for which the reduction does not dominate the time complexity. The aforementioned algorithms are optimized for time with the space complexity being also exponential. Considering that the responsibility for this falls squarely on the calculations for the z-transform, we provide alternate ways of solving the previous problems where we substitute the z-transform by polynomial space tools with the drawback of them being more costly on time. We conclude with an approximation algorithm for the Chromatic Number Problem in polynomial space
    corecore