
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Set Partitioning via Inclusion-Exclusion

Dimitrios - Kyriakos - Koutsoulis

Supervisor: Stavros Kolliopoulos, Professor

ATHENS

SEPTEMBER 2016

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Κατάτμηση συνόλων μέσω της Αρχής
Εγκλεισμού-Αποκλεισμού

Δημήτριος - Κυριάκος - Κουτσούλης

Επιβλέπων: Κολλιόπουλος Σταύρος, Καθηγητής

ΑΘΗΝΑ

ΣΕΠΤΕΜΒΡΙΟΣ 2016

BSc THESIS

Set Partitioning via Inclusion-Exclusion

Dimitrios K. Koutsoulis
S.N.: 1115201000063

Supervisor: Stavros Kolliopoulos, Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Κατάτμηση συνόλων μέσω της Αρχής Εγκλεισμού-Αποκλεισμού

Δημήτριος Κ. Κουτσούλης
Α.Μ.: 1115201000063

Επιβλέπων: Σταύρος Κολλιόπουλος, Καθηγητής

ABSTRACT

The present work is a study of the paper by Andreas Björklund, Thore Husfeldt and
Mikko Koivisto, ”Set partitioning via inclusion-exclusion” [1]. The main aim of the writer
was for the ideas presented to be as accessible as possible to undergraduate students.

We prove the principle of inclusion-exclusion and define the zeta transform while also
giving an algorithm that computes it.

Given a n element setN and a family F of subsets ofN we provide an exact algorithm
that computes the number of k-partitions in time O(2npoly(n)). We also provide others
that solve similar problems like k-covers, sum of weighted partitions and max-weighted
partition.

We then provide examples of problems which are reducible to the ones solved above
and for which the reduction does not dominate the time complexity.

The aforementioned algorithms are optimized for time with the space complexity being
also exponential. Considering that the responsibility for this falls squarely on the calcu-
lations for the z-transform, we provide alternate ways of solving the previous problems
where we substitute the z-transform by polynomial space tools with the drawback of them
being more costly on time.

We conclude with an approximation algorithm for the Chromatic Number Problem in
polynomial space.

SUBJECT AREA: Exact Algorithms

KEYWORDS: set partition, graph coloring, exact algorithm, zeta transform, inclusion-
exclusion

ΠΕΡΙΛΗΨΗ

Το παρόν έργο αποτελεί μελέτη του paper των Andreas Björklund, Thore Husfeldt
και Mikko Koivisto, ”Set partitioning via inclusion-exclusion” [1]. Κύριος στόχος κατά τη
συγγραφή ήταν να καταστούν οι έννοιες που παρουσιάζονται όσο το δυνατόν περισσότερο
εύληπτες από προπτυχιακούς φοιτητές.

Αποδεικνύουμε την αρχή εγκλεισμού-αποκλεισμού και ορίζουμε το z-μετασχηματισμό
ενώ δίνουμε και έναν αλγόριθμο που τον υπολογίζει.

Δεδομένου ενός συνόλου N , n στοιχείων και μιας οικογένειας F υποσυνόλων του
N καθώς και ενός ακεραίου k, παρέχουμε έναν ακριβή αλγόριθμο που υπολογίζει το
πλήθος των k-κατατμήσεων σε O(2npoly(n)) χρόνο. Επίσης παρέχουμε και άλλους οι
οποίοι λύνουν παρόμοια προβλήματα όπως η καταμέτρηση των k-καλυμμάτων, η άθροιση
κατατμήσεων με βάρη και η εύρεση της πιο βαριάς κατάτμησης.

Στη συνέχεια παρέχουμε παραδείγματα προβλημάτων τα οποία ανάγονται σε αυτά
που λύσαμε παραπάνω και για τα οποία οι αναγωγές δεν απαιτούν πολύ χρόνο.

Οι προαναφερθέντες αλγόριθμοι στοχεύουν στον ελάχιστο χρόνο, με τη χωρική πολυ-
πλοκότητα να είναι εκθετική. Δεδομένου ότι την ευθύνη για αυτό φέρουν αποκλειστικά
οι υπολογισμοί του z-μετασχηματισμού, δίνουμε εναλλακτικούς τρόπους επίλυσης των
παραπάνω χωρίς τη χρήση του z-μετασχηματισμού σε πολυωνιμικό χώρο. Το μειονέκτημα
αυτών είναι ότι χρειάζονται περισσότερο χρόνο.

Κλείνουμε με έναν προσεγγιστικό αλγόριθμο πολυωνυμικού χώρου ο οποίος λύνει το
Πρόβλημα Χρωματικού Αριθμού Γραφήματος.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ακριβείς Αλγόριθμοι

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: κατάμηση συνόλου, χρωματισμός γραφήματος, ακριβής αλγόριθμος,
z-μετασχηματισμός, αρχή εγκλεισμού-αποκλεισμού

ACKNOWLEDGEMENTS

I want to thank Professor Stavros Kolliopoulos for helping me with the preparation and
the choice of the current work’s subject.

CONTENTS

PREFACE 7

1 INTRODUCTION 8
1.1 The Principle of Inclusion Exclusion . 8
1.2 Zeta Transform . 8
1.3 Model of Computation . 9

2 RESULTS 10
2.1 Set Cover . 10
2.2 Set Partition . 10
2.3 Sum of Weighted Partitions . 11
2.4 Finding a Heaviest Partition . 13

3 APPLICATIONS 15
3.1 Graph Coloring . 15

3.1.1 Chromatic Number . 15
3.1.2 Chromatic polynomial . 15
3.1.3 List Coloring . 16
3.1.4 Chromatic Sum . 16

3.2 Other Graph Partitioning Problems . 17
3.2.1 Counting Set Packings . 17
3.2.2 Max k-Cut . 17

3.3 Bayesian Partition Models . 18

4 POLYNOMIAL SPACE 19
4.1 Chromatic Number . 19
4.2 Domatic Number . 20

5 APPROXIMATION 21
5.1 Chromatic Number Approximation . 21
5.2 Further Approximations . 21

6 CONCLUSION 23

REFERENCES 24

PREFACE

Given a n element set N , a family F of subsets of N and an integer k we will count all
possible partitions, sum the product f1(S 1) · · · fk(S k) and maximize the sum f1(S 1) + . . .+
fk(S k) over all partitions (S 1, . . . , S k) of N .

To achieve the above we will first prove the principle of inclusion-exclusion and define
the z-transform. Besides these tools we will also use dynamic programming and self
reducibility.

While at first we optimize for time, we will also provide alternatives to the z-transform
which is our main space bottleneck. In both cases we provide examples of interesting
applications like graph coloring and other partitioning problems that are reducible to the
above. Unless otherwise mentioned all proofs that follow come from [1].

An outline of the thesis follows in list format:

1. INTRODUCTION
We begin laying our infrastructure in the form of tools which we will be using through-
out the rest of this work. These include the zeta transform and the principle of
inclusion-exclusion.

2. RESULTS
Our most general results which consist of algorithms that compute interesting set
properties. We begin with an algorithms that finds the number of set covers of a set,
followed by another one for the number of set partitions. We then solve the more
general Sum of Weighted Partitions problem and conclude with a way to find the
heaviest among the possible partitions of a set.

3. APPLICATIONS
We apply the algorithms from the previous chapter to solve problems defined on
graphs. We begin with several problems related to graph coloring and then move
to graph partitioning problems. We conclude this chapter with an application on
bayesian model-based clustering.

4. POLYNOMIAL SPACE
We prioritize space complexity and substitute the zeta transform, which is our most
space-hungry tool, by others that are cheaper on space yet costlier on time. It is in
this spirit that we solve the Chromatic and Domatic Number problems anew.

5. APPROXIMATION
We prioritize speed over accuracy and provide a quick approximate solution to the
Chromatic Number problem. We then generalize this in the form of guidelines aimed
at tackling a class of similar problems.

6. CONCLUSION
We briefly note what has be shown up to this point and provide references to related
work done by other researchers after the publication of the paper under study. We
close with some suggestions on where further research on this specific area should
possibly focus.

Set Partitioning via Inclusion-Exclusion

1 INTRODUCTION

We will provide a description for each one of the tools that we will be using, namely the
Inclusion-Exclusion principle from combinatorics, the zeta transform and a slightly different
big O notation along with the model of computation that we will follow.

1.1 The Principle of Inclusion Exclusion

Let B be a finite set and F = {A1, A2, . . . , An} a family of subsets of B. Let w : 2B → �
be a weight function defined as w(A) =

∑
a∈A 4(a), where A ⊆ B and 4 : B → � is another

weight function. The Principle of Inclusion Exclusion posits that

w(B \
n∪

i=1

Ai) = w(B) +
∑

X⊆{1,...,n}
|X|≥1

(−1)|X|w(
∩
i∈X

Ai)

Proof. We will sum the appearances of 4(a) for each a ∈ B on each side and show that
they are equal on both sides of the equation. If a < Ai for all Ai ∈ F then it appears once
in the left side’s 4’s sum expansion. On the right side it also appears only once and that
is in w(B). On the other hand, if a ∈ Ai for some i1, . . . , in such that {i1, . . . , in} = I, then
4(a) doesn’t appear on the left side while on the right side it’s added for each even-sized
i-combination of I and substracted for each odd-sized one and that is for all i ∈ I, formally∑

X⊆I

(−1)|X|4(a) = 4(a)
|I|∑

i=0

(
|I|
i

)
(−1)i = 0

by the binomial theorem.
In the case where 4 is the indicator function of B we get the version of the principle of

inclusion-exclusion that counts elements of subsets.

1.2 Zeta Transform

Let N be a n-element set, we define a function z : {2N → �} → {2N → �}, in relation to
all functions f : {2N → �}, such that

z(f) = f̂ and f̂ (Y) =
∑
S⊆Y

f (S) for Y ⊆ N

We say that f̂ is the zeta transform of f .
The naive way of computing the zeta transform takesO(3n) additions but we can reduce

this to O(n2n) using Yate’s method [51] [32, Section 4.3.4]. We term the resulting algorithm
the fast zeta transform.
Proof. Let A = {a1, . . . , an} be a set of n elements. We define g0, . . . , gn for Y ⊆ A by
g0(Y) = f (Y) and

gi(Y) =

gi−1(Y) + gi−1(Y \ {ai}), if ai ∈ Y
gi−1(Y), otherwise

(i = 1, . . . , n).

We can show by induction that

gi(Y) =
∑

X=Y\I
I⊆{a1,...,ai}

f (X), with each X appearing only once in the sum

D. Koutsoulis 8

Set Partitioning via Inclusion-Exclusion

For i = 0 the above is obiously true. We suppose that it’s true for i = k− 1 and try to prove
the case where i = k. If ak < Y then

gk(Y) = gk−1(Y) =
∑

X=Y\I
I⊆{a1,...,ak−1}

f (X)

from the inductive hypothesis, which is equal to∑
X=Y\I

I⊆{a1,...,ak}

f (X)

since ak < Y.
On the other hand, if ak ∈ Y, then we can partition the set of all X into two sets, one given
by removing subsets I ⊆ {a1, . . . , ak−1} from Y, accounted for by the first summand and the
other given by removing I ∪ {ak} from Y, accounted for by the second summand of the first
branch. Thus the proof by induction is complete.

From the above we have that

gn(Y) =
∑

X=Y\I
I⊆A

f (X) =
∑
X⊆Y

f (X) = f̂ (Y)

We can compute all gn(Y) from gn−1(Y) in O(2n) additions which gives us O(n2n) additions if
we iterate from i = 1 to n. If maxY⊆A f (Y) = M for our selection of f then the integers that will
occur in our computations are within the bounds [−2nM, 2nM], since it’sO(2n) additions of at
most M sized integers. Therefore, if we use schoolbook addition, we need O(log(2nM)) =
O(log(2n)+ log(M)) = O(n+ log(M)) time for each one which gives us O(n22n +2n log(M))
total time abbreviated as O∗(2n log(M)) as we will soon see.

1.3 Model of Computation
We can will be using another variant of the big O notation symbolized O∗ where for a

function f (n) which is the product of which one or more factor are polynomial functions
and at least one is an exponential function, we can ignore all the polynomial factors e.g.
O(2npolynom(n)) = O∗(2n), the following is also impliedO(n log(n)) = O(2log(n)polylog(n)) =
O∗(2log(n)) = O∗(n).

We use the random access machine model of computation. We add 2 b-bit integers in
O(b) time and multiply them in O(b log(b) log(log(b))) = O∗(b) time [44].

D. Koutsoulis 9

Set Partitioning via Inclusion-Exclusion

2 RESULTS

In this chapter we will provide algorithms that compute interesting and somewhat fun-
damental properties of sets, alongside informal proofs of their correctness. We will opti-
mize for time complexity and prove an upper bound for each one of them.

2.1 Set Cover
Let N be a n-element set and F a family of subsets of N. A k-cover is a tuple (S 1, . . . , S k)

where S i ∈ F such that S 1 ∪ · · · ∪ S k = N , where there is overlap and each S i may
appear more than once in a tuple. We want to compute ck(F) the number of k-covers. To
that end we can use the principle of inclusion-exclusion where 4 is the indicator function
of B, which B is the set of all k-tuples mentioned above. We define a family of subsets
{A1, . . . , An}, Ai ⊆ B such that Ai includes all k-tuples but those the i-th element of N belongs
to. We can see that ck(F) is the number of k-tuples in B that appear in none of the Ai.
Therefore from the principle of inclusion-exclusion we have that

ck(F) = |B|+
∑

X⊆{1,...,n}
|X|≥1

(−1)|X|
∣∣∣∣∣∣∣∩i∈X Ai

∣∣∣∣∣∣∣ .
Let a(X) = |{S ∈ F : S ∩ X = ∅}|, intuitively the number of sets in F that don’t overlap with
X. Since our definition of a k-cover allows for overlap and repetition and since each Ai is
a k-tuple we have that | ∩i∈X Ai| equals the number of k-permutations with repetition on the
number of sets in F that avoid X, therefore | ∩i∈X Ai| = a(X)k. Note that |B| = a(∅)k.

From the above we have that

ck(F) = |B|+
∑

X⊆{1,...,n}
|X|≥1

(−1)|X|a(X)k

which we will prove that we can compute in O∗(2n) time. We need O(n2n) = O∗(2n) time
to compute the zeta transform f̂ of the indicator function of F and then another O∗(2n) to
compute all a(X) like this
(Think of N as the n-element set of the first n natural numbers for now to simplify the
notation)

a(X) =
∑

S⊆N\X
f (S) = f̂ (N \ X).

Finally we raise them to the k-th power and sum all of them still in O∗(2n) time to compute
ck(F).

2.2 Set Partition
Let N be a n-element set and F a family of subsets over N . We call a k-partition a

tuple (S 1, . . . , S k) over F such that S 1 ∪ · · · ∪ S k = N and S i ∩ S j = ∅ (i , j). Note that any
S ∈ F may appear more than once in a single tuple. We will prove that we can count the
number pk(F) of k-partitions in O∗(2n) time.

We define ak(X) to be the number of k-tuples (S 1, . . . , S k) where for every S i, S i∩X = ∅
and |S 1| + . . . + |S k| = n. Now lets recall the unweighted principle of inclusion-exclusion
where in our case B is substituted by the set of k-tuples over F that satisfy the second

D. Koutsoulis 10

Set Partitioning via Inclusion-Exclusion

condition from above. We define a family of subsets {A1, . . . , An}, Ai ⊆ B such that Ai

includes all k-tuples but those the i-th element of N belongs to. We can see that pk(F) is
the number of k-tuples in B that appear in none of the Ai. Therefore from the principle of
inclusion-exclusion we have that

pk(F) = |B|+
∑

X⊆{1,...,n}
|X|≥1

(−1)|X|
∣∣∣∣∣∣∣∩i∈X Ai

∣∣∣∣∣∣∣ .
But since we have that | ∩i∈X Ai| = ak(X) from the definition of ak(X), we can rewrite the
above as such

pk(F) = |B|+
∑

X⊆{1,...,n}
|X|≥1

(−1)|X|ak(X).

Note that |B| = ak(∅). We calculate functions f (l) : 2F → {0, 1} for all l, defined as

f (l)(S) =

1, if S ∈ F and |S | = l
0, else

and then we build a table containing all zeta transforms f̂ (l) of the above using the Fast
zeta transform, all that in O∗(2n) time. Now let us define

g(j,m,N , X) =
∑

li+...+l j=m

i∏
c=1

f̂ (lc)(N \ X),

informally g(j,m,N , X) equals the number of j-tuples (S 1, . . . , S j) over F for which S i∩X =
∅ for all i and |S 1|+ . . . |S j| = m.

It is clear that ak(X) = g(k,m,N , X). We also have that g(1,m,N , X) = f̂ (m)(N \ X) at no
cost and from that we can compute g(k,m,N , X) using the recursion

g(j,m,N , X) =
m∑

l=0

g(j − 1,m − l,N , X) f̂ (l)(N \ X)

by dynamic programming in under O∗(2n) time. We now got everything we need and are
ready to apply the principle of inclusion-exclusion.

2.3 Sum of Weighted Partitions
In the previous section we counted the number of partitions of a given set. In this one

we will assign a weight to each partition and try to find the sum of the weights of all valid
partitions.

We use the same definitions as before for set N , tuples S = (S 1, . . . , S k) on Y ⊆ N and
family F . Additionally we have that k may be larger than n and any S i element of any S
may be empty. our intuition about weight is formalized by a function f : S → � which for
some given functions f1, . . . , fk : S i → �, S i ⊆ N , is defined as f (S) = f1(S 1) · · · fk(S k)
where S = {S 1, . . . , S k}. Therefore what we need to compute is

pk(f) =
∑

S

f (S).

(As a side note we consider f1, . . . , fk to be bounded as such | fi| ≤ M for some integer M.)
We will prove that we can do so in O∗(2nk log(M)) time.

D. Koutsoulis 11

Set Partitioning via Inclusion-Exclusion

We define bk(X) to be the sum of all f (S) where S are the k-tuples whose elements are
subsets of N \ X and for which such tuple the following (1) is true |S 1|+ . . .+ |S k| = n. Now
recall the weighted principle of inclusion-exclusion from before but let the set of k-tuples
on N satisfying (1) substitute for B. Likewise our subsets Ai ⊆ B are going to be the sets
of k-tuples that for each Ai avoid the i-th element ofN . Given that the pk(f) we are looking
for equals the number of k-tuples including all elements of N out of B, we have that

pk(f) =
∑

S∈(A1∩···∩An)

f (S) = w(A1 ∩ · · · ∩ An).

It is also clear that w(∩i∈XAi) = bk(X) and w(B) = bk(∅). Therefore we can compute

pk(f) = w(B) +
∑
X⊆N
|X|≥1

(−1)|X|bk(X),

in time O∗(2n) given every bk(X). We will now show that we can compute all bk(X) in time
O∗(2nk log(M)) dominating the above.

We begin with the computation of all

f̂ (l)c (Y) =
∑
S⊆Y
|S |=l

fc(S), Y ⊆ N ,

which equals the complexity of computing the zeta transform of all f1, . . . , fk on N which is
O∗(2nk log(M)). We will now use the above to compute all bk(X) by dynamic programming
in time O∗(2nk log(M)).

To simplify our proof we raise k to the nearest greater power of 2 namely 2q such that
k ≤ 2q < 2k by introducing additional fi’s that evaluate to 1 at ∅ and to 0 elsewhere. We
define for some given set N \ X

g(s, t,m) =
∑

ls+...+lt=m

t∏
c=s

(N \ X), lc ≥ 0,

less formally it is the sum of the products fs(S s) · · · ft(S t) where (S s, . . . , S t) are all the
(s − t + 1)-tuples on N \ X constrained by the equation |S s| + . . . + |S t| = m. It’s clear that
bk(X) = g(1, k, n) and we’ll use the following recursion to compute it

g(s, t,m) =
∑

m0+m1=m

g(s, ⌊(s + t)/2⌋,m0)g(⌊(s + t)/2⌋+ 1, t,m1)

and from our definition of g(s, t,m) we have g(c, c,m) = f̂ (m)(N \ X) already available from
our previous computations. We save time by not having to compute g(s, t,m) for all s, t
and m but only the 2q+1 − 1 required by g(1, k, n) and that is including itself and the already
computed base cases (think of them as the nodes of a binary tree). In the dynamic pro-
gramming context where in the step of some g(s, t,m)’s computation, all other g(s, t,m′)
required for it are known, the time needed for this operation equals the number of addi-
tions times the complexity of each multiplication. The former is n(n+1)/2, since m iterates
through 1, . . . , n and for each we have m additions. The latter depends on the size of the
multiplied integers which are bounded by nmMt−s+1mt−s. The proof by induction on t − s is
trivial. It is now clear that the time T (j) required for the step of our dynamic programming
algorithm where we compute g(s, t,m) for any s, t such that t − s + 1 = j is bounded by

O∗((n(n + 1)/2) log(nn))

= O∗(n3 log(n) + n2 j log(M) + n2 jlog(n−1))

= O∗(n3 + n2 j log(M)).

D. Koutsoulis 12

Set Partitioning via Inclusion-Exclusion

As we noted before we can think of g(1, k, n) = g(1, 2q, n) and the other g’s transitively
required for its computation as the nodes of a binary tree. Therefore the total time is

T (2q) + 21T (2q−1) + 22T (2q−2) + . . .+ 2qT (20).

The first part of n3 + n2 j log(M), that is, n3 is constant among all summands above so we
have 2(q+1−1)n3 = 2q+1n3 = 2qn3. To calculate n2 j log(M)’s contribution to the total time
we note that each summand adds exactly 2qn2 log(M) to the sum and there are q such
summands. Therefore the time needed to calculate g(1, k, n) is

O∗(2qn3 + q2qn2 log(M))

= O∗(2qn3 + 2qn2 log(M))

= O∗(kn3 + kn2 log(M))

We need to compute one g(1, k, n) for each bk(X), x ⊆ N , so

O∗(2nkn3 + 2nkn2 log(M))

= O∗(2nk log(M))

time for all bk(X) and thus for pk(f).

2.4 Finding a Heaviest Partition
We define the same objects as in the previous section. We now want to find a partition

whose weight is the maximum out of all partitions’ weights for our given set system. We
start with an algorithm that computes the greatest weight in time O∗(2nkM) and use it to
construct another one that finds the partition in question, in time O∗(2nk2M).

To make our work easier constraint our function f1, . . . , fn to the range [0,M] down
from [−M,M]. We define a new set of functions { f ′1, . . . , f ′k } such that f ′c (S i) = β

fc(S i) where
β = kn + 1 so that

pk(f ′) =
∑

S

β f1(S 1)+...+ fk(S k) =
kM∑
r=0

arβ
r

where kM equals the maximum number of different possible weights, r iterates through
these weights and ar is the number of partitions S = {S 1, . . . , S k} such that r = f1(S 1) +
. . . + fk(S k). It is important to note that the maximum number of partitions, in the case
where F is the powerset of N , is kn. From that and the definition of ar it’s implied that
ar ≤ kn < kn + 1 = β. We now posit that for the largest r that ar > 0, denoted by r′,

pk(f ′) =
kM∑
r=0

arβ
r < βr′+1.

To prove it we in turn prove that
∑z

r=0 arβ
r < βz+1 by induction. The base case where∑0

r=0 a0β
0 < β0+1 is obviously true. Now suppose that

∑z−1
r=0 arβ

r < βz is true. We have that

z∑
r=0

arβ
r =

z−1∑
r=0

arβ
r + azβ

z < βz + azβ
z ≤ βz + (β − 1)βz = βz + βz+1 − βz = βz+1,

we’ve consequently proven that pk(f ′) =
∑kM

r=0 arβ
r < βr′+1. It is now clear that logβ(pk(f ′)) =

r′ the maximum weight. We use the previous section’s algorithm to compute pk(f ′) and

D. Koutsoulis 13

Set Partitioning via Inclusion-Exclusion

since f ′i are bounded by βM we can do it in O∗(2nk log(βM)) = O∗(2nkMn log(k)) = O∗(2nkM)
time.

Finding a partition for the given max weight W is rather easy. We iterate through the
elements ofN and we assign each one to a part (color it in a sense) and then use the above
algorithm to calculate the max weight of our set system without taking into account the
weight of partitions that disagree with our assignment. We can achieve that by temporarily
setting fc(S c) = 0 for every S c that doesn’t include our element with c being the number of
our chosen part, effectively nullifying the weight of partitions that we are not interested in.
After assigning and calculating the new possible maximum weight, if it is lower than the
old maximum then we assign the element to a different part and repeat the above. When
for an assignment the new and old max weights coincide, we lock the element to the part
and move to the next element repeating the steps above. the partition we reach to after
assigning all the elements to subsets of N is a maximum weight one. At each step of the
iteration through the elements of N we use the algorithm of the first half of the section k
times. Thus the total time is

O∗(k2nkM + k2n−1kM + . . .+ k20kM) = O∗(k2(2n+1 − 1)M) = O∗(2nk2M).

D. Koutsoulis 14

Set Partitioning via Inclusion-Exclusion

3 APPLICATIONS

In contrast to the work in the previous chapter, where we focused on solving problems
defined on sets, in this one we focus on graphs. We use the previous results to construct
algorithms that compute useful to know graph properties. We conclude with a section on
Bayesian model-based clustering, which strays somewhat in content from the rest of the
chapter.

3.1 Graph Coloring
We call k-coloring of a graph G = (V, E), |V | = n a mapping C : V → {1, . . . , k} where for

every v1, v2 ∈ V and C(v1) = C(v2) we have that (v1, v2) < E. in order to reuse our previous
results we let N = V and F to be the family of all non empty independent sets of G.

3.1.1 Chromatic Number

We call chromatic number χ(G) of a graph G the smallest number k for which there
exists a k-coloring of G. We now define the problem where for a given graph G = (V, E)
and number k we want to know if χ(G) ≤ k. This is easily reduced to the counting set
covers problem, since if ck(F) > 0 then there exists some covering {S 1, . . . , S k} so that we
can assign colors C(v) = min{c : v ∈ S c} which is a valid at most k-coloring. in addition we
provide a alternate way to compute a(X) for all X ⊆ N for our special case of F .

Let N(v) = {v} ∪ {u ∈ V : (v, u) ∈ E} denote the set of v and all its neighbors. We have
a(X) = a(X ∪ v) + a(X ∪ N(v)) + 1, (v < X) to be true. To make it clearer how this is true
we rewrite it as a(X) − a(X ∪ {v}) = a(X ∪ N(v)) + 1, (v < X). The left hand side of the
equation evaluates to the number of independent sets that avoid all of X and at the same
time include v. The right hand side of the equation evaluates to the number of independent
sets that avoid v and all its neighbors, plus the empty set. If we add v to every set above
we reach independent sets that avoid X and obviously include v thus the set of them is a
subset of the one we talked about on the left hand side. It is trivial to show it’s true the
other way around too, therefore since both are a subset of one another, they are equal
and so are the left hand side and the right hand side.

Starting from the base a(V) = 0 we can use the recursion to compute and store all of
a(X) operating on n-bit integers in O(2nn) time and space. We can then execute the rest
of the counting set covers algorithm to see if ck(F) ≥ 0 and thus χ(G) ≤ k.

3.1.2 Chromatic polynomial

Given G = (V, E), |V | = n and k ∈ {0, . . . , n} we want to find the number P(G; k) of
k-colorings of G. We will prove that we can do so in O∗(2n) time and space.

Recall our counting partitions algorithm and the fact that for our definition, pr(F) (where
F is the family of all independent sets of G) considers partitions consisting of the same
subsets in alternate order to be different for the sake of counting them. therefore if we
define p′r(F) to be the number of partitions S = {S 1, . . . , S k} where the order of S i doesn’t
matter, we have that for each such partition there exist r! different reorderings of subsets
and thus p′r(F)r! = pr(F). We note that the ways we can color each valid r-partition equal
the r-permutations, without repetition, of the k available colors and are thus k!/(k − r)! in

D. Koutsoulis 15

Set Partitioning via Inclusion-Exclusion

number. In conclusion we have

P(G; k) =
k∑

r=1

k!
(k − r)!

p′r(F) =
k∑

r=1

k!
(k − r)!

pr(F)
r!

=
k∑

r=1

(
k
r

)
pr(F)

which requires O∗(2n) for the computation of pr.
As a side note the function P(G; ·) : N→ N is a degree n polynomial so we can compute

it at multiple points from the formula above and then use those points to interpolate the
polynomial in question and evaluate it at other interesting points such as at −1 which gives
us the number of acyclic orientations of G [45].

3.1.3 List Coloring

We will generalize the k-coloring problem by introducing list coloring in which we are
given L(v) ⊆ {1, . . . , k}, v ∈ V which restricts the colors a vertex v can be assigned to by
only allowing those c ∈ L(v), down from c ∈ {1, . . . , k} in the k-coloring problem. What we
ask is, if given G = (V, E) and list L : V → 2{1,...,k}, can G be L-colored?

We note that for those v that L(v) > d(v) we can postpone their coloring till all of their
neighbors are colored so that we can simply choose c ∈ L(v) different from each neighbor’s
color. Consequently we can limit ourselves to the non-trivial case where ∀v(v ∈ V ⇒
L(v) ≤ d(v)). The set of all available colors i.e. the union of all the sets in L’s image is
enumerated as {1, . . . , k}. Assume k ≤ n(n − 1). We define functions f1, . . . , fk : 2

V → {0, 1}
where fc(S c) = 1 for S c independent or empty, and ∀v(v ∈ S c ⇒ c ∈ L(v)) meaning that it
can be colored exclusively by c and if it’s not the case then fc(S) = 0. We can now use
the above as the input to the Max Weighted Partition algorithm from section 2.4 to find the
max weight of f1(S 1)+ . . .+ fk(S k) over all S = {S 1, . . . , S k} partitions of V. The propositions
G is L-colorable and W = k imply one another. To prove one way, if G is L-colorable then
there exists an L-coloring C such that the sets S c = {v : C(v) = c} are independent or
empty with ∀v(v ∈ Vc ⇒ c ∈ L(v)) and therefore form a valid partition which turns all fc(S c)
to 1 so W = f1(S 1) + . . . + fk(S k) = k. To prove the other way, if W = k then there exists
a partition S = {S 1, . . . , S k} such that fc(S c) = 1 for all c ∈ {1, . . . , k}. Therefore it’s true for
all these S c that they are independent or empty and that ∀v(v ∈ S c ⇒ c ∈ L(v)), so we can
color each S c monochromatically with c and reach a valid L-coloring. Our algorithm has
the same time complexity O∗(2n) as the max weighted partitions one.

3.1.4 Chromatic Sum

Given a graph G = (V, E) and k colors we want to find a coloring C : V → {1, . . . , n} that
minimizes

∑
v∈V C(v). We note here that the coloring that gives the minimum maxv∈V C(v)

does not necessarily coincide with the one that minimizes
∑

v∈V C(v).
We can solve the Chromatic Sum in O∗(2n) time by reducing to MaxWeighted Partition.

We set F to be 2|V | and define function f1, . . . , fn such that fc = −c|S |, if S is independent
or empty so that the sum f1(S 1)+ . . .+ fk(S k) = −(1|S 1|+ · · ·+ k|S k|) is maximized when its
absolute value is minimized which is for min

∑
v∈V C(v). In order to discard non-colorable

partitions we set fc(S c) = −n2 for non-empty non-independent S c ∈ 2|V | so that the abso-
lute value of the weight of the partitions including them is larger than every one of those
consisting exclusively of independent or empty S c ∈ 2|V |. The time needed for the above
is the same as the one for Max Weigthed Partitions namely O∗(2n).

D. Koutsoulis 16

Set Partitioning via Inclusion-Exclusion

3.2 Other Graph Partitioning Problems
For the problems Domatic Number, Chromatic Number, Partitions into Forests where

F consists of all S that G[S] is a forest, Partition Into Perfect Matchings where G[S] is a
perfect matching and Bounded Component Spanning Forest where G[S] is connected and∑

v∈S 4(v) ≤ B, we have that we can iterate through k-partitions over 2|V | and check for every
S c ∈ 2|V | of each such partition that S c ∈ F in time polynomial in n, complexity which our
O∗ notation allows us to ignore. On the other hand we can’t at least at the moment check
if a graph is hamiltonian in poly(n) time and thus, in solving the Partition Into Hamiltonian
Subgraph problem, we have to enumerate all hamiltonian subgraphs once in O∗(2n) time
[27] and store them so that we can later determine if S c ∈ F in constant time to determine
valid partitions.

3.2.1 Counting Set Packings

Given a set N , a family of subsets of it F ⊆ 2N and an integer k, we define a k-packing
to be a k-tuple (S 1, . . . , S k) over F such that ∀i∀ j(i , j ⇒ S i ∩ S j = ∅). We want to find
the number of all possible k-packings. We note that if F = ∅ then we can use a valid
k-packing to construct k − 1 others by successively substituting S i’s with ∅.

We will use the Sum Weighted Partitions algorithm from section 2.3 with functions
f1, . . . , fk1 where f1, . . . , fk are the indicator function of F and fk+1(X) = 1 is a constant
function (Please keep in mind that the distinction between k and k + 1 in the notation
is important). Recall pk+1(F) which used to be the number of k + 1-partitions over F ,
we now want it to be the number of k-packings over F . For that to be so, bk+1(X) =
g(1, k + 1, n) should be equal to the number of all k-tuples {S 1, . . . , S k} on N \ X such that
there exists another k-tuple {S ′1, . . . , S ′k} on N \ X, for which we have S 1 ⊆ S ′1, . . . , S k ⊆ S ′k
and |S ′1| + . . . + |S ′k| = n. We note that f̂ (l)i (N \ X) for i ∈ {1, . . . , k} equals the number of
S i ∈ F for which S i ∩ X = ∅ and |S | = l. We also note that f̂ (l)k+1(N \ X) equals the number
of subsets of N \ X of length l. Now for every k-tuple over N \ X, {S 1, . . . , S k} there exist
others over N \ X, {S ′1, . . . , S ′k} such that |S ′1| + . . . + |S ′k| = n and S 1 ⊆ S ′1, . . . , S k ⊆ S ′k. We
have that the set C = (S ′1 \ S 1)∪ · · · ∪ (S ′k \ S k) is a subset of N \ X. The number of all such
k-tuples over N \ X of summed length m is

f̂ (n−m)

k+1 (N \ X)
k∏

c=1

f̂ (lc)c (N \ X), where l1 + . . .+ lk = m.

In the above f̂ (n−m)

k+1 (N \ X) is the number of all C complementing our k-tuples. If we sum
over all the length permutations we get

bk+1(X) = g(1, k + 1, n) =
∑

l1+...+lk+1=n

k+1∏
c=1

(N \ X).

3.2.2 Max k-Cut

Given a graph G(V, E) and a weight function w : E → N we want to find the k-partition of
V that maximizes the sum of all w(e) for e with endpoints in different parts of the partition.

As a side note we can reduce the case where w : E → {1} to the Max k-Colorable
Subgraph on the complementary graph. To make it clearer, after solving the max coloring

D. Koutsoulis 17

Set Partitioning via Inclusion-Exclusion

on the complement, we can use the color classes to form a partition for which, after in-
verting the complementation of the edges, every element of every part is connected with
all elements in foreign parts and the sum of w’s is thus maximized.

We propose that we can solve Max k-Cut for w : E → [−M,M] in O∗(2nM) time. We
define f1, . . . , fk as fi(S i) = −∑

e∈E(S i) w(e) where E(S i) is the set of the edges with both
endpoints in S i. We now use theMaxWeighted Partition algorithmwith the above f1, . . . , fk.
We effectively find the partition that minimizes the absolute value of the f1(S 1) + . . . +
fk(S k) sum and in turn minimizes the intra-part sum of weights over all parts which finally
maximizes the sum of weights of edges connecting different parts.

3.3 Bayesian Partition Models
Consider Bayesian model-based clustering [4, 18, 28, 38]. For y1, . . . , ym datapoints,

S = {S 1, . . . , S k} k-partitions of the set of them indexes and for each such partition associate
each part (named cluster) with a function of θ such that for a given j assigned to a cluster
with its respective function θ we have that P(y j|θ), which ranges from 0 to 1, tells us how
suitable the assignment is for y j. We are also given distributions for θ, q(θ) and weight
functions to evaluate how the importance is distributed among the clusters of a clustering

pc(S c) =
wc(S c)∑

S
∏

c wc(S c)
.

We define
fc(S c) = p(S c)

∫ ∏
j∈S c

P(y j|θc)q(θc)dθc

where we calculate how good the cluster is for some given θc, sum over all possible θc
effectively integrating them out and then multiplying the result with the importance of the
cluster. We want to find the optimal clustering which is the one that maximizes the sum
f1(S 1) + . . . + fk(S k) and to approximate such a partition we can use the Max Weighted
Partition algorithm from section 2.4. We can’t be sure that the result is exactly the optimal
one cause Max Weighted Partition was defined on naturals while in this problem we deal
with rationals.

D. Koutsoulis 18

Set Partitioning via Inclusion-Exclusion

4 POLYNOMIAL SPACE

We will prove that if membership in F can be decided in polynomial space and time
then Counting Set Covers and Partitions can both be solved in polynomial space and
O∗(3n) time.

In the original algorithm of Counting Set Covers the bottleneck in space was storing all
a(X) we computed with the z-transform which required O∗(2n) space. Since checking for
membership in F costs polynomial time and space, we can compute each a(X) on the fly
when needed by checking for every S i ⊆ N \ X if it is included in F . We therefore have to
do 2|N|−|X| membership tests for each a(X) of which there are (n

r) many, the total number of
tests being ∑

X⊆N
2|N|−|X| =

n∑
r=0

(
n
r

)
2n−r = 3n

by the binomial theorem. The cost of each test is given to be polynomial so we ignore
it, leading to O∗(3n) time. We work similarly on the Counting Set Partitions, effectively
substituting the use of the z-transform by membership tests on the fly.

We will now prove that if f1, . . . , fk can be computed in polynomial space and time
then Sum and Max Weighted Partitions can be solved in O∗(3nk logM) and O∗(3nk2M) time
respectively and both in space polynomial in nk.

In SumWeighted Partition we forego the computation and storing of f1, . . . , fk using the
z-transform and instead compute them in the fly in time polynomial when needed. This, like
in the previous proof, reduces the space requirement from exponential to polynomial and
raises the base of the exponential time from 2 to 3. in the case of Max Weighted Partition
we know from each original algorithm that it is reducible to Sum Weighted Partitions in
under polynomial space and trivial time. We then follow the steps above but this time for
M-bit integers and k times for each X ⊆ N leading to O∗(3nk2M) time.

The above apply to all the partitioning problems of the previous sections besides Par-
titioning into Hamiltonian Subgraphs since we can’t check if a graph is hamiltonian in
polynomial time.

We will now turn to the case where F is small in comparison to 2N and enumerating it
each time may prove faster than testing for membership for all S i ⊆ N \ X.

4.1 Chromatic Number
Given an algorithm [23] that counts all independent subgraphs of a n-vertex graph in

O(1.2461n) time, we will solve the Chromatic Number in O(2.2461n) time and polynomial
space.

In this problem F contains all independent subgraphs of a given G = (V, E). To com-
pute a(X) we remove all vertices of X from V and apply the aformentioned algorithm on
the resulting graph, in time O(1.2461|V |−|X|). The total time therefore is

∑
X⊆V

O(1.2461|V |−|X|) =
|V |∑

r=0

(
|V |
r

)
O(1.2461|V |−r) = O(2.2461|V |)

by the binomial theorem.

D. Koutsoulis 19

Set Partitioning via Inclusion-Exclusion

4.2 Domatic Number
Given a graph G = (V, E), we call dominating set a vertex subset D ⊆ V such that for

every vertex in V there exists some vertex in D such that the two of them are one and the
same or there is an edge connecting them. We call domatic number δ(G) of the graph
G the largest integer k such that there exists a k-partition of V into dominating subsets.
In the Domatic Number problem we are given a graph G = (V, E) and an integer k and
we ask if we can partition V into k dominating subsets or equivalently if δ(G) ≥ k. What
we’ve proven at the start of this section applies to this problem and so we can solve it
in polynomial space and O∗(3n) time. In this subsection we will provide another way of
solving it, this time in O(2.8718n) time, still in polynomial space and provide a partial proof
of it.

We set F to be the set of minimal dominating sets of G. We call minimal dominating
a subset of V from which if we remove any vertex it stops being dominating. Our problem
is reduced in constant time and space to Counting Set Packings since given that there
exists a k-packing of minimal dominating subsets, we can select vertices missing for it to
be a k-partition and add each one to a pack at random, constructing a k-partition of no
longer minimal dominating sets. Now we reduce to Sum Weighted Partitions in constant
time and space as we did in Section 3.2 but instead of using the z-transform to compute a
table for f̂ (l)c (Y), Y ⊆ V which would require exponential space, we use the algorithm from
[21, Theorem 5.1] for all Y which requires O(2.8718n) total time and polynomial space. The
authors of [22] note that it is not known how representative of the actual run-time the above
bound is.

D. Koutsoulis 20

Set Partitioning via Inclusion-Exclusion

5 APPROXIMATION

We shortly shift the focus to the case where accurate results are not of paramount
importance and trading accuracy for speed is desirable. An algorithm for approximating
the Chromatic Number of a graph is provided, followed by general guidelines on tackling
similar problems.

5.1 Chromatic Number Approximation
We will provide an algorithm that approximates the solution to the Chromatic Number

in less time than the one required by our exact algorithm to solve it. Given ε ∈ R, ε > 0,
the chromatic number χ of a graph G = (V, E), |v| = n, can be approximated by χ where
χ ≤ χ < χ+ εχ+ 1 in time O(1.2209n + 2.2461e−εn) and polynomial space.

Begin by finding the largest independent set in our graph and removing its vertices
from our graph in time O(1.2209n) and polynomial space [12]. We repeat this till there are
e−εn or less vertices in our graph. Let s be the number of the repetitions we did. We now
use the exact polynomial space algorithm from section 4.1 on the current graph in time
O(2.2461e−εn) and find its chromatic number χ0. We set χ = χ0 + s and will now bound the
maximum error of our approximation. We note that after each repetition in the first part, the
graph’s chromatic number will have been lowered by 1 if for all minimal colorings one of the
colors was used solely by the largest independent set and is therefore no longer needed.
In all other cases the chromatic number remains unchanged. Since we have s repetitions
and χ = χ0 + s it’s implied that χ ≥ χ, our lower bound. We also have that χ0 ≤ χ because
a subgraph has the same or lower chromatic number than its supergraph. It is also true
that for a given chromatic number χ the size of the largest independent set is minimized
in the case where there are χ independent sets of equal size 1/χ that form a partition of
the graph. After removing such an independent set in the first step, the resulting graph
has (1 − 1/χ)n vertices and after s repetitions (1 − 1/χ)sn vertices. To generalize after s
repetitions we have at most (1 − 1/χ)sn vertices and it follows that(

1 − 1

χ

)s−1

n > e−εn⇒
(
1 − 1

χ

)s−1

> e−ε.

The following is also true for all x

1 + x ≤ ex ⇒
(
1 − 1

χ

)
≤ e−

1
χ ⇒

(
1 − 1

χ

)s−1

≤ e−
s−1
χ , for s ≥ 1.

From the conjunction of the above we have that

e−ε < e−
s−1
χ ⇒ −ε < − s − 1

χ
⇒ ε > s − 1

χ
⇒ εχ > s − 1⇒ s < εχ+ 1

which leads us to our upper bound

χ < χ+ εχ+ 1.

5.2 Further Approximations
We can generalize the above to approximate solutions for Minimal Covering problems

given that the following are true for F :

D. Koutsoulis 21

Set Partitioning via Inclusion-Exclusion

1. there is a fast algorithm for finding the largest S i ∈ F and by fast we mean that it
requires less time than finding the exact final solution.

2. F is hereditary which means that S i ⊂ T ∈ F implies S i ∈ F .

For example we can’t use the above if F is the set of induced trees of a graph since
subgraphs induced from a tree might not be trees themselves.

D. Koutsoulis 22

Set Partitioning via Inclusion-Exclusion

6 CONCLUSION

We have studied the results of [1] that provide solutions to the counting covers and par-
titions problems on sets. This knowledge was subsequently applied to create algorithms
for a class of graph coloring and partitioning problems. A brief note on utilizing these in
order to create model based clustering algorithms is also included. Alternatives where
a low space complexity is of import are given for some of the above, as well as some
approximating algorithms based on the same principles as the exact ones we studied.

Regarding the case where our assumption that arithmetic operations have unit cost
is invalidated, like when we are dealing with large integers, Michalak et al. [53] have
provided an O(3n) algorithm for finding the heaviest partition of a set which is in practice
faster than the one we provided. Kemper and Beichl have provided methods to approx-
imate the chromatic polynomial by using probabilistic schemes [54]. An alternate way of
coloring a graph is given by Golovnev et al. [55] in which the inclusion-exclusion princi-
ple is substituted by the Fast Fourier Transform and happens to be faster under certain
circumstances. In the case where we are constrained to polynomial space, Gaspers and
Lee provide provide us with an algorithm [56] that solves the graph coloring problem in
O(2.2355n) time and as a byproduct they also give us one that runs in O(1.2330n) time and
exponential space. Nederlof et al. [57] used the inclusion-exclusion principle to construct
a faster branching algorithm that solves the domatic number in polynomial space.

Finding a better compromise between space and time complexity via a third tool that
could work as an alternative to the zeta transform and checking for membership schemes
could be a focal point of future research. More refined approximation algorithms could be
designed that fill the gap between polynomial space approximations and our exponential
exact ones. Lastly, a natural question would be on which other interesting set systems
could our results be applied and for each one of them are there any special optimizations
that could be found.

D. Koutsoulis 23

Set Partitioning via Inclusion-Exclusion

REFERENCES

[1] A. Björklund, T. Husfeldt and M. Koivisto. Set partitioning via inclusion-exclusion.
SIAM Journal on Computing, 39(2):546-563, 2009.

[2] O. Angelsmark and J. Thapper. Partitioning based algorithms for some colouring
problems. In Recent Advances in Constrains, Springer LNAI volume 3978, pages
44-58, 2005.

[3] M. H. G. Anthony. Computing chromatic polynomials. Ars Combinatorica, 29(C):216-
220,1990.

[4] J. D. Banfield and A. E. Raftery. Model-based Gaussian and non Gaussian clustering.
Biometrics, 49:803-821, 1993.

[5] E. T. Bax. Inclusion and exclusion algorithm for the Hamiltonian path problem. Infor-
mation Processing Letters, 47(4):203-207, 1993.

[6] E. T. Bax. Algorithms to count paths and cycles. Information Processing Letters,
52(5):249-252, 1994.

[7] E. T. Bax and J. Franklin. A finite-difference sieve to count paths and cycles by length.
Information Processing Letters, 60(4):171-176, 1996.

[8] R. Beigel and D. Eppstein. 3-coloring in timeO(1.3289n). J. Algorithms, 54(2):168-204,
2005.

[9] N. Biggs. Algebraic graph theory. Cambridge University Press, 2nd edition, 1993.

[10] A. Björklund and T. Husfeldt. Exact algorithms for exact satisfiability and number
of perfect matchings. Algorithmica, to appear. Prelim. version in Proc. 33rd ICALP,
Springer LNCS volume 4051, pages 548-559, 2006.

[11] H. L. Bodlænder and D. Kratsch. An exact algorithm for graph coloring with polyno-
mial memory. Technical Report UU-CS-2006-015, Utrecht University, 2006.

[12] J. M. Byskov. Enumerating maximal independent sets with applications to graph
colouring. Operations Research Letters, 32:547-556,2004.

[13] J. M. Byskov and D. Eppstein. An algorithm for enumerating maximal bipartite sub-
graphs. Manuscript, 2004.

[14] D. M. Chickering D. Heckerman, and C. Meek. A Bayesian approach to learning
Bayesian networks with local structure. In Proceedings of the Thirteenth Conference
on Uncertainty in Artificial Intelligence (UAI 1997), pages 80-89, 1997.

[15] N. Christofides. An algorithm for the chromatic number of a graph. Computer J.,
14:38-39, 1971.

[16] D. Eppstein. Small maximal independent sets and faster exact graph coloring. J.
Graph Algorithms and Applications, 7(2):131-140, 2003.

[17] T. Feder and R. Motwani. Worst-case time bounds for coloring and satisfiability prob-
lems. J. Algorithms, 45(2):192-201, 2002.

D. Koutsoulis 24

Set Partitioning via Inclusion-Exclusion

[18] M. A. T. Figueiredo and A. K. Jain. Unsupervised learning of finite mixture mod-
els. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3):381-396,
2002.

[19] F. V. Fomin, S. Gaspers, and A. V. Pyatkin. Finding a minimum feedback vertex set in
time O(1.7548n). In Proc. 2nd IWPEC, Springer LNCS volume 4169, pages 184-191,
2006.

[20] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: A simple O(20.288n)
Independet Set algorithm. In Proc. 17th SODA, pages 18-25, 2005.

[21] F. V. Fomin, F. Grandoni, A. V. Pyatkin, and A. A. Stepanov. Combinatorial bounds
via measure and conquer: Bounding minimal dominating sets and applications. In
Proc. 16th ISAAC, Springer LNCS volume 4288, pages 573-582, 2006.

[22] M. Fürer. Faster integer multiplication. In Proc. 39th STOC, ACMPress, pages 57-66,
2007.

[23] M. Fürer and S. P. Kasiviswanathan. Algorithms for counting 2-SAT solutions and col-
orings with applications. In Proc. 3rd Intl. Conf. on Algorithmic Aspects in Information
and Management (AAIM), Springer LNCS volume 4508, pages 47-57, 2007.

[24] M. Garey and D. Johnson. Computers and intractability: A guide to the theory of
NP-completeness. W. H. Freeman, San Fransisco, 1979.

[25] C. Greenhill. The complexity of counting colourings and independent sets in sparse
graphs and hypergraphs. Computational Complexity, 9:52-73, 2000.

[26] M. M. Halldórsson. A still better performance guarantee for approximate graph col-
oring. Information Processing Letters, 45:19-23, 1993.

[27] M. Held and R. Karp. A dynamic programming approach to sequencing problems.
SIAM J. Appl. Math., 10:196-210, 1962.

[28] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing
Surveys, 31(3):264-323, 1999.

[29] R. Kennes. Computational aspects of the Moebius transform of a graph. IEEE Trans-
actions on Systems, Man, and Cybernetics, 22:201-223, 1991.

[30] R. M. Karp. Dynamic programming meets the principle of inclusion-exlcusion. Oper.
Res. Lett., 1:49-51, 1982.

[31] S. Kohn, A. Gottlieb, and M. Kohn. A generating function approach to the Traveling
Salesman Problem. In ACM ’77: Proceedings of the 1977 annual conference, ACM
Press, pages 294-300, 1977.

[32] D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms.
3rd ed., Addison-Wesley, 1997.

[33] M. Koivisto. Sum-Product Algorithms for the Analysis of genetic Risks. Ph.D. Thesis,
University of Helsinki, January 2004.

[34] M. Koivisto. Optimal 2-constraint satisfaction via sum-product algorithms. Information
Processing Letters, 98:24-28, 2006.

D. Koutsoulis 25

Set Partitioning via Inclusion-Exclusion

[35] M. Koivisto and K. Sood. Computational aspects of Bayesian partition models. In
International Conference on Machine Learning (ICML 2005), pages 433-440, 2005.

[36] E. L. Lawler. A note on the complexity of the chromatic number problem. Information
Processing Letters, 5(3):66-67, 1976.

[37] B. A. Madsen. An algorithm for exact satisfiability analysed with the number of clauses
as parameter. Information Processing Letters, 97(1):28-30, 2006.

[38] F. A. Quintana and P. L. Iglesias. Bayesian clustering and product partition models.
Journal of the Royal Statistical Society B, 65(2):557-574, 2003.

[39] I. Razgon. Exact computation of maximum induced forest. In Proc. 10th SWAT,
Springer LNCS volume 4059, pages 160-171, 2006.

[40] T. Riege and J. Rothe. An exact 2.9416n algorithm for the three domatic number prob-
lem. In Proc. 30th MFCS, Springer LNCS volume 3618, pages 733-744, 2005.

[41] T. Riege, J. Rothe, H. Spakowski, and M. Yamamoto. An improved exact algorithm
for the domatic number problem. Information Processing Letters, 101(3):101-106,
2007.

[42] G. C. Rota. On the foundations of combinatorial theory. I. Theory of Möbius functions.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 2:340-368, 1964.

[43] H. J. Ryser. Combinatorial Mathematics. Number 14 in Carus Math. Monographs.
Math. Assoc. America, 1963.

[44] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing,
7:281-292, 1971.

[45] R. P. Stanley. Acyclic orientations of graphs. Disc. Math. 5:171-178, 1973.

[46] S. Vadhan. The complexity of counting in sparse, regular, and planar graphs. SIAM
J. Comput., 31(2):398-427, 2001.

[47] H. S. Wilf. Algorithms and complexity. Prentice-Hall, 1986.

[48] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348:257-265, 2005.

[49] G. J. Woeginger. Exact algorithms for NP-hard problems: a survey. In Combinato-
rial optimization: Eureka, you shrink!, Springer LNCS volume 2570, pages 185-207,
2003.

[50] G. J. Woeginger. Space and time complexity of exact algorithms: Some open prob-
lems. In Proc. 1st IWPEC, Springer LNCS volume 3162, pages 281-290, 2004.

[51] F. Yates. The design and analysis of factorial experiments. Technical Communication
no. 35 of the Commonwealth Bureau of Soils, 1937.

[52] D. Zuckerman. Linear degree extractors and the inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3:103-128, 2007. Prelim. version in Proc.
38th STOC, ACM Press, pages 681-690, 2006.

D. Koutsoulis 26

Set Partitioning via Inclusion-Exclusion

[53] T. Michalak, T. Rahwan, E. Elkind, M. Wooldridge and N. R. Jennings. A hybrid exact
algorithm for complete set partitioning. Artificial Intelligence, 230:14-50, 2016.

[54] Y. Kemper and I. Beichl. Approximating the Chromatic Polynomial. arXiv:1608.04883
[cs.DM]

[55] A. Golovnev, A. S. Kulikov and I. Mihajlin. Families with Infants: Speeding Up Algo-
rithms for NP-Hard Problems Using FFT. ACM Transactions on Algorithms (TALG),
Volume 12 Issue 3, Article No. 35, 2016.

[56] S. Gaspers and E. Lee. Faster Graph Coloring in Polynomial Space.
arXiv:1607.06201 [cs.DS]

[57] J. Nederlof, J. M. M. van Rooij and T. C. van Dijk. Inclusion/Exclusion Meets Measure
and Conquer. T.C. Algorithmica, 69:685, 2014. doi:10.1007/s00453-013-9759-2

D. Koutsoulis 27

	PREFACE
	INTRODUCTION
	The Principle of Inclusion Exclusion
	Zeta Transform
	Model of Computation

	RESULTS
	Set Cover
	Set Partition
	Sum of Weighted Partitions
	Finding a Heaviest Partition

	APPLICATIONS
	Graph Coloring
	Chromatic Number
	Chromatic polynomial
	List Coloring
	Chromatic Sum

	Other Graph Partitioning Problems
	Counting Set Packings
	Max k-Cut

	Bayesian Partition Models

	POLYNOMIAL SPACE
	Chromatic Number
	Domatic Number

	APPROXIMATION
	Chromatic Number Approximation
	Further Approximations

	CONCLUSION
	REFERENCES

