898 research outputs found

    Particle swarm optimization for cooperative multi-robot task allocation: a multi-objective approach

    Get PDF
    This paper presents a new Multi-Objective Particle Swarm Optimization (MOPSO) approach to a Cooperative Multi Robot Task Allocation (CMRTA) problem, where the robots have to minimize the total team cost and, additionally, balance their workloads. We formulate the CMRTA problem as a more complex variant of multiple Travelling Salesman Problems (mTSP) and, in particular, address how to minimize the total travel distance of the entire robot team, as well as how to minimize the highest travel distance of an individual robot. The proposed approach extends the standard single-objective Particle Swarm Optimization (PSO) to cope with the multiple objectives, and its novel feature lies in a Pareto front refinement strategy and a probability-based leader selection strategy. To validate the proposed approach, we first use three benchmark functions to evaluate the performance of finding the true Pareto fronts in comparison with four existing well-known algorithms in continuous spaces. Afterwards, we use six datasets to investigate the task allocation mechanisms in dealing with the CMRTA problem in discrete spaces.benchmark functions to evaluate the performance of findingthe true Pareto fronts in comparison with four existing wellknownalgorithms in continuous spaces. Afterwards, we use sixdatasets to investigate the task allocation mechanisms in dealingwith the CMRTA problem in discrete spaces

    Balanced task allocation by partitioning the multiple traveling salesperson problem

    Get PDF
    Task assignment and routing are tightly coupled problems for teams of mobile agents. To fairly balance the workload, each agent should be assigned a set of tasks which take a similar amount of time to complete. The completion time depends on the time needed to travel between tasks which depends on the order of tasks. We formulate the task assignment problem as the minimum Hamiltonian partition problem (MHPP) form agents, which is equivalent to the minmax multiple traveling salesperson problem (m-TSP). While the MHPP’s cost function depends on the order of tasks, its solutions are similar to solutions of the average Hamiltonian partition problem (AHPP) whose cost function is order-invariant. We prove that the AHPP is NP-hard and present an effective heuristic, AHP, for solving it. AHP improves a partitions of a graph using a series of transfer and swap operations which are guaranteed to improve the solution’s quality. The solution generated by AHP is used as an initial partition for an algorithm, AHP-mTSP, which solves the combined task assignment and routing problems to near optimality. For n tasks and m agents, each iteration of AHP is O(n2) and AHP-mTSP has an average run-time that scales with n2.11m0.33. Compared to state-of-the-art approaches, our approach found approximately 10% better solutions for large problems in a similar run-time

    Multi-Goal Feasible Path Planning Using Ant Colony Optimization

    Get PDF
    A new algorithm for solving multi-goal planning problems in the presence of obstacles is introduced. We extend ant colony optimization (ACO) from its well-known application, the traveling salesman problem (TSP), to that of multi-goal feasible path planning for inspection and surveillance applications. Specifically, the ant colony framework is combined with a sampling-based point-to-point planning algorithm; this is compared with two successful sampling-based multi-goal planning algorithms in an obstacle-filled two-dimensional environment. Total mission time, a function of computational cost and the duration of the planned mission, is used as a basis for comparison. In our application of interest, autonomous underwater inspections, the ACO algorithm is found to be the best-equipped for planning in minimum mission time, offering an interior point in the tradeoff between computational complexity and optimality.United States. Office of Naval Research (Grant N00014-06-10043

    Market-Based Approach to Mobile Surveillance Systems

    Get PDF
    The active surveillance of public and private sites is increasingly becoming a very important and critical issue. It is, therefore, imperative to develop mobile surveillance systems to protect these sites. Modern surveillance systems encompass spatially distributed mobile and static sensors in order to provide effective monitoring of persistent and transient objects and events in a given area of interest (AOI). The realization of the potential of mobile surveillance requires the solution of different challenging problems such as task allocation, mobile sensor deployment, multisensor management, cooperative object detection and tracking, decentralized data fusion, and interoperability and accessibility of system nodes. This paper proposes a market-based approach that can be used to handle different problems of mobile surveillance systems. Task allocation and cooperative target tracking are studied using the proposed approach as two challenging problems of mobile surveillance systems. These challenges are addressed individually and collectively

    Comparison of a bat and genetic algorithm generated sequence against lead through programming when assembling a PCB using a 6 axis robot with multiple motions and speeds

    Get PDF
    An optimal component feeder arrangement and robotic placement sequence are both important for improving assembly efficiency. Both problems are combinatorial in nature and known to be NP-hard. This paper presents a novel discrete hybrid bat-inspired algorithm for solving the feeder slot assignment and placement sequence problem encountered when planning robotic assembly of electronic components. In our method, we use the concepts of swap operators and swap sequence to redefine position, and velocity operators from the basic bat algorithm. Furthermore, we propose an improved local search method based on genetic operators of crossover and mutation enhanced by the 2-opt search procedure. The algorithm is formulated with the objective of minimizing the total traveling distance of the pick and place device. Through numerical experiments, using a real PCB assembly scenario, we demonstrate the considerable effectiveness of the proposed discrete Bat Algorithm (BA) to improve selection of feeder arrangement and placement sequence in PCB assembly operations and achieve high throughput production. The results also highlighted that the even though the algorithms out performed traditional lead through programming techniques, the programmer must consider the influence of different robot motions

    Risk-Aware Planning for Sensor Data Collection

    Get PDF
    With the emergence of low-cost unmanned air vehicles, civilian and military organizations are quickly identifying new applications for affordable, large-scale collectives to support and augment human efforts via sensor data collection. In order to be viable, these collectives must be resilient to the risk and uncertainty of operating in real-world environments. Previous work in multi-agent planning has avoided planning for the loss of agents in environments with risk. In contrast, this dissertation presents a problem formulation that includes the risk of losing agents, the effect of those losses on the mission being executed, and provides anticipatory planning algorithms that consider risk. We conduct a thorough analysis of the effects of risk on path-based planning, motivating new solution methods. We then use hierarchical clustering to generate risk-aware plans for a variable number of agents, outperforming traditional planning methods. Next, we provide a mechanism for distributed negotiation of stable plans, utilizing coalitional game theory to provide cost allocation methods that we prove to be fair and stable. Centralized planning with redundancy is then explored, planning for parallel task completion to mitigate risk and provide further increased expected value. Finally, we explore the role of cost uncertainty as additional source of risk, using bi-objective optimization to generate sets of alternative plans. We demonstrate the capability of our algorithms on randomly generated problem instances, showing an improvement over traditional multi-agent planning methods as high as 500% on very large problem instances

    Distributed task rescheduling with time constraints for the optimization of total task allocations in a multirobot system

    Get PDF
    This paper considers the problem of maximizing the number of task allocations in a distributed multirobot system under strict time constraints, where other optimization objectives need also be considered. It builds upon existing distributed task allocation algorithms, extending them with a novel method for maximizing the number of task assignments. The fundamental idea is that a task assignment to a robot has a high cost if its reassignment to another robot creates a feasible time slot for unallocated tasks. Multiple reassignments among networked robots may be required to create a feasible time slot and an upper limit to this number of reassignments can be adjusted according to performance requirements. A simulated rescue scenario with task deadlines and fuel limits is used to demonstrate the performance of the proposed method compared with existing methods, the consensus-based bundle algorithm and the performance impact (PI) algorithm. Starting from existing (PI-generated) solutions, results show up to a 20% increase in task allocations using the proposed method.EPSRC Grant EP/J011525/

    Navigation, Path Planning, and Task Allocation Framework For Mobile Co-Robotic Service Applications in Indoor Building Environments

    Full text link
    Recent advances in computing and robotics offer significant potential for improved autonomy in the operation and utilization of today’s buildings. Examples of such building environment functions that could be improved through automation include: a) building performance monitoring for real-time system control and long-term asset management; and b) assisted indoor navigation for improved accessibility and wayfinding. To enable such autonomy, algorithms related to task allocation, path planning, and navigation are required as fundamental technical capabilities. Existing algorithms in these domains have primarily been developed for outdoor environments. However, key technical challenges that prevent the adoption of such algorithms to indoor environments include: a) the inability of the widely adopted outdoor positioning method (Global Positioning System - GPS) to work indoors; and b) the incompleteness of graph networks formed based on indoor environments due to physical access constraints not encountered outdoors. The objective of this dissertation is to develop general and scalable task allocation, path planning, and navigation algorithms for indoor mobile co-robots that are immune to the aforementioned challenges. The primary contributions of this research are: a) route planning and task allocation algorithms for centrally-located mobile co-robots charged with spatiotemporal tasks in arbitrary built environments; b) path planning algorithms that take preferential and pragmatic constraints (e.g., wheelchair ramps) into consideration to determine optimal accessible paths in building environments; and c) navigation and drift correction algorithms for autonomous mobile robotic data collection in buildings. The developed methods and the resulting computational framework have been validated through several simulated experiments and physical deployments in real building environments. Specifically, a scenario analysis is conducted to compare the performance of existing outdoor methods with the developed approach for indoor multi-robotic task allocation and route planning. A simulated case study is performed along with a pilot experiment in an indoor built environment to test the efficiency of the path planning algorithm and the performance of the assisted navigation interface developed considering people with physical disabilities (i.e., wheelchair users) as building occupants and visitors. Furthermore, a case study is performed to demonstrate the informed retrofit decision-making process with the help of data collected by an intelligent multi-sensor fused robot that is subsequently used in an EnergyPlus simulation. The results demonstrate the feasibility of the proposed methods in a range of applications involving constraints on both the environment (e.g., path obstructions) and robot capabilities (e.g., maximum travel distance on a single charge). By focusing on the technical capabilities required for safe and efficient indoor robot operation, this dissertation contributes to the fundamental science that will make mobile co-robots ubiquitous in building environments in the near future.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143969/1/baddu_1.pd
    • …
    corecore