1,174 research outputs found

    An Investigation Report on Auction Mechanism Design

    Full text link
    Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Since well designed auctions achieve desirable economic outcomes, they have been widely used in solving real-world optimization problems, and in structuring stock or futures exchanges. Auctions also provide a very valuable testing-ground for economic theory, and they play an important role in computer-based control systems. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. This report aims to survey the theoretical and empirical approaches to designing auction mechanisms and trading strategies with more weights on empirical ones, and build the foundation for further research in the field

    Explorations in Evolutionary Design of Online Auction Market Mechanisms

    No full text
    This paper describes the use of a genetic algorithm (GA) to find optimal parameter-values for trading agents that operate in virtual online auction “e-marketplaces”, where the rules of those marketplaces are also under simultaneous control of the GA. The aim is to use the GA to automatically design new mechanisms for agent-based e-marketplaces that are more efficient than online markets designed by (or populated by) humans. The space of possible auction-types explored by the GA includes the Continuous Double Auction (CDA) mechanism (as used in most of the world’s financial exchanges), and also two purely one-sided mechanisms. Surprisingly, the GA did not always settle on the CDA as an optimum. Instead, novel hybrid auction mechanisms were evolved, which are unlike any existing market mechanisms. In this paper we show that, when the market supply and demand schedules undergo sudden “shock” changes partway through the evaluation process, two-sided hybrid market mechanisms can evolve which may be unlike any human-designed auction and yet may also be significantly more efficient than any human designed market mechanism

    Constructivist and Ecological Rationality in Economics

    Get PDF
    When we leave our closet, and engage in the common affairs of life, (reason's) conclusions seem to vanish, like the phantoms of the night on the appearance of the morning; and 'tis difficult for us to retain even that conviction, which we had attained with difficulty (Hume, 1739/, p 507). we must constantly adjust our lives, our thoughts and our emotions, in order to live simultaneously within different kinds of orders according to different rules. If we were to apply the unmodified, uncurbed rules (of caring intervention to do visible 'good') of the small band or troop, or our families to the (extended order of cooperation through markets), as our instincts and sentimental yearnings often make us wish to do, we would destroy it. Yet if we were to always apply the (noncooperative) rules of the extended order to our more intimate groupings, we would crush them. (Hayek, 1988, p 18). (Italics are his, parenthetical reductions are mine).behavioral economics; experimental economics

    Evolutionary Optimization of ZIP60: A Controlled Explosion in Hyperspace

    No full text
    The “ZIP” adaptive trading algorithm has been demonstrated to out-perform human traders in experimental studies of continuous double auction (CDA) markets. The original ZIP algorithm requires the values of eight control parameters to be set correctly. A new extension of the ZIP algorithm, called ZIP60, requires the values of 60 parameters to be set correctly. ZIP60 is shown here to produce significantly better results than the original ZIP (called “ZIP8” hereafter), for negligable additional computational costs. A genetic algorithm (GA) is used to search the 60-dimensional ZIP60 parameter space, and it finds parameter vectors that yield ZIP60 traders with mean scores significantly better than those of ZIP8s. This paper shows that the optimizing evolutionary search works best when the GA itself controls the dimensionality of the search-space, so that the search commences in an 8-d space and thereafter the dimensionality of the search-space is gradually increased by the GA until it is exploring a 60-d space. Furthermore, the results from ZIP60 cast some doubt on prior ZIP8 results concerning the evolution of new ‘hybrid’ auction mechanisms that appeared to be better than the CDA

    Vernon Smith's Insomnia and the Dawn of Economics as Experimental Science

    Get PDF
    This is a commentary on Vernon Smith's contributions to experimental economicsexperimental economics, auctions, public goods, markets, Vernon Smith, ultimatum game, dictator games

    Agent-Based Models and Human Subject Experiments

    Get PDF
    This paper considers the relationship between agent-based modeling and economic decision-making experiments with human subjects. Both approaches exploit controlled ``laboratory'' conditions as a means of isolating the sources of aggregate phenomena. Research findings from laboratory studies of human subject behavior have inspired studies using artificial agents in ``computational laboratories'' and vice versa. In certain cases, both methods have been used to examine the same phenomenon. The focus of this paper is on the empirical validity of agent-based modeling approaches in terms of explaining data from human subject experiments. We also point out synergies between the two methodologies that have been exploited as well as promising new possibilities.agent-based models, human subject experiments, zero- intelligence agents, learning, evolutionary algorithms

    Automated Auction Mechanism Design with Competing Markets

    Full text link
    Resource allocation is a major issue in multiple areas of computer science. Despite the wide range of resource types across these areas, for example real commodities in e-commerce and computing resources in distributed computing, auctions are commonly used in solving the optimization problems involved in these areas, since well designed auctions achieve desirable economic outcomes. Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. Following this line of work, we present what we call a grey-box approach to automated auction mechanism design using reinforcement learning and evolutionary computation methods. We first describe a new strategic game, called \cat, which were designed to run multiple markets that compete to attract traders and make profit. The CAT game enables us to address the imbalance between prior work in this field that studied auctions in an isolated environment and the actual competitive situation that markets face. We then define a novel, parameterized framework for auction mechanisms, and present a classification of auction rules with each as a building block fitting into the framework. Finally we evaluate the viability of building blocks, and acquire auction mechanisms by combining viable blocks through iterations of CAT games. We carried out experiments to examine the effectiveness of the grey-box approach. The best mechanisms we learnt were able to outperform the standard mechanisms against which learning took place and carefully hand-coded mechanisms which won tournaments based on the CAT game. These best mechanisms were also able to outperform mechanisms from the literature even when the evaluation did not take place in the context of CAT games. These results suggest that the grey-box approach can generate robust double auction mechanisms and, as a consequence, is an effective approach to automated mechanism design. The contributions of this work are two-fold. First, the grey-box approach helps to design better auction mechanisms which can play a central role in solutions to resource allocation problems in various application domains of computer science. Second, the parameterized view and the reinforcement learning-based search method can be used in other strategic, competitive situations where decision making processes are complex and difficult to design and evaluate manually
    • 

    corecore