20,430 research outputs found

    A New Multi-Objective Approach for Molecular Docking Based on RMSD and Binding Energy

    Get PDF
    Ligand-protein docking is an optimization problem based on predicting the position of a ligand with the lowest binding energy in the active site of the receptor. Molecular docking problems are traditionally tackled with single-objective, as well as with multi-objective approaches, to minimize the binding energy. In this paper, we propose a novel multi-objective formulation that considers: the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands and the binding (intermolecular) energy, as two objectives to evaluate the quality of the ligand-protein interactions. To determine the kind of Pareto front approximations that can be obtained, we have selected a set of representative multi-objective algorithms such as NSGA-II, SMPSO, GDE3, and MOEA/D. Their performances have been assessed by applying two main quality indicators intended to measure convergence and diversity of the fronts. In addition, a comparison with LGA, a reference single-objective evolutionary algorithm for molecular docking (AutoDock) is carried out. In general, SMPSO shows the best overall results in terms of energy and RMSD (value lower than 2A for successful docking results). This new multi-objective approach shows an improvement over the ligand-protein docking predictions that could be promising in in silico docking studies to select new anticancer compounds for therapeutic targets that are multidrug resistant.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    GeauxDock: A novel approach for mixed-resolution ligand docking using a descriptor-based force field

    Get PDF
    © 2015 Wiley Periodicals, Inc. Molecular docking is an important component of computer-aided drug discovery. In this communication, we describe GeauxDock, a new docking approach that builds on the ideas of ligand homology modeling. GeauxDock features a descriptor-based scoring function integrating evolutionary constraints with physics-based energy terms, a mixed-resolution molecular representation of protein-ligand complexes, and an efficient Monte Carlo sampling protocol. To drive docking simulations toward experimental conformations, the scoring function was carefully optimized to produce a correlation between the total pseudoenergy and the native-likeness of binding poses. Indeed, benchmarking calculations demonstrate that GeauxDock has a strong capacity to identify near-native conformations across docking trajectories with the area under receiver operating characteristics of 0.85. By excluding closely related templates, we show that GeauxDock maintains its accuracy at lower levels of homology through the increased contribution from physics-based energy terms compensating for weak evolutionary constraints. GeauxDock is available at http://www.institute.Loni.org/lasigma/package/dock/

    Evolutionary Multi-Objective Design of SARS-CoV-2 Protease Inhibitor Candidates

    Full text link
    Computational drug design based on artificial intelligence is an emerging research area. At the time of writing this paper, the world suffers from an outbreak of the coronavirus SARS-CoV-2. A promising way to stop the virus replication is via protease inhibition. We propose an evolutionary multi-objective algorithm (EMOA) to design potential protease inhibitors for SARS-CoV-2's main protease. Based on the SELFIES representation the EMOA maximizes the binding of candidate ligands to the protein using the docking tool QuickVina 2, while at the same time taking into account further objectives like drug-likeliness or the fulfillment of filter constraints. The experimental part analyzes the evolutionary process and discusses the inhibitor candidates.Comment: 15 pages, 7 figures, submitted to PPSN 202

    Elucidating Signal Transduction Modulatory Drug Target Network of Colon Cancer: A Network Biology Approach

    Get PDF
    Latest evaluation and validation of cancer drugs and their targets has demonstrated the lack and inadequate development of new and better drugs, based on available protocols. Even though the specificity of drug targets is a great challenge in the pharmaco-proteomics field of cancer biology, for eradicating such hurdles and paving the way for the drugs of future, a novel step has been envisaged here to study the relation between drug target network and the corresponding drug network using the advanced concepts of proteomics and network biology. The literature mining was done for the collection of receptors and the ligands. About 1000 natural compounds were collected and out of those 300 molecules showed anti-cancer activity against colon cancer. Ligand Vs multiple receptor docking was done using the software Quantum 3.3.0; the results were further used for the designing of a well connected Protein Ligand Interaction (PLI) network of colon cancer. The obtained network is then extrapolated to sort out the receptors expressed in the specific cancer type. The network is then statistically analyzed and represented by the graphical interpretation, in order to ascertain the hub nodes and their locally parsed neighbours. Based on the best docking scores, the graphs obtained from the docking analysis are statistically validated with the help of VisANT. In the network three hub nodes Neutrophil cytosol factor 2, UV excision repair protein RAD23 homolog A, & Receptor-type tyrosine-protein phosphatase eta were identified, which showed the highest interaction with the ligands. Butyrate and Farnesol showed highest interaction as ligands. Multiple Sequence Alignment was done of the binding site sequence of the drug targets to find out the evolutionary closeness of the binding sites. The phylogenetic tree was also constructed to further validate the observation. Further in-vitro and in-vivo studies needs to be done to analyse the receptor specificity and anti tumor activity of these compounds in Colon cancer

    Structural Prediction of Protein–Protein Interactions by Docking: Application to Biomedical Problems

    Get PDF
    A huge amount of genetic information is available thanks to the recent advances in sequencing technologies and the larger computational capabilities, but the interpretation of such genetic data at phenotypic level remains elusive. One of the reasons is that proteins are not acting alone, but are specifically interacting with other proteins and biomolecules, forming intricate interaction networks that are essential for the majority of cell processes and pathological conditions. Thus, characterizing such interaction networks is an important step in understanding how information flows from gene to phenotype. Indeed, structural characterization of protein–protein interactions at atomic resolution has many applications in biomedicine, from diagnosis and vaccine design, to drug discovery. However, despite the advances of experimental structural determination, the number of interactions for which there is available structural data is still very small. In this context, a complementary approach is computational modeling of protein interactions by docking, which is usually composed of two major phases: (i) sampling of the possible binding modes between the interacting molecules and (ii) scoring for the identification of the correct orientations. In addition, prediction of interface and hot-spot residues is very useful in order to guide and interpret mutagenesis experiments, as well as to understand functional and mechanistic aspects of the interaction. Computational docking is already being applied to specific biomedical problems within the context of personalized medicine, for instance, helping to interpret pathological mutations involved in protein–protein interactions, or providing modeled structural data for drug discovery targeting protein–protein interactions.Spanish Ministry of Economy grant number BIO2016-79960-R; D.B.B. is supported by a predoctoral fellowship from CONACyT; M.R. is supported by an FPI fellowship from the Severo Ochoa program. We are grateful to the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft

    A Study of Archiving Strategies in Multi-Objective PSO for Molecular Docking

    Get PDF
    Molecular docking is a complex optimization problem aimed at predicting the position of a ligand molecule in the active site of a receptor with the lowest binding energy. This problem can be formulated as a bi-objective optimization problem by minimizing the binding energy and the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands. In this context, the SMPSO multi-objective swarm-intelligence algorithm has shown a remarkable performance. SMPSO is characterized by having an external archive used to store the non-dominated solutions and also as the basis of the leader selection strategy. In this paper, we analyze several SMPSO variants based on different archiving strategies in the scope of a benchmark of molecular docking instances. Our study reveals that the SMPSOhv, which uses an hypervolume contribution based archive, shows the overall best performance.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Methods for protein complex prediction and their contributions towards understanding the organization, function and dynamics of complexes

    Get PDF
    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organization of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight challenges faced by these methods, in particular detection of sparse and small or sub- complexes and discerning of overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area.Comment: 1 Tabl
    • …
    corecore