1,006 research outputs found

    Robotic tele-existence

    Get PDF
    Tele-existence is an advanced type of teleoperation system that enables a human operator at the controls to perform remote manipulation tasks dexterously with the feeling that he or she exists in the remote anthropomorphic robot in the remote environment. The concept of a tele-existence is presented, the principle of the tele-existence display method is explained, some of the prototype systems are described, and its space application is discussed

    Reconfigurable Fiducial-Integrated Modular Needle Driver For MRI-Guided Percutaneous Interventions

    Get PDF
    Needle-based interventions are pervasive in Minimally Invasive Surgery (MIS), and are often used in a number of diagnostic and therapeutic procedures, including biopsy and brachytherapy seed placement. Magnetic Resonance Imaging (MRI) which can provide high quality, real time and high soft tissue contrast imaging, is an ideal guidance tool for image-guided therapy (IGT). Therefore, a MRI-guided needle-based surgical robot proves to have great potential in the application of percutaneous interventions. Presented here is the design of reconfigurable fiducial-integrated modular needle driver for MRI-guided percutaneous interventions. Further, an MRI-compatible hardware control system has been developed and enhanced to drive piezoelectric ultrasonic motors for a previously developed base robot designed to support the modular needle driver. A further contribution is the development of a fiber optic sensing system to detect robot position and joint limits. A transformer printed circuit board (PCB) and an interface board with integrated fiber optic limit sensing have been developed and tested to integrate the robot with the piezoelectric actuator control system designed by AIM Lab for closed loop control of ultrasonic Shinsei motors. A series of experiments were performed to evaluate the feasibility and accuracy of the modular needle driver. Bench top tests were conducted to validate the transformer board, fiber optic limit sensing and interface board in a lab environment. Finally, the whole robot control system was tested inside the MRI room to evaluate its MRI compatibility and stability

    Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic Feedback

    Get PDF
    Image guided surgery (IGS), which has been developing fast recently, benefits significantly from the superior accuracy of robots and magnetic resonance imaging (MRI) which is a great soft tissue imaging modality. Teleoperation is especially desired in the MRI because of the highly constrained space inside the closed-bore MRI and the lack of haptic feedback with the fully autonomous robotic systems. It also very well maintains the human in the loop that significantly enhances safety. This dissertation describes the development of teleoperation approaches and implementation on an example system for MRI with details of different key components. The dissertation firstly describes the general teleoperation architecture with modular software and hardware components. The MRI-compatible robot controller, driving technology as well as the robot navigation and control software are introduced. As a crucial step to determine the robot location inside the MRI, two methods of registration and tracking are discussed. The first method utilizes the existing Z shaped fiducial frame design but with a newly developed multi-image registration method which has higher accuracy with a smaller fiducial frame. The second method is a new fiducial design with a cylindrical shaped frame which is especially suitable for registration and tracking for needles. Alongside, a single-image based algorithm is developed to not only reach higher accuracy but also run faster. In addition, performance enhanced fiducial frame is also studied by integrating self-resonant coils. A surgical master-slave teleoperation system for the application of percutaneous interventional procedures under continuous MRI guidance is presented. The slave robot is a piezoelectric-actuated needle insertion robot with fiber optic force sensor integrated. The master robot is a pneumatic-driven haptic device which not only controls the position of the slave robot, but also renders the force associated with needle placement interventions to the surgeon. Both of master and slave robots mechanical design, kinematics, force sensing and feedback technologies are discussed. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. MRI compatibility is evaluated extensively. Teleoperated needle steering is also demonstrated under live MR imaging. A control system of a clinical grade MRI-compatible parallel 4-DOF surgical manipulator for minimally invasive in-bore prostate percutaneous interventions through the patient’s perineum is discussed in the end. The proposed manipulator takes advantage of four sliders actuated by piezoelectric motors and incremental rotary encoders, which are compatible with the MRI environment. Two generations of optical limit switches are designed to provide better safety features for real clinical use. The performance of both generations of the limit switch is tested. MRI guided accuracy and MRI-compatibility of whole robotic system is also evaluated. Two clinical prostate biopsy cases have been conducted with this assistive robot

    Acoustic Trilateration Search and Rescue Using Swarm Robotics

    Get PDF
    The goal of the project is to design and build a robotic system able to locate a sound source via trilateration between multiple mobile robots on the same field, overseen by a master controller. As they navigate the test environment, these robots will demonstrate time difference of arrival (TDOA)-based localization and communication over a wireless network. Although previous research has proven that sound localization is possible on a mobile platform, this concept has not yet been shown for multiple mobile units that must communicate between each other. The intended application of this system is to model robot-aided search-and-rescue or underwater sound mapping

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Unlimited-wokspace teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 100-105)Text in English; Abstract: Turkish and Englishxiv, 109 leavesTeleoperation is, in its brief description, operating a vehicle or a manipulator from a distance. Teleoperation is used to reduce mission cost, protect humans from accidents that can be occurred during the mission, and perform complex missions for tasks that take place in areas which are difficult to reach or dangerous for humans. Teleoperation is divided into two main categories as unilateral and bilateral teleoperation according to information flow. This flow can be configured to be in either one direction (only from master to slave) or two directions (from master to slave and from slave to master). In unlimited-workspace teleoperation, one of the types of bilateral teleoperation, mobile robots are controlled by the operator and environmental information is transferred from the mobile robot to the operator. Teleoperated vehicles can be used in a variety of missions in air, on ground and in water. Therefore, different constructional types of robots can be designed for the different types of missions. This thesis aims to design and develop an unlimited-workspace teleoperation which includes an omnidirectional mobile robot as the slave system to be used in further researches. Initially, an omnidirectional mobile robot was manufactured and robot-operator interaction and efficient data transfer was provided with the established communication line. Wheel velocities were measured in real-time by Hall-effect sensors mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection system, which is suitable for omnidirectional mobility, was developed and two obstacle avoidance algorithms (semi-autonomous and force reflecting) were created and tested. Distance information between the robot and the obstacles was collected by an array of sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance information is used to avoid obstacles autonomously and in the force-reflecting teleoperation scenario obstacles are informed to the user by sending back the artificially created forces acting on the slave robot. The test results indicate that obstacle avoidance performance of the developed vehicle with two algorithms is acceptable in all test scenarios. In addition, two control models were developed (kinematic and dynamic control) for the local controller of the slave robot. Also, kinematic controller was supported by gyroscope

    Medical robots for MRI guided diagnosis and therapy

    No full text
    Magnetic Resonance Imaging (MRI) provides the capability of imaging tissue with fine resolution and superior soft tissue contrast, when compared with conventional ultrasound and CT imaging, which makes it an important tool for clinicians to perform more accurate diagnosis and image guided therapy. Medical robotic devices combining the high resolution anatomical images with real-time navigation, are ideal for precise and repeatable interventions. Despite these advantages, the MR environment imposes constraints on mechatronic devices operating within it. This thesis presents a study on the design and development of robotic systems for particular MR interventions, in which the issue of testing the MR compatibility of mechatronic components, actuation control, kinematics and workspace analysis, and mechanical and electrical design of the robot have been investigated. Two types of robotic systems have therefore been developed and evaluated along the above aspects. (i) A device for MR guided transrectal prostate biopsy: The system was designed from components which are proven to be MR compatible, actuated by pneumatic motors and ultrasonic motors, and tracked by optical position sensors and ducial markers. Clinical trials have been performed with the device on three patients, and the results reported have demonstrated its capability to perform needle positioning under MR guidance, with a procedure time of around 40mins and with no compromised image quality, which achieved our system speci cations. (ii) Limb positioning devices to facilitate the magic angle effect for diagnosis of tendinous injuries: Two systems were designed particularly for lower and upper limb positioning, which are actuated and tracked by the similar methods as the first device. A group of volunteers were recruited to conduct tests to verify the functionality of the systems. The results demonstrate the clear enhancement of the image quality with an increase in signal intensity up to 24 times in the tendon tissue caused by the magic angle effect, showing the feasibility of the proposed devices to be applied in clinical diagnosis

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Ultrasonic sensor platforms for non-destructive evaluation

    Get PDF
    Robotic vehicles are receiving increasing attention for use in Non-Destructive Evaluation (NDE), due to their attractiveness in terms of cost, safety and their accessibility to areas where manual inspection is not practical. A reconfigurable Lamb wave scanner, using autonomous robotic platforms is presented. The scanner is built from a fleet of wireless miniature robotic vehicles, each with a non-contact ultrasonic payload capable of generating the A0 Lamb wave mode in plate specimens. An embedded Kalman filter gives the robots a positional accuracy of 10mm. A computer simulator, to facilitate the design and assessment of the reconfigurable scanner, is also presented. Transducer behaviour has been simulated using a Linear Systems approximation (LS), with wave propagation in the structure modelled using the Local Interaction Simulation Approach (LISA). Integration of the LS and LISA approaches were validated for use in Lamb wave scanning by comparison with both analytical techniques and more computationally intensive commercial finite element/diference codes. Starting with fundamental dispersion data, the work goes on to describe the simulation of wave propagation and the subsequent interaction with artificial defects and plate boundaries. The computer simulator was used to evaluate several imaging techniques, including local inspection of the area under the robot and an extended method that emits an ultrasonic wave and listens for echos (B-Scan). These algorithms were implemented in the robotic platform and experimental results are presented. The Synthetic Aperture Focusing Technique (SAFT) was evaluated as a means of improving the fidelity of B-Scan data. It was found that a SAFT is only effective for transducers with reasonably wide beam divergence, necessitating small transducers with a width of approximately 5mm. Finally, an algorithm for robot localisation relative to plate sections was proposed and experimentally validated
    corecore