13,648 research outputs found

    GP-HD: Using Genetic Programming to Generate Dynamical Systems Models for Health Care

    Full text link
    The huge wealth of data in the health domain can be exploited to create models that predict development of health states over time. Temporal learning algorithms are well suited to learn relationships between health states and make predictions about their future developments. However, these algorithms: (1) either focus on learning one generic model for all patients, providing general insights but often with limited predictive performance, or (2) learn individualized models from which it is hard to derive generic concepts. In this paper, we present a middle ground, namely parameterized dynamical systems models that are generated from data using a Genetic Programming (GP) framework. A fitness function suitable for the health domain is exploited. An evaluation of the approach in the mental health domain shows that performance of the model generated by the GP is on par with a dynamical systems model developed based on domain knowledge, significantly outperforms a generic Long Term Short Term Memory (LSTM) model and in some cases also outperforms an individualized LSTM model

    CAMP:Co-Attention Memory Networks for Diagnosis Prediction in Healthcare

    Get PDF
    Diagnosis prediction, which aims to predict future health information of patients from historical electronic health records (EHRs), is a core research task in personalized healthcare. Although some RNN-based methods have been proposed to model sequential EHR data, these methods have two major issues. First, they cannot capture fine-grained progression patterns of patient health conditions. Second, they do not consider the mutual effect between important context (e.g., patient demographics) and historical diagnosis. To tackle these challenges, we propose a model called Co-Attention Memory networks for diagnosis Prediction (CAMP), which tightly integrates historical records, fine-grained patient conditions, and demographics with a three-way interaction architecture built on co-attention. Our model augments RNNs with a memory network to enrich the representation capacity. The memory network enables analysis of fine-grained patient conditions by explicitly incorporating a taxonomy of diseases into an array of memory slots. We instantiate the READ/WRITE operations of the memory network so that the memory cooperates effectively with the patient demographics through co-attention mechanism. Experiments on real-world datasets demonstrate that CAMP consistently performs better than state-of-the-art methods

    Fine-Grained Assessment of COVID-19 Severity Based on Clinico-Radiological Data Using Machine Learning

    Get PDF
    Background: The severe and critical cases of COVID-19 had high mortality rates. Clinical features, laboratory data, and radiological features provided important references for the assessment of COVID-19 severity. The machine learning analysis of clinico-radiological features, especially the quantitative computed tomography (CT) image analysis results, may achieve early, accurate, and fine-grained assessment of COVID-19 severity, which is an urgent clinical need. Objective: To evaluate if machine learning algorithms using CT-based clinico-radiological features could achieve the accurate fine-grained assessment of COVID-19 severity. Methods: The clinico-radiological features were collected from 78 COVID-19 patients with different severities. A neural network was developed to automatically measure the lesion volume from CT images. The severity was clinically diagnosed using two-type (severe and non-severe) and fine-grained four-type (mild, regular, severe, critical) classifications, respectively. To investigate the key features of COVID-19 severity, statistical analyses were performed between patients’ clinico-radiological features and severity. Four machine learning algorithms (decision tree, random forest, SVM, and XGBoost) were trained and applied in the assessment of COVID-19 severity using clinico-radiological features. Results: The CT imaging features (CTscore and lesion volume) were significantly related with COVID-19 severity (p < 0.05 in statistical analysis for both in two-type and fine-grained four-type classifications). The CT imaging features significantly improved the accuracy of machine learning algorithms in assessing COVID-19 severity in the fine-grained four-type classification. With CT analysis results added, the four-type classification achieved comparable performance to the two-type one. Conclusions: CT-based clinico-radiological features can provide an important reference for the accurate fine-grained assessment of illness severity using machine learning to achieve the early triage of COVID-19 patients
    • …
    corecore