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Abstract: Background: The severe and critical cases of COVID-19 had high mortality rates. Clinical
features, laboratory data, and radiological features provided important references for the assessment
of COVID-19 severity. The machine learning analysis of clinico-radiological features, especially
the quantitative computed tomography (CT) image analysis results, may achieve early, accurate,
and fine-grained assessment of COVID-19 severity, which is an urgent clinical need. Objective: To
evaluate if machine learning algorithms using CT-based clinico-radiological features could achieve
the accurate fine-grained assessment of COVID-19 severity. Methods: The clinico-radiological
features were collected from 78 COVID-19 patients with different severities. A neural network was
developed to automatically measure the lesion volume from CT images. The severity was clinically
diagnosed using two-type (severe and non-severe) and fine-grained four-type (mild, regular, severe,
critical) classifications, respectively. To investigate the key features of COVID-19 severity, statistical
analyses were performed between patients’ clinico-radiological features and severity. Four machine
learning algorithms (decision tree, random forest, SVM, and XGBoost) were trained and applied in
the assessment of COVID-19 severity using clinico-radiological features. Results: The CT imaging
features (CTscore and lesion volume) were significantly related with COVID-19 severity (p < 0.05 in
statistical analysis for both in two-type and fine-grained four-type classifications). The CT imaging
features significantly improved the accuracy of machine learning algorithms in assessing COVID-19
severity in the fine-grained four-type classification. With CT analysis results added, the four-type
classification achieved comparable performance to the two-type one. Conclusions: CT-based clinico-
radiological features can provide an important reference for the accurate fine-grained assessment of
illness severity using machine learning to achieve the early triage of COVID-19 patients.

Keywords: COVID-19; lesion volume measurement; clinico-radiological features; machine learning;
fine-grained classification

1. Introduction

During the COVID-19 pandemic, it was observed that the mortality was significantly
higher in severe and critical cases [1]. After the occurrence of the symptoms of severe acute
respiratory infection, some patients rapidly developed acute respiratory distress syndrome
(ARDS) and other serious complications, which are followed by multiple organ failure [2].
Therefore, early diagnosis of severe and critical cases could optimize the allocation of
medical resources, ensure early intervention for severe and critical patients, and finally
reduce the mortality of COVID-19 [3].
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Clinical features and laboratory data provided important references for assessing
the severity of COVID-19 [2,4]. Some physiological parameters such as respiratory rate
(RR) and oxygen saturation (SpO2) have been suggested as the indicators of severe and
critical cases in clinical guidelines [5]. Some metabolic disturbances and inflammatory
dysfunctions [6], such as lymphopenia [7] and a high level of lactate dehydrogenase [8],
have also been proven as strong indicators of the severity of COVID-19. Additionally, some
clinical comorbidities such as kidney diseases are related with the severity and mortality of
COVID-19 [9,10]. The above indicators do provide an informative reference for COVID-19
severity assessment, but they could not directly reflect the severity of the lesion and are
insufficient for reliable severity classification due to the complexity of pathophysiology
which is patient-specific.

Computed tomography (CT) imaging has been commonly applied in the diagnosis of
COVID-19 [11]. With the deterioration of COVID-19 after the onset of symptoms, specific
radiological characteristics such as consolidation, bilateral and peripheral disease, greater
total lung involvement, linear opacities, “crazy-paving” pattern and the “reverse halo” sign,
can be clearly observed on CT images [12]. In particular, the lesion volume automatically
segmented from CT images showed a strong correlation to the prognostic severity of the
COVID-19 illness [13]. It has been suggested that clinico-radiological features could indicate
the severity of COVID-19 and be applied in the triage of patients [14,15].

Furthermore, based on the clinico-radiological features, various artificial intelligence
(AI) methods, especially the machine learning algorithms, have been applied in the assess-
ment of the severity of COVID-19 [16]. Shi et al. developed a least absolute shrinkage and
selection operator (LASSO) logistic regression model to predict the prognostic severity of
COVID-19 using clinico-radiological data. The authors found that the deep learning LASSO
model was more efficient in predicting the severity of COVID-19 than the quantitative
CT parameters and the pneumonia severity index (PSI) [15]. Zhang et al. developed a
machine learning model using a support vector machine (SVM) to predict the severity
of COVID-19 based on 28 clinical features extracted from the results of blood and urine
tests [17]. Tang et al. developed a random forest (RF) machine learning model to classify the
severity (non-severe vs. severe) of COVID-19 infection based on the quantitative radiologi-
cal features extracted from CT images, and concluded that the RF-based model can achieve
automatic assessment of COVID-19 severity [18]. It was suggested that the lesion volume
derived from the automatic quantitative analysis of CT images can be applied in the ma-
chine learning model to assess the severity of COVID-19 based on the clinico-radiological
features [19].

However, the majority of existing studies are focused on the binary classification
between severe and non-severe cases. The accurate detection and triage of severe and
critical cases plays an important role in reducing the mortality of COVID-19 [3]. Therefore,
more fine-grained classification of severity deserves further investigation. Additionally, in
existing studies using machine learning algorithms, the clinico-radiological features related
with severity have not been comprehensively analyzed from a clinical and pathophysiolog-
ical perspective. There is a high need to comprehensively evaluate the clinico-radiological
features related to the severity of COVID-19 and develop the machine learning methods to
achieve the early fine-grained assessment of COVID-19 severity.

In this study, based on the analysis of CT images using neural network, we aim to
find the clinico-radiological features significantly related with the severity of COVID-19,
and evaluate if machine learning algorithms could achieve the accurate fine-grained as-
sessment of COVID-19 severity using clinico-radiological features. This work will pave
the way for the early triage of COVID-19 patients, which will optimize the allocation of
medical resources during the pandemic and effectively decrease the mortality of COVID-19,
especially among severe and critical cases.
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2. Materials and Methods
2.1. Patient Recruitment

A total of 78 patients (44 females, 34 males, mean ± standard deviation [SD] of age:
50.3 ± 14.5 years) with a confirmed SARS-CoV-2 laboratory test between 18 January 2020,
and 5 March 2020, in Zhuhai, China were recruited in a retrospective, single-center study.
A patient was confirmed as positive by high-throughput sequencing or real-time reverse-
transcriptase polymerase-chain-reaction (RT-PCR) assay of nasal and pharyngeal swab
specimens. The RT-PCR test kits were manufactured by Shanghai Zhijiang Biotechnology
Co. (Shanghai, China). This study was approved by the ethics committee of the Fifth
Affiliated hospital of Sun Yat-Sen University, and the requirement for informed consent was
waived. The private information of patients was anonymized by the investigators after data
collection. The inclusion criteria were: (a) patients with positive novel coronavirus nucleic
acid antibody test and confirmed by the Centers for Disease Control (CDC); (b) age >= 14.
Patients with comorbidities of other acute respiratory diseases were excluded.

2.2. Clinical Data Collection

Clinical data was collected by chart review. The patients were classified into four types
according to patients’ most severe conditions, using the Diagnosis and Treatment Plan of
COVID-19 issued by National Health Commission (7th ed.): (1) mild type: minimal clinical
symptoms without pneumonia in imaging; (2) regular type: fever, respiratory and other
symptoms with pneumonia in imaging; (3) severe type: respiratory distress, respiratory
rate ≥30 times/min; in resting state, oxygen saturation ≤93%; PaO2/FiO2 ≤ 300 mmHg;
(4) critical type: respiratory failure requiring mechanical ventilation, shock and other organ
failure requiring ICU monitoring and treatment [20].

2.3. CT Imaging Protocol

All scans were performed with patients in the supine position during end-inspiration
without intravenous contrast on three CT scanners: uCT 760, uMI 780 scanners (United
Imaging; Shanghai, China) and Precision 32 (CAMPO Imaging; Shenyang, China). Images
were obtained from the apex to lung bases, using a standard dose protocol, reconstructed
at 1.0 mm/1.1 mm slice thickness, with 0.7 mm increment, 512 × 512 mm and a sharp
reconstruction kernel. The lung window width and level settings were 1500 Hounsfield
units (HU) and −600 HU.

2.4. CT Image Analysis
2.4.1. CTscore from Visual Quantitative Evaluation

The CTscore was retrospectively obtained by visual quantitative evaluation of acute
lung inflammatory lesion on CT images. Two radiologists blinded to the clinical informa-
tion reviewed all images independently. In each lobe, the score was calculated from the
percentage of total lesion areas as 0 (0%), 1 (1–25%), 2 (26–50%), 3 (51–75%), or 4 (76–100%).
For each subject, by adding the scores of five lung lobes, the total severity score (CTscore)
ranged from 0 to 20. The final score of each case was decided by a third experienced
thoracic radiologist. The details can be found in our published work [21].

2.4.2. MT-HRNet-3d Neural Network for Lesion Volume Measurement

The lesion volume was calculated based on an AI algorithm which was developed by
HY Medical Technology Co., Ltd (Beijing, China). The main neural network framework is
detailed in Figure 1.
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Figure 1. The network architecture of MT-HRNet-3d, composed of a simple stem, a main body, as
well as the segmentation and classification subnets. The main body consists of four stages of parallel
high-to-low resolution subnetworks with repeated information exchange across multi-resolution sub-
networks (multi-scale fusion). ×n denotes the down-sampling ratio of the resolution representation
to the input image, and the numbers of blocks of each stage module are [2,2,3,3] in [×2, ×4, ×8, ×16]
resolution levels, respectively. In the segmentation subnet, only the highest resolution representations
are concatenated for the medical lesion segmentation, while in the classification subnet, all the high-
to-low resolution representations are aggregated for multi-class classification. Seg_out and Cls_out
are the outputs of two subnets. In this study, the lesion volume reconstructed from Seg_out result
was used as an input of machine learning algorithm of severity classification.

The original high-resolution network, named HRNetV1 [22], maintains high-resolution
representations by exchanging information across multi-resolution subnetworks. HR-
NetV2 [23] explores the representations from all the high-to-low resolution parallel con-
volutions other than only the high-resolution representations in HRNetV1, which adds a
small overhead and leads to stronger high-resolution representations. To achieve the three-
dimensional (3d) medical image classification and segmentation, we modified the existing
networks and built a 3d high-resolution network, named MT-HRNet-3d (3d Multi-Task
High-Resolution Network).

As shown in Figure 1, the MT-HRNet-3d network is composed of a simple stem, a
main body, as well as the segmentation and classification subnets. The simple stem consists
of one 2-strided convolutions decreasing the resolution, remaining the scale of the highest
resolution at 2. The main body consists of four stages of parallel high-to-low resolution
subnetworks, outputting the high-to-low resolution feature maps through repeatedly fusing
the representations produced by the high-to-low subnetworks. With segmentation and
classification subnets, the network is targeted for the 3d medical image classification and
segmentation. In this study, we used the 3d lesion volume reconstructed from segmented
masks of lesions (i.e., the output of segmentation subnet) as an input for the machine
learning algorithm of severity classification. The segmentation subset had been trained and
validated based on the consensus manual segmentation results of three radiological experts
as the gold standard.

2.4.3. Modification of Neural Network

Following [22], the widths (number of channels) of the convolutions of the four
resolutions were C, 2C, 4C, and 8C, where C was set to 32. In order to improve the
computational efficiency, a simple modification in the main body was made by including
each branch in the multi-resolution group convolution with different residual blocks to
save the memory. Specifically, the four high-to-low resolution branches contain 2, 2, 3,
and 3 blocks, respectively, where the 2nd, 3rd, and 4th stages contain 1, 2, and 2 multi-
resolution modules.

Notably, we considered the HRNet as a naturally multi-task learning framework for the
segmentation and classification and believe that the good feature representations in different
resolution can be learned by related multi-task learning. Therefore, the segmentation and
classification subnets were added simultaneously. Instead of all the high-to-low resolution
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representations, only the highest resolution representations were concatenated for the medi-
cal lesion segmentation, resulting in fine segmentation contours. In the classification subnet,
all the high-to-low resolution representations were aggregated for multi-class classification.

2.4.4. Multi-Task Loss Function

A MT-HRNet-3d network has two sibling output subnets. The classification subnet
outputs a discrete probability distribution (per Image), p = (p0, ..., pK), over K + 1 categories.
As usual, p is computed by a softmax over the K + 1 outputs of a linear classifier. The
segmentation subnet outputs a probability segmentation map with the same resolution as
the input feature map of the main body, then the segmentation map is upsampled (2 times)
to the input size by trilinear upsampling. To jointly train the model, the related multi-task
loss is defined as,

L = LCE + λ1maskLDice (1)

in which LCE is the cross-entropy loss for the image-level classification. The second task loss,
LDice, is the dice loss, defined over the probability segmentation map and the pixel-level
labeled mask. The indicator function 1mask evaluates to 1 when the lesion mask is labeled
and 0 otherwise. The hyper-parameter λ in Equation (1) controls the balance between the
two task losses, usually set to 1 based on our experience. By sharing the information during
training, the multi-task learning approach can improve data efficiency, reduce overfitting,
and therefore enhance the overall efficiency of the algorithm in achieving an accurate
estimation of lesion area.

2.5. Data Cleansing

The full clinico-radiological features are listed in Table A1. Before data cleansing, the
columns unrelated with patients’ pathophysiological information (e.g., ‘MedNum’, ‘No’)
and columns that have no data (e.g., ‘LVEF’, ‘SO2’, ‘PO2’, ‘YHZS’) were excluded. Then,
the features with missing recordings in more than 10 subjects (e.g., ‘Onset2severity’) were
removed. Finally, 59 clinico-radiological features were used for analysis.

2.6. Statistical Analysis

To evaluate if the clinico-radiological features, especially the CT imaging features
(CTscore and VRmax), were significantly related with the prognostic severity of COVID-19,
statistical analysis was performed between the clinico-radiological features and the severity
in the two-type and four-type classifications, respectively.

For quantitative features, firstly, the Shapiro–Wilk test was performed to examine
if the data follow normal distribution in each severity subgroup. If normal distribution
was satisfied (i.e., p > 0.05 in Shapiro–Wilk test), the t-test was performed in the two-
type classification to examine if there was a significant difference in the feature between
the severe and non-severe patients. For the four-type classification, Levene’s test was
performed to examine the homogeneity of variance among subgroups. For any feature
where the homogeneity of variance was satisfied or violated (i.e., p > 0.05 or p ≤ 0.05 in
Levene’s test), the analysis of variance (ANOVA) and Welch’s ANOVA was performed,
respectively to examine if there was a significant different in the feature among patients
with different severities.

For ordinal features and the quantitative features that did not follow normal distri-
bution (i.e., p ≤ 0.05 in Shapiro–Wilk test), the non-parametric tests were performed. The
Mann–Whitney U test and Kruskal–Wallis H test were performed as the alternatives to
t-test and ANOVA in the two-type and four-type classifications, respectively.

For categorical features, the differences between rates were tested by Chi-squared (χ2)
or Fisher’s exact tests, if appropriate. A p-value less than 0.05 was considered as statistically
significant in all the comparisons.
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2.7. Machine Learning Algorithms

The data were processed using four different classification algorithms: decision tree,
random forest, SVM, and XGBoost. As aforementioned, 59 clinico-radiological features
(bold in Table A1) were selected. We applied feature engineering which is commonly
used in machine learning to derive the feature set for the training of machine learning
algorithms [24]. First, constant and quasi-constant features (i.e., with the same value
or limited variations among all patients) were removed. Second, Pearson’s correlation
coefficient was calculated between different features. For correlated features, only the
most indicative one was kept, with others removed to reduce information redundancy.
Third, statistical methods that calculate mutual information is employed to further remove
features with redundant information. The algorithm was automatic. Finally, 37 features
were input for algorithmic training.

The estimation of the patient’s severity was the output, based on the two-type (non-
severe and severe) and four-type classifications (mild, regular, severe, critical), respectively.
Firstly, the testing dataset was separated randomly as 10% of the original dataset. The
remaining data was split into the training set (80%) and testing set (20%) for the 5-fold
cross validation. To investigate the significance of CT analysis results in assessing the
severity, the assessment was performed with VRmax and CTscore included and excluded,
respectively. The precision, recall, and F1 values were used for the quantitative comparison
of results. The results of two-type and four-type classifications were also compared to
initially examine the performance of fine-grained classification of COVID-19 severity.

To illustrate the contribution of different features in the decision made by machine
learning methods, we used the local interpretable model-agnostic explanations (LIME)
which is a common method for explaining black-box models, i.e., models whose inner
logic is hidden and not clearly understandable [25]. On the standardized p-dimensional
dataset where p is the number of retained features, LIME performs ridge regression, which
is trained in a weighted fashion, i.e., each point contributes to the model according to its
weight. In the resultant model, the coefficient of a feature reflects its contribution in the
classification: the higher the coefficient, the bigger the variation in the output when the
feature is changed. The sign of the coefficient shows the direction of the variation in the
output [25].

3. Results
3.1. Statistical Analysis
3.1.1. Significant Clinico-Radiological Features in Two-Type Classification

The data distribution is balanced in two-type (57 non-severe, 21 severe) classification
but there is a lack of mild cases in four-type classifications (57 regular, 16 severe, 5 critical).
In the quantitative variables, the normal distribution was satisfied in the following features:
BMI, cTnlTimes, LYM1, ALB1, and ALB2 (p > 0.05 for all in Shapiro–Wilk test). The clinico-
radiological features that are significantly different in severe and non-severe cases are
shown in Table 1.

3.1.2. Significant Clinico-Radiological Features in Four-Type Classification

In the quantitative variables, the normal distribution was satisfied in the following
features: weight, BMI, cTnlTimes, LYM1, ALB1, and ALB2 (p > 0.05 for all in Shapiro–
Wilk test), where the homogeneity of variance was satisfied in all (p > 0.05 in Levene’s
test) except cTnlTimes (p < 0.001). The clinico-radiological features that are significantly
different among the patients with different severities are shown in Table 2. In both the
two-type and four-type classifications, the CT imaging features were significantly related
with the severity of COVID-19.
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Table 1. Statistically significant (p value < 0.05) clinico-radiological features of severity in two-type
classification.

Clinico-Radiological Features p-Value Statistical Test

cTnITimes <0.001 t-test
LYM1 0.001 t-test
ALB1 0.003 t-test
ALB2 <0.001 t-test
Age 0.006 Mann–Whitney U test

CTscore <0.001 Mann–Whitney U test
VRmax <0.001 Mann–Whitney U test

cTnI <0.001 Mann–Whitney U test
AST 0.023 Mann–Whitney U test
LDH <0.001 Mann–Whitney U test

HBDH <0.001 Mann–Whitney U test
NTproBNP <0.001 Mann–Whitney U test

N2L1 0.006 Mann–Whitney U test
CRP1 <0.001 Mann–Whitney U test
LYM2 <0.001 Mann–Whitney U test
N2L2 <0.001 Mann–Whitney U test
CRP2 <0.001 Mann–Whitney U test

cTnlCKMBOrdinal1 0.001 Chi-squared test with Fisher’s exact test
CTnlCKMBOrdinal2 0.002 Chi-squared test with Fisher’s exact test

Phlegm 0.002 Chi-squared test with Fisher’s exact test
Fatigue 0.004 Chi-squared test with Fisher’s exact test

DM 0.042 Chi-squared test with Fisher’s exact test

Table 2. Statistically significant (p value < 0.05) clinico-radiological features of severity in four-type
classification.

Clinico-Radiological Features p-Value Statistical Test

cTnITimes 0.005 Welch’s ANOVA
LYM1 0.001 ANOVA
ALB1 0.003 ANOVA
ALB2 <0.001 ANOVA
Age 0.003 Kruskal–Wallis H test

CTscore <0.001 Kruskal–Wallis H test
VRmax <0.001 Kruskal–Wallis H test

cTnI <0.001 Kruskal–Wallis H test
LDH 0.001 Kruskal–Wallis H test

HBDH 0.001 Kruskal–Wallis H test
NTproBNP <0.001 Kruskal–Wallis H test

N2L1 0.004 Kruskal–Wallis H test
CRP1 <0.001 Kruskal–Wallis H test
LYM2 <0.001 Kruskal–Wallis H test
N2L2 <0.001 Kruskal–Wallis H test
CRP2 <0.001 Kruskal–Wallis H test

cTnlCKMBOrdinal1 <0.001 Chi-squared test with Fisher’s exact test
CTnlCKMBOrdinal2 <0.001 Chi-squared test with Fisher’s exact test

Phlegm 0.010 Chi-squared test with Fisher’s exact test
Fatigue <0.001 Chi-squared test with Fisher’s exact test

DM 0.01 Chi-squared test with Fisher’s exact test
Smoking 0.019 Chi-squared test with Fisher’s exact test

Lung 0.015 Chi-squared test with Fisher’s exact test

3.2. Machine Learning
3.2.1. Role of CT Images Analysis in Two-Type Classification

After feature engineering, we found out that NtproBNP, LYM, LDH, and CRP were
the four most indicative ones of the 37 remaining features. As shown in Table 3, overall, the
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addition of AI-assisted CT image analysis results (radiological features) did not improve
the accuracy of the algorithms in two-type classification. Only Decision algorithms showed
mild improvement in F1 value with worsening in other metrics, while XGBoost and
Random Forest showed some worsening. The SVM results were unaffected.

Table 3. Estimation results of machine learning algorithms in two-type classification *.

Classifier Without CT Image Analysis With CT Image Analysis

Cross
Validation Test Set Cross

Validation Test Set

F1 Precision Recall F1 F1 Precision Recall F1

two-type
classification

Decision Tree 0.57 0.89 0.75 0.86 0.61 0.67 0.50 0.57
Random Forest 0.67 0.67 0.25 0.40 0.64 0.67 0.25 0.40

SVM 0.67 0.67 0.25 0.40 0.67 0.67 0.25 0.40
XGBoost 0.71 0.78 1.00 0.80 0.68 0.78 1.00 0.80

four-type
(fine-grained)
classification

Decision Tree 0.53 0.13 0.25 0.17 0.77 0.56 0.50 0.52
Random Forest 0.55 0.50 0.42 0.36 0.78 0.76 0.75 0.75

SVM 0.52 0.50 0.42 0.36 0.52 0.50 0.42 0.36
XGBoost 0.49 0.50 0.42 0.36 0.80 0.86 0.75 0.71

* The bold font shows the improvements in performance due to CT image analysis.

3.2.2. Role of CT Images Analysis in Four-Type Classification

In Table 3, it can be observed that with the addition of AI-assisted CT images analysis,
the accuracy of the estimation has been improved in Decision Tree, Random Forest, and
XGBoost but not in SVM.

3.2.3. Patient-Specific Analysis of Significant Clinico-Radiological Features in
Machine Learning

Figure 2a shows a correctly classified severe case in two-type classification. The
existence of arrhythmia and fatigue, which may be related with cardiac diseases and the
development of COVID-19, indicate higher severity. The phlegm showed the opposite
relationship with severity. A possible explanation is that the lack of phlegm will make
it difficult for the patient to expel the sputum from the lung, which will deteriorate the
affection in the lung and lead to higher severity. Figure 2b shows a correctly classified severe
case in four-type classification. It can be seen that the key clinico-radiological features
are different from the two-type classification in Figure 2a, where the CTscore becomes a
key factor.

Figure 3 shows two cases with similarity in many clinical features. With the machine
learning method, they have been accurately classified as non-severe and severe, and regular
and severe, in the two-type and four-type classifications, respectively. It can be observed
that the VRmax and CTscore showed significant difference between the two cases, which
improved the accuracy of classification. In particular, in these two cases, some clinical
features did not show strong efficiency (e.g., NTproBNP is even lower in the severe case) but
the VRmax correctly indicates the right trend (i.e., higher in the severe case) with the highest
relative ratio between the severe and non-severe cases, showing high robustness in assessing
COVID-19 severity against patient-specific variability in pathophysiological features.
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Figure 2. Comparison of clinico-radiological features in different cases based on local interpretable
model-agnostic explanations (LIME). (a) A correctly classified severe cases in two-type classification.
(b) A correctly classified severe case in four-type classification. The values on x axis are the coefficients
of the ridge regression model fitted locally to the predictions from the original model. Features in
green have a positive contribution to the prediction (increasing the probability of turning severe), and
features in red have a negative effect on the prediction (decreasing the probability of turning severe).
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The values of features in the severe case are in relative value of corresponding values in the non-severe
case, except those with zero values (Sex, PCT1, Phlegm, and Onset2CT1).
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4. Discussion
4.1. Comparison between Statistical Analysis and Machine Learning Results

In statistical analysis, the CT image analysis results (CTscore and VRmax) were signifi-
cant features of the severity in both two-type (p < 0.001 for both) and four-type (p < 0.001
for both) classifications. The inclusion of CT image analysis results significantly improved
the accuracy of machine learning algorithms in evaluating the severity of COVID-19 using
four-type classification. These results commonly suggest that CT image analysis could
provide important reference for the fine-grained assessment of illness severity to achieve
the early triage of COVID-19 patients. Compared with the statistical analysis, the machine
learning algorithms provided the patient-specific quantitative evaluation of different clinico-
radiological features regarding the illness severity, providing a more detailed reference for
the accurate diagnosis and treatment of COVID-19.

4.2. Quantitative CT Image Analysis: A Key to COVID-19 Severity Assessment

It has been suggested that CT image analysis could improve the machine learning
algorithm to achieve a higher accuracy in diagnosing COVID-19 than the clinical COVID-19
reporting and data system [26]. In particular, the lesion volume segmented and quantified
using deep learning showed a strong potential in the prediction of COVID-19 severity [27].
Furthermore, the ratio of compromised lung volume (sum of poorly and non-aerated
volumes) has been observed to be an accurate outcome predictor of the risk of oxygenation
support and intubation, and in-hospital mortality (p < 0.001 for all in logistic regression) [28].
Therefore, the quantitative CT image analysis (especially the lesion volume) plays a key
role in the assessment of the severity of COVID-19 and provides important reference to
guide the clinical triage and intervention.

According to the model interpretation (two-type XGBoost classification), the model
unveils several important clinic-radiological features such as NTproBNP. As a result, among
all those important features, the CTscore improves the performance only moderately. For
the four-type classification, the CTscore improves in all classification algorithms but not in
SVM due to its structure. The SVM model decides its hyperplane based on all the features.
The CTscore does have influence on the decision of the hyperplane, but its influence is not
strong enough to demonstrate its efficacy on the final decision.

4.3. Fine-Grained Severity Assessment of COVID-19 Using Machine Learning:
Clinical Significance

Considering the current epidemic of COVID-19 and the high risk of its recurrence,
the early detection of severe COVID-19 illness is an urgent clinical need. Currently, both
the two-type [29] and four-type [30] classification standards are widely used in the triage
of COVID-19 patients. In the latest guidelines of Chinese Medical Association, the severe
and critical cases of COVID-19 were unified as “severe” due to the rapid exacerbation of
severe cases, the highly diverse “time window”, and the difficulty in detecting critical
cases which may lead to the delayed treatment [31]. The time lengths from illness on-
set to severe symptoms such as dyspnea (95% confidence interval (CI): 4.0–9.0 days) or
critical symptoms such as sepsis (95% CI: 7.0–13.0 days) are patient-specific and covers
a wide range [1]. Additionally, the RT-PCT test has low sensitivity in the first 3–5 days
of affection [32]. Therefore, the early and accurate detection of clinical risks based on the
four-type classification could play an important role in guiding the clinical intervention for
the severe and critical cases towards more appropriate management. Additionally, due to
the rapidly growing imbalance between supply and demand for medical resources, the fair
allocation of medical resources has become an urgent clinical need in many countries [33].
In Table 3, with CT analysis results added, the four-type classification achieved comparable
or even better performance in some metrics than the two-type classification, especially in
Random Forest and XGBoost algorithms, which indicates that the fine-grained classification
of COVID-19 severity could achieve comparable performance to the widely used binary
classification on the same dataset while providing a more detailed reference for clinical
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diagnosis, treatment, and management. With accurate estimation of severity, this machine
learning method could be used to guide the allocation of limited medical resources.

4.4. Limitations and Future Directions

Firstly, only 78 patients were included in this single-center, retrospective pilot study.
Secondly, the distributions of age and severity were imbalanced in these cases. There were
only five cases aged 19–30 years and only one case aged less than 18 years. The majority
(57.5%) of the included cases were moderate. Only five critical cases were included. There
was a lack of mild cases. During the early outbreak period, the patients with mild symptoms
often had delayed hospital admission due to the lack of awareness. A balanced training
dataset is important to improve the reliability of the algorithm and its applicability in
different cohorts. Additionally, it has been found the severity of COVID-19 was related
with other physiological factors including pregnancy [14], and the comorbidity of chronical
respiratory diseases, cardiovascular diseases [10], diabetes [34], and cancer [35]. Therefore,
the results derived by the machine learning models need to be validated in large-scale
datasets with more balanced data distribution. In future studies, more clinical datasets
could be included to cover a wider range of age and severity, as well as those in different
physiological and pathological conditions.

5. Conclusions

The results of quantitative CT image analysis were significantly related to the severity
of COVID-19. The clinico-radiological features including the CT image analysis results can
provide an important reference for the fine-grained assessment of illness severity using
machine learning to achieve the early triage of COVID-19 patients.
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Appendix A

Table A1. Clinico-radiological features.

Feature Note Category

MedNum Number of Medical Insurance x
No Number x
Sex Sex Basic information
Age Age Basic information
AgeG1 Age > 50 Basic information
Height Height Basic information
Weight Weight Basic information
BMI Body Mass Index Basic information
Temp Body temperature
Severity03 Severity 0–3: mild, regular, severe, critical Categories of severity
Severity01 Severity 0–1: non-severe, severe Categories of severity
CTscore Peak CT scores Visual quantification on CT images

VRmax The highest value of the affected Volume Ratio among all CT scans for the
particular patient.

Detection results derived by
algorithm

cTnITimes Time of cTnI measurement Reagent Test
cTnI Maximal Cardiac Troponin I (cTnI) Reagent Test

cTnlCKMBOrdinal1 Whether troponin I is over 0.0229 µg/mL or CKMB is over twice of the normal
threshold (50 U/L) on admission Reagent Test

cTnlCKMBOrdinal2
Whether troponin I is over 0.0229 µg/mL or CKMB is over twice of the normal
threshold (50 U/L) on admission during the hospitalization according to the
maximal values

Reagent Test

AST Maximal aminotransferase. AST level in serum is a clinical indicator of myocardial
infarction and myocarditis, which is low in normal cases. Biochemical marker

LDH Lactate dehydrogenase. Increased activity of LDH activity is mainly found in
myocardial infarction, acute or chronic hepatitis, and liver cancer. Biochemical marker

CK Creatine kinase, an indicator of myocardial diseases Biochemical marker

CKMB Creatine kinase myocardial band, a specific serum marker of
cardiomyocyte damage Biochemical marker

HBDH α-hydroxybutyrate dehydrogenase, which actually reflect the activity of LDH1
and LDH2, which is has diagnostic significance of myocardial and liver diseases Biochemical marker

HiCKMB Highest level of CKMB Biochemical marker
NTproBNP N-terminal pro b-type natriuretic peptide, for clinical diagnosis of heart failure Biochemical marker
Cr Serum creatinine Biochemical marker
LVEF left ventricular ejection fraction (maximum) not included in the majority Color Doppler ultrasonic

PCT1 procalcitonin, which increases during bacterial, fungal, and parasitic infections as
well as sepsis and multiple organ failure, maximal value on admission Inflammation marker

WBC1 white blood cells on admission Blood routine examination
NEU1 Neutrophils on admission Blood routine examination
LYM1 Lymphocytes on admission Blood routine examination
N2L1 Ratio of granulocytes to lymphocytes on admission Blood routine examination

CRP1 C-reactive protein (CRP) on admission, which rises sharply in plasma due to
infection or tissue damage Inflammation marker

ALB1 Albumin (on admission) Biochemical marker

PCT2 Procalcitonin (maximum values for non-severe patients or pre-severe phase of
severe patients) Inflammation marker

WBC2 white blood cells (maximum values for non-severe patients or pre-severe phase of
severe patients) Blood routine examination

NEU2 Neutrophils (maximum values for non-severe patients or pre-severe phase of
severe patients) Blood routine examination

LYM2 Lymphocytes (maximum values for non-severe patients or pre-severe phase of
severe patients) Blood routine examination

N2L2 Ratio of granulocytes to lymphocytes (maximum values for non-severe patients or
pre-severe phase of severe patients) Blood routine examination

CRP2 C-reactive protein (maximum values for non-severe patients or pre-severe phase
of severe patients) Inflammation marker

ALB2 Albumin (maximum values for non-severe patients or pre-severe phase of
severe patients) Biochemical marker

SO2 x x
PO2 x x
YHZS x x
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Table A1. Cont.

Feature Note Category

Symptom Symptoms on admission Basic symptom
Fever Basic symptom
Cough Basic symptom
Phlegm Basic symptom
Hemoptysis Basic symptom
SoreThroat Sore throat Basic symptom
Catarrh Basic symptom
Headache Basic symptom
ChestPain Chest pain Basic symptom
Fatigue Basic symptom
SoreMuscle Sore muscle Basic symptom
Stomachache Basic symptom
Diarrhea Basic symptom
PoorAppetie Poor appetite Basic symptom
NauseaNVomit Nausea and Vomit Basic symptom
Hypertention Medical history
Hyperlipedia Medical history
DM Diabetes mellitus Medical history
Lung Lung diseases Medical history
CAD Coronary artery disease Medical history
Arrythmia Arrythmia Medical history
Cancer Cancer Medical history
Onset2Admi The time period from onset of symptoms to admission Time
Onset2CT1 The time period from onset of symptoms to the first CT imaging Time
Onset2CTPositive1 The time period from onset of symptoms to the first CT Positive results Time
Onset2severity The time period from onset of symptoms to the first diagnosis of two-type severity Time
Onset2CTPeak The time period from onset of symptoms to CT Peak results Time

Selected clinic-radiological features are in bold. In the paired features (e.g., PCT1 and PCT2), the numbers 1 and 2
indicate the admission value and maximal value during hospitalization, respectively.
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