370 research outputs found

    An error analysis for polynomial optimization over the simplex based on the multivariate hypergeometric distribution

    Get PDF
    We study the minimization of fixed-degree polynomials over the simplex. This problem is well-known to be NP-hard, as it contains the maximum stable set problem in graph theory as a special case. In this paper, we consider a rational approximation by taking the minimum over the regular grid, which consists of rational points with denominator rr (for given rr). We show that the associated convergence rate is O(1/r2)O(1/r^2) for quadratic polynomials. For general polynomials, if there exists a rational global minimizer over the simplex, we show that the convergence rate is also of the order O(1/r2)O(1/r^2). Our results answer a question posed by De Klerk et al. (2013) and improves on previously known O(1/r)O(1/r) bounds in the quadratic case.Comment: 17 page

    An error analysis for polynomial optimization over the simplex based on the multivariate hypergeometric distribution

    Get PDF
    We study the minimization of fixed-degree polynomials over the simplex. This problem is well-known to be NP-hard, as it contains the maximum stable set problem in graph theory as a special case. In this paper, we consider a rational approximation by taking the minimum over the regular grid, which consists of rational points with denominator r (for given r). We show that the associated convergence rate is O(1/r^2 ) for quadratic polynomials. For general polynomials, if there exists a rational global minimizer over the simplex, we show that the convergence rate is also of the order O(1/r^2 ). Our results answer a question posed by De Klerk et al. [9] and improves on previously known O(1/r) bounds in the quadratic case

    Convergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization

    Get PDF
    We consider the problem of minimizing a continuous function f over a compact set K. We analyze a hierarchy of upper bounds proposed by Lasserre in [SIAM J. Optim. 21(3) (2011), pp. 864 − 885], obtained by searching for an optimal pr

    Density of Spherically-Embedded Stiefel and Grassmann Codes

    Full text link
    The density of a code is the fraction of the coding space covered by packing balls centered around the codewords. This paper investigates the density of codes in the complex Stiefel and Grassmann manifolds equipped with the chordal distance. The choice of distance enables the treatment of the manifolds as subspaces of Euclidean hyperspheres. In this geometry, the densest packings are not necessarily equivalent to maximum-minimum-distance codes. Computing a code's density follows from computing: i) the normalized volume of a metric ball and ii) the kissing radius, the radius of the largest balls one can pack around the codewords without overlapping. First, the normalized volume of a metric ball is evaluated by asymptotic approximations. The volume of a small ball can be well-approximated by the volume of a locally-equivalent tangential ball. In order to properly normalize this approximation, the precise volumes of the manifolds induced by their spherical embedding are computed. For larger balls, a hyperspherical cap approximation is used, which is justified by a volume comparison theorem showing that the normalized volume of a ball in the Stiefel or Grassmann manifold is asymptotically equal to the normalized volume of a ball in its embedding sphere as the dimension grows to infinity. Then, bounds on the kissing radius are derived alongside corresponding bounds on the density. Unlike spherical codes or codes in flat spaces, the kissing radius of Grassmann or Stiefel codes cannot be exactly determined from its minimum distance. It is nonetheless possible to derive bounds on density as functions of the minimum distance. Stiefel and Grassmann codes have larger density than their image spherical codes when dimensions tend to infinity. Finally, the bounds on density lead to refinements of the standard Hamming bounds for Stiefel and Grassmann codes.Comment: Two-column version (24 pages, 6 figures, 4 tables). To appear in IEEE Transactions on Information Theor

    A note on total degree polynomial optimization by Chebyshev grids

    Get PDF
    Using the approximation theory notions of polynomial mesh and Dubiner distance in a compact set, we derive error estimates for total degree polynomial optimization on Chebyshev grids of the hypercub

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm

    Glosarium Matematika

    Get PDF

    Matrix-variate, vector-variate and univariate risk measures and related aspects

    Get PDF
    Généralement, les mesures de risque sont considérées comme des mappings d'un ensemble de variables aléatoires réelles vers des nombres réels. Cependant, il est souvent insuffisant de considérer une seule mesure réelle pour quantifier les risques découlant des activités financières. Au cours de la dernière décennie, de nombreuses extensions de la Valeur à risque multivariée ont été étudiées et certains articles proposent des méthodes alternatives de mesure du risque pour les portefeuilles multivariés. Toutefois, comme le mentionne Li et al. [2012], certaines des traductions univariées sont devenues irréalistes et reposent sur des hypothèses inappropriées qui, dans le contexte des mesures de risque, sont difficiles à élucider. Les mesures de risque les plus utilisées en économie, en assurance et en finance sont probablement la valeur à risque (VaR) et la valeur à risque conditionnelle (CVaR). L'objectif de cette thèse est de proposer de nouvelles méthodologies pour quantifier la VaR et la CVaR à partir d'une approche vecteur-variable et matrice-variable. Dans le premier chapitre de la thèse, une nouvelle approche pour modéliser les mesures de risque vecteur-variable sous le barycentre de Wasserstein des mesures de probabilité est proposée. Un aspect crucial sous-jacent ici pour la nouvelle méthode est que le barycentre de Wasserstein des mesures reste invariant sous les distributions de localisation et d'échelle, il est donc possible de proposer des formules exactes pour le barycentre de Wasserstein de la VaR et de la CVaR. Explicitement, un concept de la théorie des probabilités est incorporé aux modèles financiers en proposant des mesures de Fréchet, qui sont calibrées par une certaine métaréalisation de l'espace des mesures de probabilité. Dans ce cas, la métrique de Wasserstein soutient la méthode et fournit des connexions fondamentales avec le concept émergent de barycentre au sens d'Agueh et Carlier dans Agueh and Carlier [2011]. Le modèle proposé est comparé à d'autres modèles simples et avancés, et ses performances sont vérifiées sur les principaux indices boursiers américains, pendant la pandémie de COVID-19. Le modèle introduit fonctionne de manière satisfaisante dans les périodes de prix d'actifs communs et volatils, fournissant une prévision réaliste de la VaR dans cette ère de distanciation sociale. Maintenant, lorsque nous cherchons une extension matrice-variable de la VaR, la littérature financière ne fournit aucune approche. Cependant, d'un point de vue mathématique, la VaR ne requiert des percentiles significatifs que dans le contexte des fonctions de densité cumulative matricielle. La théorie des distributions matrice-variable est étudiée en profondeur dans Muirhead [2005]. En particulier, des formules sont fournies pour calculer P(X = V) lorsque X suit une distribution de Wishart et V est une matrice définie positive et il a été démontré que la fonction de distribution cumulative peut être exprimée en termes de fonction hypergéométrique gaussienne. Sur la base de cette théorie, nous développons au chapitre 2 une méthode d'estimation de la valeur à risque et de la valeur à risque conditionnelle lorsque les facteurs de risque suivent une distribution bêta dans un environnement univarié et matriciel-varié. Dans ce but, nous connectons la théorie des fonctions hypergéométriques à argument matriciel et l'intégration sur les matrices définies positives. Nous définissons la matrice supérieure VaR et la matrice inferieure VaR, qui sont obtenues comme les zéros de la fonction hypergéométrique gaussienne. On montre que les deux extensions satisfont aux propriétés de monotonicité, d'homogénéité positive et d'invariance par translation. Des expressions analytiques sont développées pour certains paramètres de forme, et une solution numérique est présentée pour toute valeur de ces paramètres. Les mesures de risque proposées sont finalement utilisées pour quantifier la perte économique dans le risque de crédit. Le chapitre 3 propose des intégrales généralisées liées aux distributions classiques de Wishart, bêta et F. Ensuite, l'article définit les distributions matrice-variable bêta et F généralisées et la matrice-variable VaR. Comme corollaires, un certain nombre de résultats publiés sur les fonctions de densité cumulative (FDC) des matrices de Wishart et bêta sont également examinés et unifiés. Un nouveau c.d.f. pour une matrice aléatoire de Wishart et la solution à un problème ouvert proposé par A. C. Constantine en 1963. Les distributions extrêmes des racines latentes pour Wishart, beta et F sont obtenues par simple dérivation. Les relations avec le nombre de conditions de Davis, la théorie des formes et la VaR sont également établies ; certains cas particuliers sont dérivés et une perspective pour les travaux futurs dans cette nouvelle direction est établie. Nous fournissons la VaR pour les distributions gamma, exponentielle, Erlang, chi-carré, bêta et uniforme pour le cas univarié et la VaR pour les distributions Wishart, gamma, bêta et F pour le cas matriciel. En outre, nous établissons des résultats utiles pour la VaR supérieure et la VaR inferieure de la matrice et obtenons des expressions fermées lorsque X ~ Beta_m(a, m+1/2) y cuando X ~ W_2(n, I).Usually, risk measures are functions of a set of real random variables to the real numbers. However, it is often insufficient to consider a single real-varied measure to quantify the risks derived from different economic and financial activities. In the last decade, many extensions of vector-valued risk measures have been investigated In the last decade, many extensions of vector-valued risk measures have been investigated, see Embrechts and Puccetti [2006], Cousin and Di Bernardino [2013], Torres et al. [2015]. However, as mentioned in Li et al. [2012] some of the univariate transcripts are unrealistic and are based on assumptions that are difficult to elucidate. Probably the most widely used risk measures in economics, insurance, and finance are the Value-at-Risk (VaR) and the Conditional Value-at-Risk (CVaR). The objective of this thesis is to propose new methodologies to quantify VaR and CVaR from an uni-variate, vector-variate and matrix-variate approaches. In the first chapter of this thesis, a new approach is proposed to model vector-varied risk measures under the Wasserstein barycenter of probability measures. A crucial aspect that underlies here for the new method is that the Wasserstein measure-barycenter remains invariant under the location and scale families, so it is possible to propose exact formulas for the Wasserstein Barycenter VaR and the Wasserstein Barycenter Conditional CVaR. The new method considers a reliable risk measure based on distances among probabilistic models. The underlying suitable probability laws obey, for example, opinions, beliefs, and estimates of data sources, in the context of the financial risk. Explicitly, a concept in probability theory is brought into the financial models by proposing the named Fréchet measures; which are calibrated by certain metrization of the probability measure space. In this case, the well-studied metric of Wasserstein supports the method and provides fundamental connections for the rising concept of barycenter in the sense of Agueh and Carlier in Agueh and Carlier [2011]. Simple and advanced multivariate VaR models are compared with the proposed model. The performance of the model is also checked in the major U.S. stock indices during the COVID-19 pandemic. The introduced model behaves satisfactorily in both common and volatile periods of asset prices, providing a realistic VaR forecast in this era of social distancing. If we search for a matrix-variate extension for risk measures, the finance literature does not provide us with any approaches. However, from a mathematical point of view, risk measures just requires meaningful percentiles in the context of matrix cumulative density functions. The theory behind the random matrix setting has been deep studied by Muirhead [2005]. In particular, that paper provided a formulation for calculating P(X = V) when X follows a Wishart distribution and V is a positive definite matrix. They also demonstrated that its cumulative distribution function can be expressed in terms of a Gaussian hypergeometric function of matrix argument. Based on this theory, in chapter 2 a method is developed to estimate the VaR and the CVaR when the risk factors follow a beta distribution in an univariate and a matrix-variate approach. For this purpose, we connect matrix argument theory of hypergeometric functions and integration over positive definite matrices. The upper matrix VaR and the lower matrix VaR are defined, which are obtained as the zeros of the Gaussian hypergeometric function. Both extensions are shown to satisfy the properties of monotonicity, positive homogeneity, and translational invariance. Analytical expressions are developed for certain shape parameters, in addition, a numerical solution is presented for any value of said parameters. The proposed risk measures are finally used to quantify the economic loss in credit risk. Chapter 3, proposes generalized integrals related to the classical Wishart, beta, and F distributions. Then the work defines the termed generalized matrix variate beta and F distributions and the VaR in the matrix setting. As corollaries, a number of published results about cumulative density functions (c.d.f) of Wishart and beta matrices are also revisited and unified. A new c.d.f for a Wishart random matrix and a solution to an open problem proposed by A. C. Constantine in 1963 are also provided. The extreme latent root distributions for Wishart, Beta, and F are obtained by simple derivation. Relations with the Davis' condition number, theory of shape, and VaR are also established; some particular cases are derived and a perspective for future work is set in that novel direction. VaR is provided for gamma, exponential, Erlang, chi-square, beta and uniform distributions for the univariate case and VaR for Wishart, gamma, beta and F distributions for the matrix case. Furthermore, we establish useful results for the upper VaR and the lower matrix VaR and obtain closed expressions when X ~ Beta_m(a, m+1/2) and when X ~ W_2(n, I)
    • …
    corecore