18 research outputs found

    Adjoint-based aerodynamic shape optimization with hybridized discontinuous Galerkin methods

    Full text link
    peer reviewedWe present a discrete adjoint approach to aerodynamic shape optimization (ASO) based on a hybridized discontinuous Galerkin (HDG) discretization. Our implementation is designed to tie in as seamlessly as possible into a solver architecture written for general balance laws, thus adding design capability to a tool with a wide range of applicability. Design variables are introduced on designated surfaces using the knots of a 2D spline-based geometry representation, while gradients are computed from the adjoint solution using a difference approximation of residual perturbations. A suitable optimization algorithm, such as an in-house steepest descent or the Preconditioned Sequential Quadratic Programming (PSQP) approach from the pyOpt framework, is then employed to find an improved geometry. We present verification of the implementation, including drag or heat flux minimization in compressible flows, as well as inverse design

    Hybrid coupling of CG and HDG discretizations based on Nitsche’s method

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Computational mechanics. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00466-019-01770-8A strategy to couple continuous Galerkin (CG) and hybridizable discontinuous Galerkin (HDG) discretizations based only on the HDG hybrid variable is presented for linear thermal and elastic problems. The hybrid CG-HDG coupling exploits the definition of the numerical flux and the trace of the solution on the mesh faces to impose the transmission conditions between the CG and HDG subdomains. The con- tinuity of the solution is imposed in the CG problem via Nitsche’s method, whereas the equilibrium of the flux at the interface is naturally enforced as a Neumann con- dition in the HDG global problem. The proposed strategy does not affect the core structure of CG and HDG discretizations. In fact, the resulting formulation leads to a minimally-intrusive coupling, suitable to be integrated in existing CG and HDG libraries. Numerical experiments in two and three dimensions show optimal global convergence of the stress and superconvergence of the displacement field, locking-free approximation, as well as the potential to treat structural problems of engineering interest featuring multiple materials with compressible and nearly incompressible behaviors.Peer ReviewedPostprint (author's final draft

    An optimization framework for adaptive higher-order discretizations of partial differential equations on anisotropic simplex meshes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 271-281).Improving the autonomy, efficiency, and reliability of partial differential equation (PDE) solvers has become increasingly important as powerful computers enable engineers to address modern computational challenges that require rapid characterization of the input-output relationship of complex PDE governed processes. This thesis presents work toward development of a versatile PDE solver that accurately predicts engineering quantities of interest to user-prescribed accuracy in a fully automated manner. We develop an anisotropic adaptation framework that works with any localizable error estimate, handles any discretization order, permits arbitrarily oriented anisotropic elements, robustly treats irregular features, and inherits the versatility of the underlying discretization and error estimate. Given a discretization and any localizable error estimate, the framework iterates toward a mesh that minimizes the error for a given number of degrees of freedom by considering a continuous optimization problem of the Riemannian metric field. The adaptation procedure consists of three key steps: sampling of the anisotropic error behavior using element-wise local solves; synthesis of the local errors to construct a surrogate error model based on an affine-invariant metric interpolation framework; and optimization of the surrogate model to drive the mesh toward optimality. The combination of the framework with a discontinuous Galerkin discretization and an a posteriori output error estimate results in a versatile PDE solver for reliable output prediction. The versatility and effectiveness of the adaptive framework are demonstrated in a number of applications. First, the optimality of the method is verified against anisotropic polynomial approximation theory in the context of L2 projection. Second, the behavior of the method is studied in the context of output-based adaptation using advection-diffusion problems with manufactured primal and dual solutions. Third, the framework is applied to the steady-state Euler and Reynolds-averaged Navier-Stokes equations. The results highlight the importance of adaptation for high-order discretizations and demonstrate the robustness and effectiveness of the proposed method in solving complex aerodynamic flows exhibiting a wide range of scales. Fourth, fully-unstructured space-time adaptivity is realized, and its competitiveness is assessed for wave propagation problems. Finally, the framework is applied to enable spatial error control of parametrized PDEs, producing universal optimal meshes applicable for a wide range of parameters.by Masayuki Yano.Ph.D

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Complexity reduction in parametric flow problems via Nonintrusive Proper Generalised Decomposition in OpenFOAM

    Get PDF
    Tesi en modalitat cotutela: Universitat Politècnica de Catalunya i Swansea University. Programa Erasmus Mundus en Simulació en Enginyeria i Desenvolupament de l'Emprenedoria (SEED)The present thesis explores the viability of the proper generalised decomposition (PGD) as a tool for parametric studies in a daily industrial environment. Starting from the equations modelling incompressible flows, the separated formulation of the equations, the development of a parametric solver, the implementation in a commercial computational fluid dynamics (CFD) software, OpenFOAM, and a numerical validation are presented. The parametrised Stokes and Oseen flows are used as an initial step to test the applicability of the PGD to flow problems. The rationale for the construction of a separable approximation is described and implemented in OpenFOAM. For the numerical validation of the developed strategy analytical test cases are solved. Then, the parametrised steady laminar incompressible Navier-Stokes equations are considered. The nonintrusive implementation of PGD in OpenFOAM is formulated, focusing on the seamless integration of a reduced order model (ROM) in the framework of an industrially validated CFD software. The proposed strategy exploits classical solution strategies in OpenFOAM to solve the PGD spatial iteration, while the parametric one is solved via a collocation approach. Such nonintrusiveness represents an important step towards the industrialisation of PGD-based approaches. The capabilities of the methodology are tested by applying it to benchmark tests in the literature and solving a parametrised flow control problem in a realistic geometry of interest for the automotive industry. Finally, the PGD framework is extended to turbulent Navier-Stokes problems. The separable form of an industrially popular turbulence model, namely Spalart-Allmaras model, is formulated and a PGD strategy for the construction of a parametric turbulent eddy viscosity is devised. Different implementation possibilities in the nonintrusive PGD for parametrised Navier-Stokes equations are explored and the proposed strategy is applied to well-documented turbulent flow control benchmark cases in both two and three dimensions.La tesis explora la viabilidad del método de reducción de modelos Proper Generalised Decomposition (PGD) como herramienta habitual en un entorno industrial para obtener soluciones de problemas de flujo viscoso incompresible que dependan de parámetros. En este documento, partiendo de las ecuaciones que modelan el flujo viscoso e incompresible, se describe en detalle la formulación en forma separada, espacio-parámetros, de las ecuaciones para el método PGD, se desarrolla el algoritmo de resolución teniendo en cuenta los parámetros, se detalla como realizar la implementación en OpenFOAM, que es un software comercial de dinámica de fluidos computacional (CFD por sus siglas en inglés) y se discuten las validaciones numéricas correspondientes. Como paso previo para probar la viabilidad de la PGD a problemas de interés, se estudian flujos de Stokes y Oseen con datos parametrizados. De esta forma, se desarrollan las bases para la construcción de una aproximación separada, espacio-parámetros, de la solución numérica velocidad-presión, todo ello implementado en OpenFOAM. Para estas formulaciones se valida la aproximación numérica de la estrategia desarrollada con ejemplos cuya solución analítica es conocida, lo que permite analizar los errores cometidos, y se presentan ejemplos numéricos de referencia ampliamente estudiados en la literatura para mostrar su viabilidad. Seguidamente se consideran las ecuaciones de Navier-Stokes para flujo incompresible, estacionario y laminar de nuevo dependiendo de parámetros de diseño. La implementación no intrusiva de la PGD en OpenFOAM está formulada para obtener integración perfecta de un modelo de orden reducido (ROM por sus siglas en inglés) con un software CFD validado industrialmente. La metodología propuesta explota las estrategias de solución clásicas ya existentes en OpenFOAM para resolver la iteración espacial de la PGD, mientras que la iteración de las funciones que dependen de los parámetros se realiza de forma externa a OpenFOAM (empleando formulaciones basadas en la colocación puntual). La no-intrusividad es crítica para una cualquier estrategia que pretenda emplear la formulación PGD en la práctica diaria de la producción y diseño industrial. Para justificar la metodología propuesta así como su viabilidad, se muestra la solución de problemas de referencia clásicos y habituales en la literatura así como la resolución de un problema de control de flujo parametrizado en una geometría realista de interés para la industria de la automoción. Finalmente, es importante resaltar que se extiende a flujos turbulentos la metodología propuesta para trabajar con la PGD de manera no-intrusiva. Más concretamente, las ecuaciones de Navier-Stokes se complementan con un modelo de turbulencia habitual en aplicaciones industriales: el modelo de Spalart-Allmaras. En este caso, se propone una extensión de la estructura separada de las aproximaciones (velocidad y presión), y se diseña una estrategia PGD para la construcción de una viscosidad turbulenta paramétrica. Se exploran diferentes posibilidades de implementación de la PGD no intrusiva para las ecuaciones de Navier-Stokes para flujo turbulento y dependiendo de parámetros. La estrategia propuesta se aplica a casos de referencia de control de flujo turbulento bien documentados en dos y tres dimensiones.Postprint (published version

    Complexity reduction in parametric flow problems via Nonintrusive Proper Generalised Decomposition in OpenFOAM

    Get PDF
    The present thesis explores the viability of the proper generalised decomposition (PGD) as a tool for parametric studies in a daily industrial environment. Starting from the equations modelling incompressible flows, the separated formulation of the equations, the development of a parametric solver, the implementation in a commercial computational fluid dynamics (CFD) software, OpenFOAM, and a numerical validation are presented. The parametrised Stokes and Oseen flows are used as an initial step to test the applicability of the PGD to flow problems. The rationale for the construc- tion of a separable approximation is described and implemented in OpenFOAM. For the numerical validation of the developed strategy analytical test cases are solved. Then, the parametrised steady laminar incompressible Navier-Stokes equations are considered. The nonintrusive implementation of PGD in OpenFOAM is formulated, focusing on the seamless integration of a reduced order model (ROM) in the framework of an industrially validated CFD software. The proposed strategy exploits classical solution strategies in OpenFOAM to solve the PGD spatial iteration, while the parametric one is solved via a collocation approach. Such nonintrusiveness represents an important step towards the industrialisation of PGD-based approaches. The capabilities of the methodology are tested by applying it to benchmark tests in the literature and solving a parametrised flow control problem in a realistic geometry of interest for the automotive industry. Finally, the PGD framework is extended to turbulent Navier-Stokes problems. The separable form of an industrially popular turbulence model, namely Spalart-Allmaras model, is formulated and a PGD strategy for the construction of a parametric turbulent eddy viscosity is devised. Different im- plementation possibilities in the nonintrusive PGD for parametrised Navier- Stokes equations are explored and the proposed strategy is applied to well-documented turbulent flow control benchmark cases in both two and three dimensions.La tesis explora la viabilidad del método de reducción de modelos Proper Generalised Decomposition (PGD) como herramienta habitual en un entorno industrial para obtener soluciones de problemas de flujo viscoso incompresible que dependan de parámetros. En este documento, partiendo de las ecuaciones que modelan el flujo viscoso e incompresible, se describe en detalle la formulación en forma separada, espacio-parámetros, de las ecuaciones para el método PGD, se desarrolla el algoritmo de resolución teniendo en cuenta los parámetros, se detalla como realizar la implementación en OpenFOAM, que es un software comercial de dinámica de fluidos computacional (CFD por sus siglas en inglés) y se discuten las validaciones numéricas correspondientes. Como paso previo para probar la viabilidad de la PGD a problemas de interés, se estudian flujos de Stokes y Oseen con datos parametrizados. De esta forma, se desarrollan las bases para la construcción de una aproximación separada, espacio-parámetros, de la solución numérica velocidad-presión, todo ello implementado en OpenFOAM. Para estas formulaciones se valida la aproximación numérica de la estrategia desarrollada con ejemplos cuya solución analítica es conocida, lo que permite analizar los errores cometidos, y se presentan ejemplos numéricos de referencia ampliamente estudiados en la literatura para mostrar su viabilidad. Seguidamente se consideran las ecuaciones de Navier-Stokes para flujo incompresible, estacionario y laminar de nuevo dependiendo de parámetros de diseño. La implementación no intrusiva de la PGD en OpenFOAM está formulada para obtener integración perfecta de un modelo de orden reducido (ROM por sus siglas en inglés) con un software CFD validado industrialmente. La metodología propuesta explota las estrategias de solución clásicas ya existentes en OpenFOAM para resolver la iteración espacial de la PGD, mientras que la iteración de las funciones que dependen de los parámetros se realiza de forma externa a OpenFOAM (empleando formulaciones basadas en la colocación puntual). La no-intrusividad es crítica para una cualquier estrategia que pretenda emplear la formulación PGD en la práctica diaria de la producción y diseño industrial. Para justificar la metodología propuesta así como su viabilidad, se muestra la solución de problemas de referencia clásicos y habituales en la literatura así como la resolución de un problema de control de flujo parametrizado en una geometría realista de interés para la industria de la automoción. Finalmente, es importante resaltar que se extiende a flujos turbulentos la metodología propuesta para trabajar con la PGD de manera no-intrusiva. Más concretamente, las ecuaciones de Navier-Stokes se complementan con un modelo de turbulencia habitual en aplicaciones industriales: el modelo de Spalart-Allmaras. En este caso, se propone una extensión de la estructura separada de las aproximaciones (velocidad y presión), y se diseña una estrategia PGD para la construcción de una viscosidad turbulenta paramétrica. Se exploran diferentes posibilidades de implementación de la PGD no intrusiva para las ecuaciones de Navier-Stokes para flujo turbulento y dependiendo de parámetros. La estrategia propuesta se aplica a casos de referencia de control de flujo turbulento bien documentados en dos y tres dimensiones

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Annual Research Report 2021

    Get PDF
    corecore