165,315 research outputs found

    A Consistent Quantum Ontology

    Full text link
    The (consistent or decoherent) histories interpretation provides a consistent realistic ontology for quantum mechanics, based on two main ideas. First, a logic (system of reasoning) is employed which is compatible with the Hilbert-space structure of quantum mechanics as understood by von Neumann: quantum properties and their negations correspond to subspaces and their orthogonal complements. It employs a special (single framework) syntactical rule to construct meaningful quantum expressions, quite different from the quantum logic of Birkhoff and von Neumann. Second, quantum time development is treated as an inherently stochastic process under all circumstances, not just when measurements take place. The time-dependent Schr\"odinger equation provides probabilities, not a deterministic time development of the world. The resulting interpretive framework has no measurement problem and can be used to analyze in quantum terms what is going on before, after, and during physical preparation and measurement processes. In particular, appropriate measurements can reveal quantum properties possessed by the measured system before the measurement took place. There are no mysterious superluminal influences: quantum systems satisfy an appropriate form of Einstein locality. This ontology provides a satisfactory foundation for quantum information theory, since it supplies definite answers as to what the information is about. The formalism of classical (Shannon) information theory applies without change in suitable quantum contexts, and this suggests the way in which quantum information theory extends beyond its classical counterpart.Comment: Very minor revisions to previous versio

    Spectrum of Andreev bound states in Josepshon junctions with a ferromagnetic insulator

    Get PDF
    Ferromagnetic-insulator (FI) based Josephson junctions are promising candidates for a coherent superconducting quantum bit as well as a classical superconducting logic circuit. Recently the appearance of an intriguing atomic-scale 0-pi transition has been theoretically predicted. In order to uncover the mechanism of this phenomena, we numerically calculate the spectrum of Andreev bound states in a FI barrier by diagonalizing the Bogoliubov-de Gennes equation. We show that Andreev spectrum drastically depends on the parity of the FI-layer number L and accordingly the pi (0) state is always more stable than the 0 (pi) state if L is odd (even).Comment: 6 pages, 5 figures, Invited Report on the Moscow International Symposium on Magnetism MISM201

    Is Wave Mechanics consistent with Classical Logic?

    Full text link
    Contrary to a wide-spread commonplace, an exact, ray-based treatment holding for any kind of monochromatic wave-like features (such as diffraction and interference) is provided by the structure itself of the Helmholtz equation. This observation allows to dispel - in apparent violation of the Uncertainty Principle - another commonplace, forbidding an exact, trajectory-based approach to Wave Mechanics.Comment: 13 pages, 4 figure
    • …
    corecore