71 research outputs found

    Scalable Control Strategies and a Customizable Swarm Robotic Platform for Boundary Coverage and Collective Transport Tasks

    Get PDF
    abstract: Swarms of low-cost, autonomous robots can potentially be used to collectively perform tasks over large domains and long time scales. The design of decentralized, scalable swarm control strategies will enable the development of robotic systems that can execute such tasks with a high degree of parallelism and redundancy, enabling effective operation even in the presence of unknown environmental factors and individual robot failures. Social insect colonies provide a rich source of inspiration for these types of control approaches, since they can perform complex collective tasks under a range of conditions. To validate swarm robotic control strategies, experimental testbeds with large numbers of robots are required; however, existing low-cost robots are specialized and can lack the necessary sensing, navigation, control, and manipulation capabilities. To address these challenges, this thesis presents a formal approach to designing biologically-inspired swarm control strategies for spatially-confined coverage and payload transport tasks, as well as a novel low-cost, customizable robotic platform for testing swarm control approaches. Stochastic control strategies are developed that provably allocate a swarm of robots around the boundaries of multiple regions of interest or payloads to be transported. These strategies account for spatially-dependent effects on the robots' physical distribution and are largely robust to environmental variations. In addition, a control approach based on reinforcement learning is presented for collective payload towing that accommodates robots with heterogeneous maximum speeds. For both types of collective transport tasks, rigorous approaches are developed to identify and translate observed group retrieval behaviors in Novomessor cockerelli ants to swarm robotic control strategies. These strategies can replicate features of ant transport and inherit its properties of robustness to different environments and to varying team compositions. The approaches incorporate dynamical models of the swarm that are amenable to analysis and control techniques, and therefore provide theoretical guarantees on the system's performance. Implementation of these strategies on robotic swarms offers a way for biologists to test hypotheses about the individual-level mechanisms that drive collective behaviors. Finally, this thesis describes Pheeno, a new swarm robotic platform with a three degree-of-freedom manipulator arm, and describes its use in validating a variety of swarm control strategies.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Algorithmic Foundations of Self-Organizing Programmable Matter

    Get PDF
    abstract: Imagine that we have a piece of matter that can change its physical properties like its shape, density, conductivity, or color in a programmable fashion based on either user input or autonomous sensing. This is the vision behind what is commonly known as programmable matter. Envisioning systems of nano-sensors devices, programmable matter consists of systems of simple computational elements, called particles, that can establish and release bonds, compute, and can actively move in a self-organized way. In this dissertation the feasibility of solving fundamental problems relevant for programmable matter is investigated. As a model for such self-organizing particle systems (SOPS), the geometric amoebot model is introduced. In this model, particles only have local information and have modest computational power. They achieve locomotion by expanding and contracting, which resembles the behavior of amoeba. Under this model, efficient local-control algorithms for the leader election problem in SOPS are presented. As a central problem for programmable matter, shape formation problems are then studied. The limitations of solving the leader election problem and the shape formation problem on a more general version of the amoebot model are also discussed. The \smart paint" problem is also studied which aims at having the particles self-organize in order to uniformly coat the surface of an object of arbitrary shape and size, forming multiple coating layers if necessary. A Universal Coating algorithm is presented and shown to be asymptotically worst-case optimal both in terms of time with high probability and work. In particular, the algorithm always terminates within a linear number of rounds with high probability. A linear lower bound on the competitive gap between fully local coating algorithms and coating algorithms that rely on global information is presented, which implies that the proposed algorithm is also optimal in a competitive sense. Simulation results show that the competitive ratio of the proposed algorithm may be better than linear in practice. Developed algorithms utilize only local control, require only constant-size memory particles, and are asymptotically optimal in terms of the total number of particle movements needed to reach the desired shape configuration.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    採餌問題のための確率的探索戦略の設計と最適化

    Get PDF
    Autonomous robot’s search strategy is the set of rules that it employs while looking for targets in its environment. In this study, the stochastic movement of robots in unknown environments is statistically studied, using a Levy walk method. Biological systems (e.g., foraging animals) provide useful models for designing optimal stochastic search algorithms. Observations of biological systems, ranging from large animals to immune cells, have inspired the design of efficient search strategies that incorporate stochastic movement. In this study, we seek to identify the optimal stochastic strategies for autonomous robots. Given the complexity of interaction between the robot and its environment, optimization must be performed in high-dimensional parameter space. The effect of the explanatory variable on the forger robot movement with the minimum required energy was also studied using experiments done by the response surface methodology (RSM). We analyzed the extent to which search efficiency requires these characteristics, using RSM. Correlation between the involved parameters via a Lévy walk process was examined through designing a setup for the experiments to determine the interaction of the involved variables and the robot movement. The extracted statistical model represents the priority influence of those variables on the robot by developing the statistical model of the mentioned unknown area. The efficiency of a simple strategy was investigated based on Lévy walk search in two-dimensional landscapes with clumped resource distributions. We show how RSM techniques can be used to identify optimal parameter values as well as to describe how sensitive efficiency reacts to the changes in these values. Here, we identified optimal parameter for designing robot by using stochastic search pattern and applying mood-switching criteria on a mixture of speed and sensor and μ to determine how many robots are needed for a solution. Fractal criterion-based robot strategies were more efficient than those based on the resource encounter criterion, and the former was found to be more robust to changes in resource distribution as well.九州工業大学博士学位論文 学位記番号:生工博甲第358号 学位授与年月日:令和元年9月20日1 Introduction|2 Levy Walk|3 Design of Experiment (DOE)|4 Response Surface Methodology|5 Results and Discussions|6 Conclusion九州工業大学令和元年

    Active Materials

    Get PDF
    What is an active material? This book aims to redefine perceptions of the materials that respond to their environment. Through the theory of the structure and functionality of materials found in nature a scientific approach to active materials is first identified. Further interviews with experts from the natural sciences and humanities then seeks to question and redefine this view of materials to create a new definition of active materials

    Active Materials

    Get PDF
    What is an active material? This book aims to redefine perceptions of the materials that respond to their environment. Through the theory of the structure and functionality of materials found in nature a scientific approach to active materials is first identified. Further interviews with experts from the natural sciences and humanities then seeks to question and redefine this view of materials to create a new definition of active materials

    In Vivo computation - Where computing meets nanosytem for smart tumor biosensing

    Get PDF
    According to World Health Organization, 13.1 million people will die in the world just because of cancer by 2030. Early tumor detection is very crucial to saving the world from this alarming mortality rate. However, it is an insurmountable challenge for the existing medical imaging techniques with limited imaging resolution to detect microscopic tumors. Hence, the need of the hour is to explore novel cross-disciplinary strategies to solve this problem. The rise of nanotechnologies provides a strong belief to solve complex medical problems such as early tumor detection. Nanoparticles with sizes ranging between 1-100 nanometers can be used as contrast agents. Their small sizes enable them to leak out of blood vessels and accumulate within tumors. Moreover, their chemical, optical, magnetic and electronic properties also change at nanoscale, which make them an ideal probing agent to spatially highlight the tumor site. Though, using nanoparticles to target malignant tumors is a promising concept, only 0.7% of the injected nanoparticles reach the tumor according to the statistical results of last 10 years. In PhD work, we proposed novel in vivo computational frameworks for fast, accurate and robust nanobiosensing. Specifically, the peritumoral region corresponds to the “objective function”; the tumor is the “global optimum”; the region of interest is the “domain” of the objective function; and the nanoswimmers are the “computational agents” (i.e., guesses or optimization variables). First, in externally manipulable in vivo computation, nanoswimmers are used as contrast agents to probe the region of interest. The observable characteristics of these nanoswimmers, under the influence of tumor-induced biological gradients, are utilized by the external tracking system to steer nanoswimmers towards the possible tumor direction. To take it one step ahead, we provide solutions to the real-life constraints of in vivo natural computation such as uniformity of the external steering force and finite life span of the nanoswimmers. To overcome these challenges, we propose a multi-estimate-fusion strategy to obtain a common steering direction for the swarm of nanoswimmers and an iterative memory-driven gradient descent optimization strategy for faster tumor sensitization. Next, we proposed a parallel framework called autonomous in vivo computation, where the tumor sensitization is highly scalable and tracking-free. We demonstrate that the tumor-triggered biophysical gradients can be leveraged by nanoparticles to collectively move toward the potential tumor hypoxic regions without the aid of any external intervention. Although individual nanoparticles have no target-directed locomotion ability due to limited communication and computation capability, we showed that once passive collaboration is achieved, they can successfully avoid obstacles and detect the tumor. Finally, to address the respective limitations of externally manipulable and autonomous settings such as constant monitoring and slow detection, we proposed a semi-autonomous in vivo computational framework. We showed that the spot sampling strategy for an autonomous swarm of nanoswimmers can achieve faster tumor sensitization in complex environments. This approach makes the swarm highly scalable along with giving it the freedom from constant monitoring. The performance of the aforementioned tumor sensitization frameworks is evaluated through comprehensive in silico experiments that mimic the realistic targeting processes in externally manipulable, self-regulatable and semi-autonomous settings. The efficacies of the proposed frameworks are demonstrated through numerical simulations that incorporate various physical constraints with respect to controlling and steering of computational agents, their motion in discretized vascular networks and their motion under the influence of disturbance and noise
    corecore