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Abstract

According to World Health Organization, 13.1 million people will die in the world

just because of cancer by 2030. Early tumor detection is very crucial to saving

the world from this alarming mortality rate. However, it is an insurmountable

challenge for the existing medical imaging techniques with limited imaging resolu-

tion to detect microscopic tumors. Hence, the need of the hour is to explore novel

cross-disciplinary strategies to solve this problem. The rise of nanotechnologies

provides a strong belief to solve complex medical problems such as early tumor

detection. Nanoparticles with sizes ranging between 1-100 nanometers can be

used as contrast agents. Their small sizes enable them to leak out of blood vessels

and accumulate within tumors. Moreover, their chemical, optical, magnetic and

electronic properties also change at nanoscale, which make them an ideal probing

agent to spatially highlight the tumor site. Though, using nanoparticles to target

malignant tumors is a promising concept, only 0.7% of the injected nanoparticles

reach the tumor according to the statistical results of last 10 years.

In this thesis, we propose novel in vivo computational frameworks for fast, ac-

curate and robust nanobiosensing. Specifically, the peritumoral region corresponds

to the “objective function”; the tumor is the “global optimum”; the region of in-

terest is the “domain” of the objective function; and the nanoswimmers are the
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“computational agents” (i.e., guesses or optimization variables). First, in exter-

nally manipulable in vivo computation, nanoswimmers are used as contrast agents

to probe the region of interest. The observable characteristics of these nanoswim-

mers, under the influence of tumor-induced biological gradients, are utilized by

the external tracking system to steer nanoswimmers towards the possible tumor

direction. To take it one step ahead, we provide solutions to the real-life con-

straints of in vivo natural computation such as uniformity of the external steering

force and finite life span of the nanoswimmers. To overcome these challenges, we

propose a multi-estimate-fusion strategy to obtain a common steering direction

for the swarm of nanoswimmers and an iterative memory-driven gradient descent

optimization strategy for faster tumor sensitization.

Next, we propose a parallel framework called autonomous in vivo computation,

where the tumor sensitization is highly scalable and tracking-free. We demonstrate

that the tumor-triggered biophysical gradients can be leveraged by nanoparticles

to collectively move toward the potential tumor hypoxic regions without the aid

of any external intervention. Although individual nanoparticles have no target-

directed locomotion ability due to limited communication and computation capa-

bility, we show that once passive collaboration is achieved, they can successfully

avoid obstacles and detect the tumor.

Finally, to address the respective limitations of externally manipulable and

autonomous settings such as constant monitoring and slow detection, we propose

a semi-autonomous in vivo computational framework. We show that the spot

sampling strategy for an autonomous swarm of nanoswimmers can achieve faster

tumor sensitization in complex environments. This approach makes the swarm

highly scalable along with giving it the freedom from constant monitoring.
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The performance of the aforementioned tumor sensitization frameworks is eval-

uated through comprehensive in silico experiments that mimic the realistic tar-

geting processes in externally manipulable, self-regulatable and semi-autonomous

settings. The efficacies of the proposed frameworks are demonstrated through

numerical simulations that incorporate various physical constraints with respect

to controlling and steering of computational agents, their motion in discretized

vascular networks and their motion under the influence of disturbance and noise.
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Chapter 1

Introduction

Cancer remains one of the leading causes of human mortalities for the last few

decades (Siegel et al.; 2017). According to World Health Organization (WHO),

the annual number of cancer related deaths is 171.2 in every 100,000 people. WHO

also projected that 13.1 million people would die from cancer in 2030 and approxi-

mately 39.6% of the world population will be diagnosed with cancer at some point

during their lifetime. Two-third of the cancer associated deaths globally, can be

saved through early detection and localization of cancer. Current medical imaging

techniques such as magnetic resonance imaging (MRI), computed tomography and

X-rays have resolution limitation and hence cannot detect small malignant tumors

before clinical symptoms start to appear (Kasban et al.; 2015). Indeed with the

finest modern-era instruments and methodologies, cancerous cells can go unnoticed

for 10 years when they have ended up to be 50 million cancer cells strong (Hori

and Gambhir; 2011).

Nanoparticles can be used as potential contrast agents which can provide better

demarcation between healthy and diseased tissues (Malekzad et al.; 2017; Bucci
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et al.; 2017). Detection of small tumors in hard-to-reach tissues and human body

cavities may be performed through nanoparticles, possessing biosensing ability

along with physical or chemical tumor-induced sensitivity. Nanobiosensing is an

emerging technology with a huge potential in the area of biomedicine. One partic-

ular example of nanobiosensing is detection of biological targets such as early stage

tumors. Nanoparticles or liposomes (Ferrari; 2005; Qian et al.; 2012) are getting

huge interest from researchers as candidates for contrast agent in medical imaging

techniques (Wen et al.; 2016). They can be used to detect small tumors before

the process of metastasizing initiates. For example, CREKA-Tris (GD-DOTA)3

have been used in getting robust contrast enhancement by enabling the detection

of small metastatic tumors (<0.5 mm).

Nanoparticles behave in different interesting ways in response to the biologi-

cal changes happening in the peritumoral area. Therefore, understanding of the

tumor environment is vital for successful and precise realization of early tumor de-

tection. Previous studies demonstrate that the passive properties of peritumoral

area change due to the presence of early malignant tumors (Sutherland; 1988).

Tumor triggered biological gradients such as pH, temperature, enzyme reactions

or redox potential are regarded as internal stimuli which can assist in tumor detec-

tion (Von Maltzahn et al.; 2011; Zhang et al.; 2016; Seidi et al.; 2018). Similarly

external stimuli such as infrared, heat or light can be used to prime an environment

around tumor (Kwon et al.; 2015).

The response of nanoparticles to the tumor induced biological gradients has

helped to design nanoparticles which can be effectively used in medicine (Karimi

et al.; 2016). For example, self-assembled miscelles transform from their normal

state in a healthy tissue environment (pH = 7.4) to a swollen state in a tumoral
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environment (pH = 6.8) (Li et al.; 2016). Similarly, temperature sensitive polymers

such as PNIPAA undergo morphological transformations as a result of hypodermic

nature of most malignant tumoral environments (Beija et al.; 2011). Multiple

swarms of nanoparticles cooperate to find the targeted site by moving through the

high-risk tissue. Consequently, engineered nanoparticles improve the success rate

by orders of magnitude (Park et al.; 2010; Kim et al.; 2017; Overchuk and Zheng;

2018).

To sum up, nanoparticles can be injected into the blood stream to achieve

contrast enhancement after their deposition on the tumorous site. They rely on

human circulation system to reach the tumor and increase the resolution of imaging

techniques like MRI through highlighting the diseased area.

1.1 Research Problem

The traditional targeting method used for the transportation of nanoparticles to

the tumor is inefficient as it relies solely on human circulation system. From com-

putational perspective, this systemic targeting is regarded as brute-force search

where a large number of nanoparticles attempt to detect a tumor enumerating all

possible pathways in the complex vascular network. Factors such as biodegrada-

tion, scattering and presence of mobile obstacles in the blood stream contribute

to the loss of nanoparticles in the human vasculature. Statistical results from the

past decade show that only 0.7% of the injected nanoparticles reach the target

(Wilhelm et al.; 2016). This low percentage is a fundamental hurdle for bringing

nanomedicines from the laboratory into the clinic.
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Figure 1.1: Basic features of proposed in vivo computational frameworks harvesting posi-
tive features (shown in green boxes) from both smart nanosystems and direct targeting em-
ployed by externally manipulable nanoswimmers whereas ignoring the limitations (shown
in grey boxes) of both systems.

Replacing non-manipulable nanoparticles with swarm of externally manipula-

ble nanoswimmers (NSs) may help in improving the delivery of contrast agents to

the tumor (see left hand side of Fig. 1.1). Under such direct targeting strategy,

external steering field is applied to guide NSs towards the tumor, hence requiring

prior knowledge of the tumor location. This strategy improves the efficiency of

getting NSs to the tumor (Felfoul et al.; 2016). However, it is not feasible to ob-

tain precise knowledge of early tumor location through existing medical imaging

techniques with limited imaging resolution.

Tumor homing capability of NSs can also be improved through smart nanosys-

tems (see right hand side of Fig. 1.1) in which tumor microenvironment assists

in target localization. NSs are either engineered to respond in a certain manner

to host environment after their systemic injection or the peritumoral area is first
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primed to interact with NSs to guide them towards the possible tumor location

(Kwon et al.; 2015). Prior knowledge of tumor location is not required in both

cases but the sensitization process still relies on systemic targeting. Therefore, the

targeting process is slow with higher biodegradation of NSs as the physiological

path taken by them may not be the shortest.

The aforementioned discussion demonstrates that significant amplification of

tumor homing can be achieved by bringing into play the tumor-induced biological

gradient field that interacts with the NSs for their subsequent target directed lo-

comotion. To summarize, locomotion of the NSs towards an unknown tumor can

be realized through an externally tracking and controlling system, an independent

and self-regulated system, or a semi-autonomous hybrid system. We propose in

vivo computational frameworks for these systems as illustrated in Fig. 1.2 and

are outlined in the following methodology section. Such biosensing-by-learning

nanosystems can help to immensely revolutionize the existing diagnostic and ther-

apeutic techniques.

1.2 Research Methodology

Instead of complete dependence on systemic targeting, the current work proposes

externally manipulable, self-regulatable, and semi-autonomous (hybrid) systems

where engineered NSs replace non-manipulable nanoparticles for tumor homing.

This research develops theoretical frameworks for tumor sensitization through ma-

nipulable in vivo computation (MIVC), autonomous in vivo computation (AIVC),

and hybrid in vivo computation (HIVC), under the umbrella of computing-inspired

bio-sensitization. In these frameworks, a computational agent (such as an NS) tries
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Figure 1.2: Proposed in vivo computational frameworks for smart tumor sensitization.

to find a target (such as the tumor) by iteratively moving through the search do-

main (such as the tissue region at a high risk of malignancy).

For externally manipulable computation, the tumor homing is achieved under

the guidance of an external force (such as a magnetic field to steer NSs towards

the possible tumor location). The approach uses the external controlling unit to

track the observable characteristics of injected NSs to adopt the shortest physio-
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logical path which ensures minimum systemic exposure when they search for an

unknown tumor. Although external propulsion of NSs makes the tumor homing

fast but this approach suffers from position and steering errors due to constrained

accuracy of the external equipment. Moreover, in vivo tracking of a large number

of NSs is challenging which limits the size of the swarm as highlighted in Fig. 1.2.

Finally, the uniform magnetic field for the steering of swarm in single direction also

introduces a constraint on the intended motion (based on the localized gradient

estimate) of individual NS.

Interestingly, biological gradient-induced cooperation and collaboration among

the swarm of NSs can also achieve successful target detection in autonomous com-

putation. The stochastic (random) movements of NSs when allowed to aggregate

and migrate together, result in target-directed locomotion. These gradient sensing

NSs with minimum computation ability and no individual locomotion capability,

perform tumor homing without the aid of any external equipment. Due to the

inherent autonomous nature of NSs, this approach is not only highly scalable but

also immune from steering and positioning errors as shown in Fig. 1.2. Never-

theless, as expected, the tumor sensitization is slow in the absence of an external

driving force.

Finally, to further remove the limitations of the aforementioned nanosystems

such as slow detection (in AIVC), positioning/steering errors, constant monitoring

and unintended actuation (in MIVC), a semi-autonomous hybrid in vivo computa-

tion (HIVC) framework is proposed, where the scalable swarm of NSs, without the

requirement of constant tracking, achieves faster tumor sensitization as shown in

Fig. 1.2. The swarm senses the biological gradients and moves towards the target
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autonomously, where an external unit is briefly used to fetch data (spot-tracking),

required for much needed propulsion towards the target.

1.3 Contributions of the Thesis

In this thesis, different computational strategies are exploited to achieve fast, ac-

curate and robust early tumor detection. The main contributions are as follows:

• A novel MIVC framework is proposed for nanobiosensing. In this framework,

NSs assembled by magnetic nanoparticles are used to find the target by

moving through the search domain under the influence of an external force

(e.g., steering magnetic field).

• The aforementioned framework is associated with the limitations of natural

computing such as uniform magnetic field, finite life span of nanoparticles

and cytotoxicity. We address these constraints by using the multi-estimate

fusion (MEF) and memory-driven gradient descent (MDGD) strategies and

through maintaining swarm compactness.

• Next, the magnetic nanoparticles can be replaced with a swarm of self-

regulatable NSs such as those built on the principle of particle robots by (Li

et al.; 2019). Hence, we propose a parallel framework called AIVC for tumor

homing. Under this framework, an analogy is presented between tumor sen-

sitization through natural computation and autonomous multi-agent system

(MAS). The AIVC framework is further analyzed by introducing real-world

constraints such as noisy search domain and ever-existing mobile obstacles.
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Such imperfections can reduce the efficiency of any target homing process.

Hence, they are incorporated to verify the robustness of AIVC.

• Finally, the features of self-regulation and external manipulation are com-

bined and a comprehensive HIVC framework for tumor homing is proposed.

This framework overcomes the weaknesses of both MIVC (i.e., need of con-

stant monitoring, low scalability, positioning and steering errors) and AIVC

(i.e., slow detection of the target) through the autonomous swarm spot sam-

pling (ASSS) strategy.

The thesis is organised as follows. In Chapter 2, we propose a novel iterative-

optimization-inspired direct targeting strategy for smart nanosystems, which har-

ness swarms of externally manipulable nanoswimmers assembled by magnetic nanopar-

ticles for tumor sensitization and targeting. Chapter 3 focuses on resolving the

real-life constraints of direct targeting strategy proposed in Chapter 2. Numerical

experiments demonstrate that challenges of natural in vivo computation such as

uniformity of magnetic field and finite life span of nanoswimmers can be solved

by the proposed MEF and MDGD strategies respectively. Chapter 4 introduces

a parallel framework of AIVC in which target detection is achieved through the

swarm coordination, following the simple mechanism of aggregation and migration.

Furthermore, in this chapter, reality checks of natural computing that may effect

the system efficacy are discussed, providing a critical insight about the limitations

of AIVC. Chapter 5 introduces HIVC resolving the key limitations of MIVC and

AIVC. In Chapter 6, we provide the conclusion of our research work and some rec-

ommendations for future work. Fig. 1.3 gives a pictorial illustration of the thesis

structure.



10

F
ig

ur
e

1.
3:

P
ic

to
ri

al
re

pr
es

en
ta

ti
on

of
th

e
th

es
is

st
ru

ct
ur

e.



11

References

Beija, M., Marty, J.-D. and Destarac, M. (2011). Thermoresponsive poly (n-

vinyl caprolactam)-coated gold nanoparticles: sharp reversible response and easy

tunability, Chemical Communications 47(10): 2826–2828.

Bucci, O. M., Bellizzi, G., Borgia, A., Costanzo, S., Crocco, L., Di Massa, G.

and Scapaticci, R. (2017). Experimental framework for magnetic nanoparticles

enhanced breast cancer microwave imaging, IEEE Access 5: 16332–16340.

Felfoul, O. et al. (2016). Magneto-aerotactic bacteria deliver drug-containing nano-

liposomes to tumour hypoxic regions, Nat. Nanotechnol. 11(11): 941–947.

Ferrari, M. (2005). Cancer nanotechnology: opportunities and challenges, Nature

Reviews Cancer 5(3): 161–171.

Hori, S. S. and Gambhir, S. S. (2011). Mathematical model identifies blood

biomarker–based early cancer detection strategies and limitations, Science trans-

lational medicine 3(109): 109ra116–109ra116.

Karimi, M., Ghasemi, A., Zangabad, P. S., Rahighi, R., Basri, S. M. M., Mir-

shekari, H., Amiri, M., Pishabad, Z. S., Aslani, A., Bozorgomid, M. et al. (2016).

Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems,

Chemical Society Reviews 45(5): 1457–1501.

Kasban, H., El-Bendary, M. and Salama, D. (2015). A comparative study of

medical imaging techniques, Int. J. Information Sci. Intelligent System 4: 37–

58.



12

Kim, H., Lee, J., Oh, C. and Park, J.-H. (2017). Cooperative tumour cell mem-

brane targeted phototherapy, Nature Communications 8(1): 1–10.

Kwon, E. J., Lo, J. H. and Bhatia, S. N. (2015). Smart nanosystems: Bio-inspired

technologies that interact with the host environment, Proceedings of the National

Academy of Sciences 112(47): 14460–14466.

Li, D., Ding, J., Zhuang, X., Chen, L. and Chen, X. (2016). Drug binding rate reg-

ulates the properties of polysaccharide prodrugs, Journal of Materials Chemistry

B 4(30): 5167–5177.

Li, S., Batra, R., Brown, D., Chang, H.-D., Ranganathan, N., Hoberman, C., Rus,

D. and Lipson, H. (2019). Particle robotics based on statistical mechanics of

loosely coupled components, Nature 567(7748): 361–365.

Malekzad, H., Zangabad, P. S., Mirshekari, H., Karimi, M. and Hamblin, M. R.

(2017). Noble metal nanoparticles in biosensors: recent studies and applications,

Nanotechnology Reviews 6(3): 301–329.

Overchuk, M. and Zheng, G. (2018). Overcoming obstacles in the tumor microenvi-

ronment: Recent advancements in nanoparticle delivery for cancer theranostics,

Biomaterials 156: 217–237.

Park, J.-H., von Maltzahn, G., Ong, L. L., Centrone, A., Hatton, T. A., Ruoslahti,

E., Bhatia, S. N. and Sailor, M. J. (2010). Cooperative nanoparticles for tu-

mor detection and photothermally triggered drug delivery, Advanced Materials

22(8): 880–885.



13

Qian, W.-Y., Sun, D.-M., Zhu, R.-R., Du, X.-L., Liu, H. and Wang, S.-L. (2012).

ph-sensitive strontium carbonate nanoparticles as new anticancer vehicles for

controlled etoposide release, International Journal of Nanomedicine 7: 5781.

Seidi, K., Neubauer, H. A., Moriggl, R., Jahanban-Esfahlan, R. and Javaheri, T.

(2018). Tumor target amplification: implications for nano drug delivery systems,

Journal of Controlled Release 275: 142–161.

Siegel, R. L., Miller, K. D., Fedewa, S. A., Ahnen, D. J., Meester, R. G., Barzi, A.

and Jemal, A. (2017). Colorectal cancer statistics, 2017, CA: A Cancer Journal

for Clinicians 67(3): 177–193.

Sutherland, R. M. (1988). Cell and environment interactions in tumor microre-

gions: the multicell spheroid model, Science 240(4849): 177–184.

Von Maltzahn, G., Park, J.-H., Lin, K. Y., Singh, N., Schwöppe, C., Mesters, R.,

Berdel, W. E., Ruoslahti, E., Sailor, M. J. and Bhatia, S. N. (2011). Nanopar-

ticles that communicate in vivo to amplify tumour targeting, Nature Materials

10(7): 545–552.

Wen, C.-Y., Xie, H.-Y., Zhang, Z.-L., Wu, L.-L., Hu, J., Tang, M., Wu, M. and

Pang, D.-W. (2016). Fluorescent/magnetic micro/nano-spheres based on quan-

tum dots and/or magnetic nanoparticles: preparation, properties, and their

applications in cancer studies, Nanoscale 8(25): 12406–12429.

Wilhelm, S., Tavares, A. J., Dai, Q., Ohta, S., Audet, J., Dvorak, H. F. and Chan,

W. C. (2016). Analysis of nanoparticle delivery to tumours, Nature Reviews

Materials 1(5): 1–12.



14

Zhang, B., Wang, H., Shen, S., She, X., Shi, W., Chen, J., Zhang, Q., Hu, Y., Pang,

Z. and Jiang, X. (2016). Fibrin-targeting peptide creka-conjugated multi-walled

carbon nanotubes for self-amplified photothermal therapy of tumor, Biomateri-

als 79: 46–55.



Chapter 2

Biosensing-by-learning Direct

Targeting Strategy for Enhanced

Tumor Sensitization

Objective: We propose a novel iterative-optimization-inspired direct targeting

strategy (DTS) for smart nanosystems, which harness swarms of externally manip-

ulable nanoswimmers assembled by magnetic nanoparticles (MNPs) for knowledge-

aided tumor sensitization and targeting. We aim to demonstrate through compu-

tational experiments that the proposed DTS can significantly enhance the accu-

mulation of MNPs in the tumor site, which serve as a contrast agent in various

medical imaging modalities, by using the shortest possible physiological routes and

with minimal systemic exposure.

Methods: The epicenter of a tumor corresponds to the global maximum of an ex-

ternally measurable objective function associated with an in vivo tumor-triggered

biological gradient; the domain of the objective function is the tissue region at a
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high risk of malignancy; swarms of externally controllable magnetic nanoswimmers

for tumor sensitization are modeled as the guess inputs. The objective function

may be resulted from a passive phenomenon such as reduced blood flow or increased

kurtosis of microvasculature due to tumor angiogenesis; otherwise, the objective

function may involve an active phenomenon such as the fibrin formed during the

coagulation cascade activated by tumor-targeted “activator” nanoparticles. Subse-

quently, the DTS can be interpreted from the iterative optimization perspective:

guess inputs (i.e., swarms of nanoswimmers) are continuously updated according

to the gradient of the objective function in order to find the optimum (i.e., tumor)

by moving through the domain (i.e., tissue under screening). Along this line of

thought, we propose the computational model based on the gradient descent (GD)

iterative method to describe the GD-inspired DTS, which takes into account the

realistic in vivo propagation scenario of nanoswimmers.

Results: By means of computational experiments, we show that the GD-inspired

DTS yields higher probabilities of tumor sensitization and more significant dose

accumulation compared to the “brute-force” search, which corresponds to the sys-

temic targeting scenario where drug nanoparticles attempt to target a tumor by

enumerating all possible pathways in the complex vascular network.

Conclusion: The knowledge-aided DTS has potential to enhance the tumor sensi-

tization and targeting performance remarkably by exploiting the externally mea-

surable, tumor-triggered biological gradients.

Significance: We believe that this work motivates a novel biosensing-by-learning

framework facilitated by externally manipulable, smart nanosystems.
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2.1 Introduction

2.1.1 Background

2.1.1.1 Contrast-enhanced Medical Imaging

Magnetic resonance imaging (MRI) is one of the standard procedures for non-

invasive clinical diagnosis of cancers due to its high soft tissue contrast, spatial

resolution, and penetration depth (Thoidingjam and Tiku; 2017). In addition,

images are acquired without the use of ionizing radiation or radio tracers that

would cause harmful side-effects. Contrast agents such as magnetic nanoparticles

(MNPs) are commonly used in MRI to provide better delineation between healthy

and diseased tissues (Thoidingjam and Tiku; 2017). Another promising modality

for cancer diagnosis and recurrence monitoring is microwave imaging in view of

its safety, mobility, and cost-effectiveness (Modiri et al.; 2017). For example, a

number of operational microwave breast imaging systems are already in clinical

use (Yang et al.; 2017; Song et al.; 2017; Porter et al.; 2016; Preece et al.; 2016;

Meaney et al.; 2013) as reviewed in (O’Loughlin et al.; 2018, Early Access, DOI:

10.1109/TBME.2018.2809541). A major challenge faced by this approach is the

potentially small dielectric contrast between tumor and its surrounding tissues,

and between benign and cancerous changes (Lazebnik et al.; 2007; O’Rourke et al.;

2007; Semenov; 2009). To overcome these issues, MNPs have also been proposed

as a contrast agent (Bucci et al.; 2017, 2015). However, the current systemic

targeted drug delivery route can only deliver a very small fraction (< 2%) of the

administered nanoparticles to the precise site (Bae and Park; 2011). The main

constraints include the reliance on systemic circulation, the lack of a propelling
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force, and the absence of a sensory-based displacement capability (Felfoul et al.;

2016).

2.1.1.2 Amplification of Tumor Homing through Externally Manipu-

lable Nanoswimmers

Enhancing the diagnostic efficacy of contrast agents necessitates the use of a di-

rect targeting strategy (DTS) that allows agents to reach the target tissues using

the shortest physiological routes and with minimal systemic exposure. In (Felfoul

et al.; 2016), swarms of magneto-aerotactic bacteria, namely Magnetococcus mar-

inus strain MC-1, are harnessed for delivering drug-containing nanoliposomes to

the diseased site to improve the therapeutic index of various nanocarriers in tumor

regions. MC-1 cells, each containing a chain of magnetic iron oxide nanocrystals,

tend to swim along local magnetic field lines and towards low oxygen concentra-

tions based on a two-state aerotactic sensing system. As shown in (Felfoul et al.;

2016), when MC-1 cells are injected near the tumor and magnetically guided, up

to 55% of MC-1 cells can penetrate into hypoxic regions of the tumor, unlike the

case for bacteria that are not guided into the tumor where only less than 10%

of MC-1 cells can penetrate the xenograft. Furthermore, nanoswimmers assem-

bled by MNPs have also been proposed for direct targeting, which use magnetic

self-assembly of 50 − 100 nm iron oxide nanoparticles (Cheang and Kim; 2015).

Under an external magnetic field, the MNPs can magnetize and form chains that

are flexible under time-varying magnetic fields via magnetohydrodynamics. A coil

system has been designed to actuate the nanoswimmers by applying a nearly uni-

form magnetic field through the Helmholtz configuration (Cheang et al.; 2016,

2017). One common external force can control large numbers of nanoswimmers
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to perform a complex task such as penetration of a tumor cell membrane for the

selective release of a drug inside the cell (Cheang et al.; 2016; Mertz; 2018). How-

ever, nanoswimmers-assisted direct targeting of contrast agents requires a priori

knowledge about the location of the diseased site, which is usually unavailable if

the image quality is too low in the pre-contrast medical imaging. This results in a

chicken-or-egg dilemma.

2.1.1.3 Amplification of Tumor Homing through Smart Nanosystems

Another strategy to amplify disease targeting is to design smart nanosystems that

leverage the living host environment (Seidi et al.; 2018; Overchuk and Zheng;

2018; Kim et al.; 2017; Zhang et al.; 2016; Kwon et al.; 2015; von Maltzahn et al.;

2011; Park, von Maltzahn, Ong, Centrone, Hatton, Ruoslahti, Bhatia and Sailor;

2010; Agemy et al.; 2010; Park, von Maltzahnc, Xu, Fogald, Kotamraju, Ru-

oslahti, Bhatia and Sailor; 2010; Simberg et al.; 2007). These nanosystems can

be classified in two categories: environment-responsive and environment-primed

(Kwon et al.; 2015). The former category encompasses nanoparticles that sense

and subsequently respond to their environment. Altered in vivo conditions such

as redox potential, pH, enzymatic activity, and homeostatic pathways (see Fig.

1 in (Kwon et al.; 2015) for a comprehensive overview of various mechanisms)

induced by disease conditions can be leveraged to mobilize nanoparticle systems

that are administered in these preexisting contexts. The latter category is defined

by an emerging paradigm of cooperative nanosystems, such that the host environ-

ment is manipulated by an external influence to enable desired host-nanoparticle

and nanoparticle-nanoparticle interactions, such as communication, recruitment,

or amplification. Modifications to the host that achieve this primed environment
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can be accomplished by administering energy (X-rays, infrared light, heat), drugs,

or nanoparticles themselves. For example, the nanosystem presented in (Park, von

Maltzahnc, Xu, Fogald, Kotamraju, Ruoslahti, Bhatia and Sailor; 2010) consists of

two components. The first component is gold nanorods that populate the porous

tumor vessels via systemic targeting by utilizing the conventional enhanced per-

meability and retention (EPR) effect and then act as photothermal antennas to

specify tumor heating via remote near-infrared laser irradiation. Local tumor heat-

ing accelerates the recruitment of the second component: a targeted nanoparticle

consisting of either a prototypical imaging agent (magnetofluorescent iron oxide

nanoworms) or a prototypical therapeutic agent (doxorubicin-loaded liposomes).

Moreover, as shown in (von Maltzahn et al.; 2011), gold nanorods or engineered

proteins can target tumors and then locally activate the coagulation cascade to

broadcast tumor location to clot-targeted nanoworms or liposomes in circulation.

Target amplification results in a more than 40 times increase in the amount of

chemotherapeutic drug delivery to tumors compared with nanoparticles that can-

not transmit controls. Smart nanosystems do not require location information of

the diseased site. However, they still rely on systemic circulation for homing to

cancer cells without using an external guidance.

2.1.2 Biosensing-by-learning DTS

The aforementioned experimental investigations that demonstrate significant am-

plification of tumor homing through either nanoswimmers (Felfoul et al.; 2016)

or cooperative nanoparticles (von Maltzahn et al.; 2011) provide the basis for an

externally manipulable, smart nanosystem, where non-manipulable nanoparticles
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Figure 2.1: Analogy between (a) the proposed DTS employed in an externally manipulable,
smart nanosystem for tumor sensitization, and (b) the iterative optimization process.

can be replaced by nanoswimmers assembled by iron oxide MNPs (Cheang and

Kim; 2015), as depicted in Fig. 2.1(a). The magnetic response of MNPs, induced

by a polarizing magnetic field, allows for reliable estimation of the locations of
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magnetic changes through differential medical imaging (Bucci et al.; 2017, 2015).

For environment-responsive operations, an external controlling and tracking sys-

tem probes the host environment by analyzing the measurable characteristics of

nanoswimmers (e.g., trajectories, magnetic changes induced) and steers them to-

wards the direction where a tumor is likely to be present as shown in Fig. 2.1(a).

For environment-primed operations, gold nanorods first prime the host environ-

ment (Park, von Maltzahn, Ong, Centrone, Hatton, Ruoslahti, Bhatia and Sailor;

2010; Park, von Maltzahnc, Xu, Fogald, Kotamraju, Ruoslahti, Bhatia and Sailor;

2010; von Maltzahn et al.; 2011) to interact with nanoswimmers. Similarly, the

external system monitors the in vivo responses by observing the properties of

nanoswimmers and maneuver them correspondingly to enhance tumor sensitiza-

tion. Should a specific tissue region be a tumor, MNPs will accumulate in the

region on the basis of the EPR effect or receptor-ligand binding, which can be

observed externally by noticing that MNPs appear to stop moving (Chen et al.;

2017, 2016, Article ID 309703, 11 pages, http://dx.doi.org/10.1155/2013/309703).

The current investigation attempts to develop a computational model for fea-

sibility study of the proposed knowledge-aided DTS. Nature’s blueprints have in-

spired exciting new fields of science such as bio-inspired computing that creates

problem-solving techniques using insights from natural systems. For example, the

process of natural selection has inspired the development of the classical genetic

algorithm to solve complex optimization and search problems. It is also stim-

ulating to look the other way by exploiting computing strategies for biomedical

applications (Chen et al.; 2016, 2017). There is an intriguing analogy between the

proposed DTS in an externally manipulable nanosystem for tumor sensitization

(Fig. 2.1(a)) and the iterative optimization process (Fig. 2.1(b)). The global max-
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imum of a unimodal, externally measurable objective function corresponding to a

tumor-induced biological phenomenon is the tumor to be detected; the domain of

the function is the tissue region at a high risk of malignancy; the guess solution is

a swarm of externally manoeuvrable magnetic nanoswimmers. A guess input (i.e.,

nanoswimmers) locates the optimal solution (i.e., cancer) by moving through the

domain (i.e., high-risk tissue) under the guidance of a specified force (i.e., steering

field). The objective function may be altered by the guess made of natural materi-

als because the guess input interacts with the domain (i.e., nanoswimmers undergo

physical, chemical, and biological interactions with the host environment). This

is in contrast to a traditional iterative method using a non-interacting approx-

imate solution. An external observer can then infer the domain by monitoring

the movement of the guess (“seeing-is-sensing” (Chen et al.; 2016)), where the

(n + 1)th approximation is derived from the nth one. This strategy is within the

general framework of computing-inspired bio-detection proposed in our previous

work (Chen et al.; 2017). Provided with the analogy, a wide variety of iterative

methods can thus be applied to the design of an optimal DTS. To elaborate on

the proposed methodology, the classical gradient descent (GD) method is used

to inspire the DTS, where the guess input takes steps based on the gradient of

the objective function at the current point. Furthermore, the derivative of the

function needs to be approximated in real-time and the movement of the guess is

constrained by the physical conditions of human microvasculature.

It is worth noting that, from the computational perspective, the traditional

systemic delivery of contrast agents can be regarded as a “brute-force" search

where a large number of contrast agent nanoparticles attempt to detect a tu-

mor via a medical imaging system by enumerating all possible pathways in the
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complex vascular network and checking whether each pathway is intercepted by

a tumor. Furthermore, the original smart nanosystems in (Seidi et al.; 2018;

Overchuk and Zheng; 2018; Kim et al.; 2017; Zhang et al.; 2016; Kwon et al.;

2015; von Maltzahn et al.; 2011; Park, von Maltzahn, Ong, Centrone, Hatton,

Ruoslahti, Bhatia and Sailor; 2010; Agemy et al.; 2010; Park, von Maltzahnc, Xu,

Fogald, Kotamraju, Ruoslahti, Bhatia and Sailor; 2010; Simberg et al.; 2007) can

be regarded as a brute-force search given an expanded tumoral region due to tu-

mor target amplification facilitated by the peritumoral biological conditions (for

environment-responsive nanosystems) or the initial-stage triggering modules (for

environment-primed nanosystems).

2.1.3 Organization of the Chapter

The chapter is organized as follows. In Section 2.2, we discuss some suitable in

vivo biological gradients that can be mapped to externally measurable objective

functions for the proposed DTS. In Section 2.3, we analyze the propagation model

of nanoswimmers in a discretized capillary network. This is followed by discussion

on the general iterative DTS framework including some representative objective

functions showing different situations that the DTS has to face and the computa-

tional framework in Section 2.4. In Section 2.5, we propose the GD-inspired DTS

subject to the realistic physical constraints of controlling and tracking nanoswim-

mers in vivo, based on the general problem setting in Section 2.4. In Section 2.6,

we provide numerical examples to demonstrate the effectiveness of the proposed

strategy. Finally, some concluding remarks are drawn in Section 2.7.
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2.2 In Vivo Biological Gradients for Proposed DTS

In the current work, tumor sensitization is performed indirectly through an exter-

nal controlling and tracking system as shown in Fig. 2.1(a), such as an integrated

device consisting of multiple pairs of electromagnetic coils to generate the rotating

magnetic field to actuate the magnetic nanoswimmers (Cheang et al.; 2016, 2017)

and another coil to supply the polarizing magnetic field inducing the magnetic

contrast associated with the nanoswimmers (Bucci et al.; 2017, 2015). Therefore,

it is necessary that the in vivo biological gradients can be mapped to an externally

measurable objective function by using nanoswimmers as a probe for analysis of

the host environment.

2.2.1 Environment-responsive Nanosystems

For this type of nanosystems, passive physical properties of the host environment

such as peritumoral vascular architecture (Gazit et al.; 1995; Baish et al.; 1996;

Baish and Jain; 2000) and blood flow velocity (Fukumura and Jain; 2007; Wang

et al.; 2009; Baish et al.; 1996; Komar et al.; 2009) can be exploited to derive

the biological gradients. Oxygen and nutrients are supplied to cancer cells via

new blood vessels that have extended into the cancer tissue. Typical skeletonized

images of various classes of vascular networks demonstrate that normal capillar-

ies exhibit almost uniformly distributed grid patterns to ensure adequate oxygen

transportation throughout the tissue (Gazit et al.; 1995; Baish et al.; 1996; Baish

and Jain; 2000). On the other hand, tumor vessels have a profound sort of tor-

tuosity with many smaller bends on each larger bend (Gazit et al.; 1995; Baish

et al.; 1996; Baish and Jain; 2000). In terms of blood flow velocity, its value in
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tumor tissues is significantly lower than that in healthy tissues due to the hy-

povascular structure of the malignant lesion (Komar et al.; 2009; Fukumura and

Jain; 2007). This phenomenon has been observed for cancer cells in the visceral

pleura (Wang et al.; 2009), malignant gliomas (Baish et al.; 1996), and pancreatic

tumors (Komar et al.; 2009). In summary, the externally measurable objective

functions corresponding to the aforementioned two biological conditions can be

derived from the variation in tortuosity of nanoswimmer trajectory and the vari-

ation in nanoswimmer velocity, respectively, with respect to the values for normal

tissues. Both of them would increase as the distance between the nanoswimmer

and the tumor decreases.

2.2.2 Environment-primed Nanosystems

For this type of systems, specific “activator” nanomaterials can be used to detect a

diseased site and act as tumor-specific triggers to induce biological gradients. For

example, gold nanorods can be modified to circulate for long periods of time in

the blood stream and be passively accumulated in tumors via systemic circulation

(Park, von Maltzahn, Ong, Centrone, Hatton, Ruoslahti, Bhatia and Sailor; 2010;

Park, von Maltzahnc, Xu, Fogald, Kotamraju, Ruoslahti, Bhatia and Sailor; 2010;

von Maltzahn et al.; 2011). They are used to heat tumor tissues by amplifying

the absorption of near-infrared energy that is mostly transparent to living tissues

(Park, von Maltzahn, Ong, Centrone, Hatton, Ruoslahti, Bhatia and Sailor; 2010;

Park, von Maltzahnc, Xu, Fogald, Kotamraju, Ruoslahti, Bhatia and Sailor; 2010;

von Maltzahn et al.; 2011). The associated photothermal heating is highly local-

ized around the tumor site. Consequently, the gradient of blood flow velocity is
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amplified due to the differential response of normal and tumor microcirculation to

hyperthermia, where blood flow in normal tissue increases much faster with tem-

perature and stasis occurs at higher levels of hyperthermia compared to tumors

owning to the rapid growth of tumor cell population relative to deteriorating vascu-

lar beds (Dudar and Jain; 1984; Song; 1984). Furthermore, local heating disrupts

tumor vessels and initiates extravascular coagulation. Hence, the fibrin forms the

coagulation gradient centered at the tumor caused by temperature increase. The

magnetic nanoswimmers employ the peptide coatings that recognize fibrin directly

for clot targeting (Park, von Maltzahn, Ong, Centrone, Hatton, Ruoslahti, Bhatia

and Sailor; 2010; Park, von Maltzahnc, Xu, Fogald, Kotamraju, Ruoslahti, Bhatia

and Sailor; 2010; von Maltzahn et al.; 2011). Direct binding in regions of co-

agulation will reduce the concentration of mobile nanoswimmers under tracking.

In summary, the externally measurable objective functions associated with the

aforementioned two phenomena can be derived from the variation in nanoswim-

mer velocity and the variation in magnetic contrast induced by nanoswimmers,

respectively, with respect to the values for normal tissues. Both of them would

increase as the distance between the nanoswimmer and the tumor decreases. In

addition, local hyperthermia results in a temperature gradient from the tissue

malignancy to its peripheral region, which may be directly measured from the in-

frared thermographic imaging if the tumor is close to the skin (Park, von Maltzahn,

Ong, Centrone, Hatton, Ruoslahti, Bhatia and Sailor; 2010; Park, von Maltzahnc,

Xu, Fogald, Kotamraju, Ruoslahti, Bhatia and Sailor; 2010; von Maltzahn et al.;

2011). In this case, the global gradient towards the tumor epicenter can be readily

obtained.
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Figure 2.2: (a) An invasion percolation network after 100 growth steps, and (b) adding
vessels to ensure nonzero blood flow throughout the network.

2.3 Vascular Network Model for Proposed DTS

Tumor vasculature is more chaotic in appearance than normal vasculature, which

can be measured using fractal geometries (Baish and Jain; 2000). For example,

tumor vessels yield fractal dimensions of 1.89± 0.04, whereas normal arteries and

veins yield dimensions of 1.70 ± 0.03, and normal capillaries produce essentially

two-dimensional patterns (Gazit et al.; 1995; Baish et al.; 1996; Baish and Jain;

2000). It was also observed that the microvascular density in the peritumoral

region increases due to the supply of growth factors from the tumor and reduces

in the tumor center due to a combination of severely reduced blood flow and solid

stress exerted by the tumor (Lee et al.; 2006).

Consequently, it is assumed that normal tissues are regularly vascularized,

which results in a homogeneous lattice comprised of straight, rigid cylindrical

capillaries that join adjacent nodes (McDougall et al.; 2002; Baish et al.; 1996).

On the other hand, the observed fractal dimensions of tumor vasculature can be
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Figure 2.3: Simulated multi-layer vascular network. The level of occupancy on the lattice
reduces from 100% to 40% gradually as the distance to the tumor center (denoted by the
blue dotted circle) decreases. The boundaries of the layers are denoted by the red solid
lines.

described by the invasion percolation process (Gazit et al.; 1995; Baish et al.;

1996; Baish and Jain; 2000), which is implemented by first assigning uniformly

distributed random values of strengths to each point on the underlying square lat-

tice representing potential paths of vascular growth. Starting at an arbitrary site

the network occupies the lattice point adjacent to the current site that has the

lowest strength. Growth is iterated until the desired lattice occupancy is reached.

Blood vessels are assumed to connect all adjacent occupied lattice points. Fi-

nally, additional edges are added to “pathological” nodes to ensure nonzero blood
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flow throughout the entire percolation cluster. The simulated networks may be

matched with real tumor vasculature by selecting appropriate occupancy levels.

Following (Baish et al.; 1996), the fractal dimensions are around 1.6, 1.8, 1.9, and

2.0 for 40, 60, 80, and 100% occupancy on the backbone, respectively.

Moreover, malignant tumors often possess fuzzy and blurred boundaries (Ran-

gayyan et al.; 1997; Saunders et al.; 2006). As such, the fractal dimensions across

the boundary of a tumor can be characterized by a smooth transition from inside

a tumor to the outside. To quantify the diffusive nature of a tissue anomaly, a

discretized multilayer model can be applied to approximate the gradual, continu-

ous change in the fractal dimension across the periphery of a lesion. Fig. 2.2(a)

depicts an invasion percolation network after 100 growth steps, and Fig. 2.2(b)

shows additional vessels to ensure nonzero blood flow throughout the network as-

suming that the blood inflow and outflow are in the upper-left and lower-right

corners, respectively. Fig. 2.3 illustrates a simulated multilayer vascular network,

where the intercapillary distance is set to be 100 µm, and the level ofoccupancy

on the lattice reduces from 100% to 40% gradually as the distance to the tumor

center decreases.

2.4 Formulation of Proposed DTS

2.4.1 Externally Measurable Objective Function

Let f represent an externally measurable objective function and be defined on

the domain D, which denotes the high-risk tissue region under surveillance. The

landscape of f is distorted by a “natural” guess G representing a swarm of magnetic
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nanoswimmers as follows

f (x⃗;G) = fA (x⃗;G) + fC (x⃗;G)

= fT(x⃗) + fD (x⃗;G) + fC (x⃗;G) , x⃗ ∈ D,
(2.1)

where fA (x⃗;G) is the apparent objective function measured at location x⃗ through

guess G, fT(x⃗) is the true objective function at x⃗ independent of the presence or

absence of G, fD (x⃗;G) is the disturbance resulted from the interaction between

G and the domain D, and fC (x⃗;G) is the correction factor accounting for the

disturbance caused by G. For a meaningful optimization process, it is assumed

that regardless of any variation caused by the guess to the function, the location

of the global maximum denoting the tumor, x⃗⋆, remains unchanged.

The true objective fT(x⃗), dependent on the underlying tumor-triggered bio-

logical phenomena, may take the form of variation in path tortuosity, nanoswim-

mer velocity, or magnetic contrast induced by nanoswimmers as discussed earlier.

Subsequently, for the measure of tortuosity, an alteration fD(x⃗;G) would incur if

the nanoswimmers are engineered to modify the vasculature of tumors (e.g., anti-

angiogenic agents to shut down tumor vessels or pro-angiogenic agents to normalize

tumor vessels) (Kwon et al.; 2015). For the measure of velocity, fD(x⃗;G) is given

by the relative velocity of nanoswimmers with respect to the blood stream. In

the case of magnetic change, fD(x⃗;G) is proportional to the reduction in the con-

centration of nanoswimmers due to various loss mechanisms such as degradation

(nanoswimmers degenerate in the blood), branching (nanoswimmers move into

an unintended vascular branch), and diffusion (random motions of nanoswimmers

driven by the concentration gradient) (Chen et al.; 2015). Finally, the correc-
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tion factor fC (x⃗;G) attempts to counteract fD (x⃗;G) to minimize its influence on

the true landscape, i.e., fC (x⃗;G) = −fD (x⃗;G) + χ (x⃗;G) with χ (x⃗;G) being the

random compensation error. Therefore, (2.1) can be rewritten as

f (x⃗;G) = fT(x⃗) + χ (x⃗;G) , x⃗ ∈ D. (2.2)

As the research is in its early stage, there is no widely-accepted, quantitative model

on any of the aforementioned biological gradients in the existing literature other

than some qualitative observations made from experimental data. As an initial

investigation, three representative objective functions are considered as shown in

Fig. 2.4. The maximum value is normalized to 1 and the minimum value is 0. The

search domain is −5 mm ≤ x, y ≤ 5 mm. The landscapes are:

1. Sphere Function (Bowl-shaped):

f(x, y) =
1,

√
x2 + y2 ≤ 0.5 and (x, y) ∈ V

1− 0.02 (x2 + y2) ,√
x2 + y2 > 0.5 and (x, y) ∈ V.

(2.3)

2. Matyas Function (Plate-shaped):

f(x, y) =
1,

√
x2 + y2 ≤ 0.5 and (x, y) ∈ V

1− 0.01 (x2 + y2) + 0.02xy,√
x2 + y2 > 0.5 and (x, y) ∈ V.

(2.4)
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Figure 2.4: Illustration of f(x, y) for three representative objective functions: (a) Sphere
function and (b) its contour plot; (c) Matyas function and (d) its contour plot; (e) Easom
function and (f) its contour plot. For the objective f(x, y), the maximum is normalized
to 1 and the minimum value is 0.

3. Easom function:

f (x, y) =

1,
√
x2 + y2 ≤ 0.5 and (x, y) ∈ V

0.01 + 0.99 cos(3x) cos(3y)

× exp [− (9x2 + 9y2)] ,√
x2 + y2 > 0.5 and (x, y) ∈ V.

(2.5)
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The term V denotes the discrete vascular network as illustrated in Fig. 2.3. As

shown in Fig. 2.4(a)-(b), both the Sphere and Matyas functions represent the

situation that the tumor center, denoted by a circle of radius 0.5 mm located

at the origin, is associated with the region having the highest values of f(x, y).

This may correspond to the largest (normalized) variation of blood flow velocity

due to tumor angiogenesis or the largest (normalized) magnetic change induced

by nanoswimmers due to fibrin tropism in tumor tissues. Both the functions are

convex and quadratic. They have no local minimum except the global one. On

the other hand, the Easom function in Fig. 2.4(c) represents the situation that

f(x, y) remains more or less unchanged across a large surveillance region. The

tumor center yields an abrupt increase of f(x, y). Intuitively, this may represent

the worst-case direct targeting scenario due to the lack of an externally observable

biological gradient.

In the absence of detailed information on the diameters of vessels, the viscosity

of blood, and the applied blood pressure for tumor vessels and normal capillaries

near the tumor, we simply imprint the objective functions on the vascular network

V such that the values of the functions are only defined on the domain V as shown

in (2.3)-(2.5). The blood inflow and outflow are assumed to be in the lower-left

and upper-right corners, respectively, where prescribed pressures are set.

2.4.2 Computation Framework

The proposed DTS starts with multiple guess inputs G1, G2, · · · , GN being de-

ployed in multiple pre-specified sites R1,R2, · · · ,RN ⊆ D, where Rn (n = 1, 2, · · · , N)

denote the injection sites of nanoswimmers as depicted in Fig. 2.1. The guesses
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begin searching for the optimal solution following some iterative algorithms. The

computational framework includes the following key steps.

1. Initialization. The guess inputs are deployed in R1,R2, · · · ,RN at the same

starting times t(1)IA,1 as shown in Fig. 2.5(a)-(b) with initial locations x⃗1

(
t
(1)
IA,1

)
,

x⃗2

(
t
(1)
IA,1

)
, · · · , x⃗N

(
t
(1)
IA,1

)
, respectively. The superscript and subscript of the

variable t correspond to the index of the current iteration and the index of

the guess in a specified operational mode, respectively. Suppose that the ex-

ternal system operates in the simple time-multiplexed manner. Without loss

of generality, consider the first guess input G1, which operates on the follow-

ing three modes: Intended Actuating (IA), Imaging and Tracking (IT), and

Unintended Actuating (UA). Two time-division multiplexing (TDM) proto-

cols are considered. For TDM1 each guess takes turn to operate in the IA

and IT modes, whereas for TDM2 each guess takes turn to operate in the

IA mode, followed by a common IT mode as illustrated in Fig. 2.5(a) and

2.5(b), respectively.

2. IA. For TDM1, from t
(1)
IA,1 to t

(1)
IT,1, G1 operates in the IA mode and its trajec-

tory is determined by the angle deviation relative to a principal axis denoting

an intended steering vector upon G1 at x⃗1

(
t
(1)
IA,1

)
, ϕ
(
t
(1)
IA,1

)
, which indicates

a uniform magnetic field in the surveillance domain (Cheang et al.; 2016,

2017) and is dependent on the specific iterative method under consideration

(e.g., the GD-inspired DTS in Section 2.5). The next location of G1 at time
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Figure 2.5: Time sequence of system operational modes in one cycle for multiple guess
inputs. Each guess has three operational modes: Intended Actuating (IA), Imaging and
Tracking (IT), and Unintended Actuating (UA). Two time-division multiplexing (TDM)
protocols are considered. (a) TDM1: each guess takes turn to operate in the IA and IT
modes; and (b) TDM2: each guess takes turn to operate in the IA mode, followed by a
common IT mode.

instant t
(1)
IT,1 is then updated according to:

x⃗1

(
t
(1)
IT,1

)
= x⃗1

(
t
(1)
IA,1

)
+ d1

(
t
(1)
IA,1

)
u⃗
∠
[
ϕ
(
t
(1)
IA,1

)
+∆ϕ

(
t
(1)
IA,1

)]
+ q⃗1

(
t
(1)
IA,1

)
.

(2.6)
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The term u⃗∠ϕ denotes a unit vector with angle ϕ and ∆ϕ
(
t
(1)
IA,1

)
is a ran-

dom variable summarizing all steering imperfections, which is assumed to be

normally distributed with variance σ2
∆ϕ and zero mean for simplicity. The

displacement length d1

(
t
(1)
IA,1

)
satisfies

∥∥∥∥d1 (t(1)IA,1

)
u⃗
∠
[
ϕ
(
t
(1)
IA,1

)
+∆ϕ

(
t
(1)
IA,1

)]∥∥∥∥
1

=

∣∣∣∣d1 (t(1)IA,1

)
cos
[
ϕ
(
t
(1)
IA,1

)
+∆ϕ

(
t
(1)
IA,1

)] ∣∣∣∣
+

∣∣∣∣d1 (t(1)IA,1

)
sin
[
ϕ
(
t
(1)
IA,1

)
+∆ϕ

(
t
(1)
IA,1

)] ∣∣∣∣
= v1

(
t
(1)
IA,1

)(
t
(1)
IT,1 − t

(1)
IA,1

)
,

(2.7)

where ∥ · ∥1 denotes the ℓ1 norm and v1

(
t
(1)
IA,1

)
is the velocity of G1 at

t
(1)
IA,1 given the taxicab geometry of the vascular network. Finally, q⃗1

(
t
(1)
IA,1

)
is the position “quantization” error due to the discrete lattice pattern of

the vasculature as illustrated in Fig. 2.6, which is the displacement vector

from the point x⃗1

(
t
(1)
IA,1

)
+ d1

(
t
(1)
IA,1

)
u⃗
∠
[
ϕ
(
t
(1)
IA,1

)
+∆ϕ

(
t
(1)
IA,1

)] on the continuous

taxicab circle of radius v1

(
t
(1)
IA,1

)(
t
(1)
IT,1 − t

(1)
IA,1

)
, to its closest point in the

discrete vascular network having the same taxicab distance to x⃗1

(
t
(1)
IA,1

)
.

For TDM2, the same process as mentioned above applies except that t(1)IT,1 is

replaced by t
(1)
IA,2 as shown in Fig. 2.5(b).

3. IT. For TDM1, from t
(1)
IT,1 to t

(1)
IA,2, G1 operates in the IT mode. In the ab-

sence of a steering field, G1 follows a random walk in the lattice (i.e., at each

intersection it has the same probability to either move up or to the right) and

swims towards various locations in equal observation time intervals along a
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Figure 2.6: Updating of a guess input in the taxicab vascular network subject to a specified
steering vector.

zigzag pathway, x⃗1

(
t
(1)
IT,1

)
, x⃗1

(
t
(1)
IT,1 +∆t

)
, · · · , x⃗1

(
t
(1)
IT,1 +K∆t

)
, x⃗1

(
t
(1)
IA,2

)
as shown in Fig. 2.7, where ∆t =

(
t
(1)
IA,2 − t

(1)
IT,1

)
/(K + 1). Various imag-

ing modalities such as MRI (Thoidingjam and Tiku; 2017) and microwave

imaging (Bucci et al.; 2017) can be used to detect the magnetic contrast

induced by multiple magnetic nanoswimmers simultaneously, which allows

for tracking of all the nanoswimmers. In contrast to mathematical comput-

ing where the location of a guess input is known exactly, the guess location

in the current “natural” computing needs to be estimated. The positioning

error is summarized in the random variable ∆x⃗1 as also shown in Fig. 2.7,

whose horizontal and vertical components are assumed to be independently

and identically distributed Gaussian random variables with equal variance
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Figure 2.7: Pictorial illustration of the IT process: the guess follows a random walk
in the lattice and moves towards various locations along a zigzag pathway, x⃗1 (tIT,1),
x⃗1 (tIT,1 +∆t), · · · , x⃗1 (tIT,1 +K∆t), x⃗1 (tIA,2) with ∆t being the observation time in-
terval.

σ2
∆x and zero mean for simplicity. In that case, |∆x⃗1| is Rayleigh-distributed.

The objective function is then evaluated at each location. For example, if
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the nanoswimmer velocity is considered, the values are obtained as

f
(
x⃗1

(
t
(1)
IT,1 + k∆t

)
+∆x⃗1

(
t
(1)
IT,1 + k∆t

))
≈ 1

∆t

∥∥∥x⃗1

(
t
(1)
IT,1 + (k + 1)∆t

)
+∆x⃗1

(
t
(1)
IT,1 + (k + 1)∆t

)
− x⃗1

(
t
(1)
IT,1 + k∆t

)
−∆x⃗1

(
t
(1)
IT,1 + k∆t

)∥∥∥
1
, k = 0, 1, · · · , K.

(2.8)

Subsequently, the gradient for guess G1 at t
(1)
IT,1 is estimated as follows

∇f
(
x⃗1

(
t
(1)
IT,1

))
≈ max

k1,k2{[
f
(
x⃗1

(
t
(1)
IT,1 + k1∆t

)
+∆x⃗1

(
t
(1)
IT,1 + k1∆t

))
− f

(
x⃗1

(
t
(1)
IT,1 + k2∆t

)
+∆x⃗1

(
t
(1)
IT,1 + k2∆t

)) ]/
∥∥∥x⃗1

(
t
(1)
IT,1 + k1∆t

)
+∆x⃗1

(
t
(1)
IT,1 + k1∆t

)
− x⃗1

(
t
(1)
IT,1 + k2∆t

)
−∆x⃗1

(
t
(1)
IT,1 + k2∆t

)∥∥∥
2

}
,

k1 > k2 and k1, k2 ∈ {0, 1, · · · , K},

(2.9)

where ∥ · ∥2 is the ℓ2 norm. The overall gradient after N IT processes is esti-

mated by taking into account all the N gradients obtained at t(1)IT,1, t
(1)
IT,2, · · · ,

t
(1)
IT,N , respectively. A new steering vector for G1 is then computed by follow-

ing a specified algorithm as discussed in Section 2.5, which is used to guide

the movement of G1 during the next IA operation at t
(2)
IA,1 as shown in Fig.
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2.5(a). As the nanoswimmer is in the form of nanochains or bundle-like ag-

gregates assembled by MNPs (Cheang and Kim; 2015), it has a finite lifespan

due to the dissembling and diffusion of MNPs during propagation. In the

case that G1 is fully consumed in D, a new guess input is deployed at R.

For TDM2, G1 operates in the UA mode (as explained below) from t
(1)
IA,2 to

t
(1)
IA,3 when G2 is in the IA mode.

4. UA. For TDM1, from t
(1)
IA,2 to t

(1)
IT,2, G1 operates in the UA mode. This is

similar to the IA operation except that the steering field is meant for the

second guess G2. This is due to the limitation of the current coil system

in generating the steering field, which exerts a global uniform torque on all

the nanoswimmers simultaneously instead of localized torques on individual

nanoswimmers. The same DTS steps (i.e., IA → IT → UA) are applied to

all the guesses in sequence and the iteration continues unless certain stopping

criteria are met.

For TDM2, from t
(1)
IA,3 to t

(1)
IA,4, G1 again operates in the UA mode when G3

is now in the IA mode. The next IT operation only occurs after all the guess

inputs complete their individual IA operations. This will be followed by a

new round of IA → UA → IT operations starting at t
(2)
IA,1 as shown in Fig.

2.5(b).

The mapping from an iterative optimization process in mathematical comput-

ing to the aforementioned tumor sensitization process in natural computing is

illustrated in Fig. 2.8, which encompasses the following procedures.
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1. General Mapping. Formulate the nanoswimmers-assisted tumor sensitization

in the perspective of natural computing as a stylized representation of the

iterative optimization problem in mathematical computing.

2. Specific Mapping. Consider a specific iterative optimization algorithm A

(e.g., GD), and map A onto the corresponding DTS S. For example, the key

operations in a standard GD include taking the step, finding the gradient,

and evaluating the objective function. The first operation corresponds to the

IA mode in the DTS and the last two operations are associated with the IT

mode in the DTS.

3. Reality Check. Identify the key physical constraints associated with S when

applied in a realistic in vivo environment, compared to the original algo-

rithm A when applied in an idealistic mathematical setting. For example,

the imperfections in DTS include the landscape mismatch χ (x⃗;G) in (2.2),

the steering imperfection ∆ϕ
(
t
(1)
IA,1

)
and the landscape quantization noise

q⃗1

(
t
(1)
IA,1

)
in (2.6), the finite velocity of guess v1

(
t
(1)
IA,1

)
in (2.7), the position-

ing error ∆x⃗1

(
t
(1)
IT,1 + (k + 1)∆t

)
and the gradient estimation inaccuracy in

(2.8), the interference in guess update caused by UA, and the finite lifespan

of guess inputs.

4. Performance Benchmarking. From the tumor sensitization perspective, we

can evaluate the performance of the DTS S by comparing S to the “brute-

force” systemic targeting without implementing any knowledge-aided strat-

egy. From the iterative optimization perspective, we can compare S to the

standard algorithm A. In this case, S is regarded as a degenerate form of A.
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Figure 2.8: Mapping from iterative optimization in mathematical computing to tumor
sensitization in natural computing.

2.5 GD-inspired DTS

The GD-inspired DTS starts with a generic guess G1 located at x⃗1 at time instant

t
(1)
IA,1, which attempts to find a global maximum f (x⃗∗).

2.5.1 DTS for TDM1

For TDM1 shown in Fig. 2.5(a), consider the sequence x⃗1

(
t
(1)
IT,1

)
, x⃗1

(
t
(2)
IT,1

)
, x⃗1

(
t
(3)
IT,1

)
,

· · · , over multiple iterations. In the classical GD, x⃗1

(
t
(m)
IT,1

)
= x⃗1

(
t
(m−1)
IT,1

)
+
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γm−1∇f
(
x⃗1

(
t
(m−1)
IT,1

))
,m = 2, 3, · · · . In this way, we have f

(
x⃗1

(
t
(1)
IT,1

))
≤

f
(
x⃗1

(
t
(2)
IT,1

))
≤ f

(
x⃗1

(
t
(3)
IT,1

))
≤ · · · , so hopefully the sequence x⃗1

(
t
(m)
IT,1

)
con-

verges to the desired global maximum. However, in the GD-inspired DTS, the

location updating is interrupted by multiple IT and UA processes as depicted in

Fig. 2.5(a). Hence, the position update is modified as x⃗1

(
t
(m)
IT,1

)
= x⃗1

(
t
(m)
IA,1

)
+

γm∇f
(
x⃗1

(
t
(m)
IA,1

))
.

The gradient ∇f
(
x⃗1

(
t
(m)
IA,1

))
is estimated through the N IT processes as il-

lustrated in Fig. 2.5(a). If the gradient does not change much over the duration

of t(m)
IT,1 to t

(m+1)
IT,1 , it can be estimated as

∇f
(
x⃗1

(
t
(m)
IA,1

))
≈ max

n=1,2,··· ,N

{
∇f

(
x⃗1

(
t
(m)
IT,n

))}
. (2.10)

Otherwise, only the last gradient estimate is used such that

∇f
(
x⃗1

(
t
(m)
IA,1

))
≈ ∇f

(
x⃗1

(
t
(m)
IT,N

))
. (2.11)

Suppose that f (x⃗) is convex and ∇f (x⃗) is Lipschitz, the step size γm can be

chosen to guarantee convergence to a global optimum by using the Barzilai-Borwein

method (Barzilai and Borwein; 1988):

γm ≈

(
x⃗1

(
t
(m)
IA,1

)
− x⃗1

(
t
(m−1)
IA,1

))T
∥∥∥∇f

(
x⃗1

(
t
(m)
IA,1

))
−∇f

(
x⃗1

(
t
(m−1)
IA,1

))∥∥∥2
×
[
∇f

(
x⃗1

(
t
(m)
IA,1

))
−∇f

(
x⃗1

(
t
(m−1)
IA,1

))]
.

(2.12)

Note that the vessel network used in the simulation procedure is a discontinuous

two-dimensional grid as shown in Fig. 2.3; therefore the position update follows
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the procedure described in Section 2.4.2. As the vessels run only parallel to the

two coordinate axes, at each junction the guess input can move in two possible

directions, up and right, as the flow is from the lower left to the upper right. The

Barzilai-Borwein condition in (2.12) is employed to determine the duration of the

mth IA operation for G1:

t
(m)
IT,1 − t

(m)
IA,1 =

γm cosϕm + γm sinϕm

v1

(
t
(m)
IA,1

) , (2.13)

where ϕm is the angle of the gradient estimated at the mth cycle.

2.5.2 DTS for TDM2

For TDM2 shown in Fig. 2.5(b), similarly, consider the sequence x⃗1

(
t
(1)
IA,2

)
, x⃗1

(
t
(2)
IA,2

)
,

x⃗1

(
t
(3)
IA,2

)
, · · · . In the classical GD, x⃗1

(
t
(m)
IA,2

)
= x⃗1

(
t
(m−1)
IA,2

)
+γm−1∇f

(
x⃗1

(
t
(m−1)
IA,2

))
,

m = 2, 3, · · · , to ensure that the sequence x⃗1

(
t
(m)
IA,2

)
converges to the desired global

maximum. However, in the GD-inspired DTS, the location updating is interrupted

by multiple UA processes and one IT process as depicted in Fig. 2.5(b). Hence,

the position update is expressed as x⃗1

(
t
(m)
IA,2

)
= x⃗1

(
t
(m)
IA,1

)
+ γm∇f

(
x⃗1

(
t
(m)
IA,1

))
.

To ensure that such an arrangement does not favor IA processes that are closer

to the earlier IT operation resulted from more accurate gradient estimation, the

gradient change over the duration of t(m−1)
IA,1 to t

(m)
IA,1 should be minimal, which is

approximated by

∇f
(
x⃗1

(
t
(m)
IA,1

))
≈ ∇f

(
x⃗1

(
t
(m−1)
IT

))
, (2.14)

where ∇f
(
x⃗1

(
t
(m−1)
IT

))
is the gradient estimated during the (m−1)th IT process.
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Finally, due to the practical constraint of DTS, the initial deployment region

of the guess input is confined within a small area, which is the injection site of

nanoswimmers, instead of the entire solution space. To further ensure that the

guess input is confined within the tissue region under screening, the replacement

strategy is implemented: a guess that travels outside the allowed searching region

is abandoned, which will degrade in the human body without further maneuvering

and tracking. A new guess is then generated in the deployment area by injecting

an aggregate of nanoswimmers.

2.6 Performance Analysis

We use several numerical examples to evaluate the tumor sensitization and tar-

geting performance of the GD-inspired DTS, which is compared to the brute-force

search.

2.6.1 Simulation Set-up

The simulation tool used in the computational experiments is MATLAB®. The

multi-layer vasculature in the surveillance region, −5 mm ≤ x, y ≤ 5 mm, is

generated by using the inversion-percolation-based model described in Section 2.3

and depicted in Fig. 2.3. The three objective functions presented in Section 2.4.1

are applied to synthesize different levels of tumor sensitization difficulty, which are

defined on the discretized domain of the vasculature. The deployment region is set

to be −5 mm ≤ x, y ≤ −4 mm, within which the initial positions of the guesses

are uniformly generated. The speed of nanoswimmers is assumed to be 100 µm/s.

The maximum search time allowed and the number of simulation runs are set to
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be 200 s and 1000, respectively. Two performance metrics are considered, the

probability of cancer detection PD given by the ratio of the number of occurrences

when the tumor is successfully detected to the total number of simulations, and

the percentage of contrast agent nanoparticles delivered to the tumor site η given

by the ratio of the amount of guesses reaching the tumor to the amount of guesses

deployed.

For the proposed DTS, both the two protocols in Fig. 2.5 are considered where

the simulation procedure follows the steps in Section 2.4.2. In the current study,

two guess inputs are deployed for direct targeting at each round of simulation. The

durations of IA and IT are set to be 10 s and the number of observation intervals

during each IT operation (see also Fig. 2.7) is 10. The searching process would be

stopped if any guess reaches the cancer center denoted by a circle of radius 0.5 mm

at the origin as shown in Fig. 2.4. It is assumed that the other guess would be

guided to the tumor center upon successful detection if it has not overshot the

tumor location.

For the brute-force search, the same objective functions as those applied in

the DTS are considered. Nevertheless, each guess follows a random walk in the

lattice (i.e., at each intersection it has the same probability to either move up or

to the right) without making use of the gradient of the objective function, which

synthesizes the scenario that contrast medium nanoparticles are carried through

the systemic circulation in order to target a tumor for contrast-enhanced medical

imaging. When the number of nanoparticles is sufficiently large (i.e., a multitude of

guess samples over multiple simulation runs), systemic administration essentially

enumerates all possible pathways in the vascular network and thus is similar to the

brute-force search. For consistency with the setting of the DTS, two guess inputs
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Figure 2.9: Trajectories of guess inputs when TDM1 is applied: “◦” - GD-inspired DTS,
“□” - brute-force search.

are deployed at each simulation. Furthermore, the random drift and IT durations

follow the two protocols in Fig. 2.5, though the movements of these two guesses

are completely independent of each other due to lack of a common steering field.

The searching process would be stopped if any guess reaches the cancer center as

in the case of DTS. However, the other guess would continue its random drift in

the absence of an external guidance.

2.6.2 Simulation Results

Fig. 2.9 shows the typical trajectories of guess inputs for the landscape of Sphere

function when the TDM1 protocol is applied. The symbols of “◦” and “□” denote
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Figure 2.10: Trajectories of guess inputs when TDM2 is applied: “◦” - GD-inspired DTS,
“□” - brute-force search.

the actual guess footprints for the GD-inspired DTS and brute-force search, re-

spectively, and regions with clustered footprints correspond to the IA mode. As

can be seen from the figure, in the case of DTS the movement of both guesses is co-

ordinated by an external field towards the maximum-gradient direction estimated

in the IA mode. On the other hand, the movement of two guesses is irregular and

uncorrelated for the brute-force search. The DTS successfully detects the tumor

center, whereas the brute-force search technique fails to find the center of tissue

malignancy because only a fraction of the possible pathways are explored with two

guess inputs in one simulation run. Fig. 2.10 presents the guess trajectories when

the TDM2 protocol is applied. The time interval between two consecutive IAs
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Figure 2.11: Histograms of search time when TDM1 is applied: (a) GD-inspired DTS
and (b) brute-force search in a Sphere landscape; (c) GD-inspired DTS and (d) brute-
force search in a Matyas landscape; (e) GD-inspired DTS and (f) brute-force search in
an Easom landscape. Also shown are the respective detection ratios PD and targeting
efficiencies η.

for TDM2 is twice of the value for TDM1 because in the former case, each guess

takes turn to operate in the IA mode, followed by a common IT mode. Hence, the

gradient estimated during the IT operation may be different from the actual gra-

dient for the later IA process, leading to more departing trajectories of the guesses

as depicted in Fig. 2.10. It is expected that this phenomenon would result in
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Figure 2.12: Histograms of search time when TDM2 is applied: (a) GD-inspired DTS
and (b) brute-force search in a Sphere landscape; (c) GD-inspired DTS and (d) brute-
force search in a Matyas landscape; (e) GD-inspired DTS and (f) brute-force search in
an Easom landscape. Also shown are the respective detection ratios PD and targeting
efficiencies η.

deteriorating tumor sensitization and targeting performance. Similar observations

can be made for the Matyas and Easom landscapes.

Fig. 2.11 presents the histograms of search time for the three objective func-

tions when the TDM1 protocol is employed. The search time of 200 s (maximum

value) indicates the situation that none of the two guesses senses the tumor. It can

be seen that the GD-inspired DTS yields a detection ratio of PD = 89.6% for the
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Sphere function (Fig. 2.11(a)), which is much higher than that for the brute-force

search (PD = 58.1%, Fig. 2.11(b)). Furthermore, the DTS has better performance

in the Sphere landscape than the Matyas (PD = 73.0%, Fig. 2.11(c)) and Ea-

som (PD = 59.8%, Fig. 2.11(e)) functions. This observation demonstrates the

advantage of the proposed biosensing-by-learning strategy over brute-force search

and the potential performance deterioration due to a more complex landscape (i.e.,

plate-shaped Matyas function and gradientless Easom function versus bowl-shaped

Sphere function). In terms of the targeting efficiency, the DTS achieves a much

higher value of η = 78.0% compared to that for the Matyas (η = 61.6%) and

Easom (η = 49.0%) functions as well as the brute-force search (η ≈ 32%).

Fig. 2.12 presents the histograms of search time for TDM2. Similar observa-

tions to the trend in Fig. 2.11 can be made. Furthermore, comparing Fig. 2.12 to

Fig. 2.11 shows that, TDM1 yields higher probabilities of tumor sensitization and

larger percentages of drug molecules delivered to the tumor than TDM2.

2.7 Conclusion

We have proposed a novel iterative-optimization-inspired DTS in externally ma-

nipulable smart nanosystems, which exploits tumor-triggered in vivo biological

gradients for “guided” direct targeting. We have demonstrated through computa-

tional experiments that the proposed DTS can significantly improve the probability

of tumor sensitization and the accumulation of drug nanoparticles in the tumor

site by using the shortest possible physiological routes and with minimal systemic

exposure. We believe that this work motivates a new paradigm directed toward

smart biosensing facilitated by externally controllable nanoswimmers.
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Future work may include extension of the framework to DTS inspired by multi-

solution or multi-objective optimizations when there are multiple tumors or dif-

ferent phenomena-of-interest in the tissue region under surveillance. Moreover, it

is important to examine further the impact of nanoswimmer nonidealities, such as

finite lifespan, imprecise steering, and inaccurate tracking. Finally, the proposed

DTS and the objective functions used should be validated by real experiments to

justify further the clinical relevance of the proposed strategy.
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Chapter 3

In Vivo Computation with Sensor

Fusion and Search Acceleration for

Smart Tumor Homing

Background and Objective: Motivated by the advancements on bioresorbable nanoswim-

mers, this chapter considers the advantages of direct targeting over systemic tar-

geting for smart tumor homing under the general framework of computational

nanobiosensing. Nanoswimmers assembled by magnetic nanoparticles can be used

as contrast agents to estimate the locations of tumors inside the human body.

Methods: Closely observing the response of nanoswimmers (which act as in vivo

biosensors) to the tumor-triggered biological gradients and then guiding them

through external manipulation, can result in a higher accumulation at the dis-

eased location. Sensor informatics along with data fusion can play a crucial role

in such a knowledge-aided targeting process. Specifically, built upon our previous
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work on direct targeting inspired by the gradient descent optimization, this work

is focused on resolving the real-life constraints of in vivo natural computation such

as uniformity of the magnetic field and finite life span of the nanoswimmers. To

overcome these challenges, we propose a multi-estimate-fusion strategy to obtain

a common steering direction for the swarm of nanoswimmers.

Results: We show through computational experiments 1) that the mean of indi-

vidual gradient estimations provides the best choice for symmetrical conditions

(tumor location in line with the direction of blood flow) while leader-based swarm

steering gives the best results for non-symmetrical search space, and 2) that the

iterative memory-driven gradient descent optimization detects the target faster

compared to the classical memory-less gradient descent and knowledge-less sys-

temic targeting.

Conclusion: Our proposed strategies demonstrate that a clear demarcation be-

tween malignant tumors and healthy tissues can be visualized before nanoswim-

mers are consumed in human vasculature. We believe that our work will help in

overcoming the challenges posed by natural in vivo computation for tumor diag-

nosis at its early stage.

3.1 Introduction

Early detection and localization of cancer can save up to two-third of cancer related

deaths worldwide. Even with the best modern-era tools and strategies, cancerous

cells can go unnoticed for 10 years when they have become 50 million cancer
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cells strong (Hori and Gambhir; 2011). Conventional medical imaging techniques

are constrained by resolution limits that are often insufficient to locate tumors

at early stages (Kasban et al.; 2015). Micrometastasis and small high risk breast

cancers (< 2 mm) can not be detected through state-of-the-art imaging modalities.

Contrast agents such as CREKA-Tris (GD-DOTA)3, have been used in medical

imaging to provide better demarcation between healthy and diseased tissues with

dimensions smaller than 0.5 mm (Zhou et al.; 2015).

Magnetic nanoparticles (MNPs) are also commonly used for contrast enhance-

ment. These MNPs are injected in the blood stream and can be magnetically

guided to the cancerous site, thus increasing the resolution of imaging techniques

like MRI through highlighting the diseased area. There are number of strategies

which can be used to deliver MNPs to the tumor site. They can be categorized

as “knowledge-less" if the movement of MNPs relies entirely on the human cir-

culation system, and as “knowledge-aide” if the movement of engineered MNPs

(with additional functions such as sensing, signaling and actuation) is externally

manipulable.

With knowledge-less systemic targeting, an insufficient (< 2%) number of

nanoparticles reach the target tumor; thus this strategy is very inefficient (Bae

and Park; 2011). Delivery of contrast agents to the tumor may be improved by

using the direct targeting strategy in which non-manipulable nanoparticles are re-

placed by a swarm of externally manipulable nanoswimmers (NSs). These NSs can

be directed to the target tumor by an externally applied steering field provided

that the location of the tumor is known a priori. This has been shown to improve

the efficiency of getting NSs to the target tumor (Felfoul et al.; 2016). However,

acquiring sufficient knowledge of the location of the tumor is often problematic.
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Diagnostic capability of NSs can also be amplified through smart nanosystems

in which the tumor microenvironment is used to assist in detection of malignant

tumors. In such nanosystems, NSs either sense the host environment after systemic

administration and respond, or the host environment is first primed to interact with

the engineered NSs (Kwon et al.; 2015). In both cases, prior knowledge of tumor

location is not required. However, homing is achieved through systemic targeting

with its associated weaknesses.

Instead of complete dependence on systemic targeting, smart nanosystems can

be externally manipulated to guide a swarm of NSs towards the possible target

direction (Chen et al.; 2019). This strategy can achieve faster and more efficient

sensitization of the target (Chen, Ali, Shi and Cheang; 2019). However, challenges

like uniformity of the realizable magnetic field, cytotoxicity and finite life span

of NSs need to be adequately addressed (Shi et al.; 2020). An optimal external

magnetic field for one NS may not be optimal for other NS of the swarm (Cheang

and Kim; 2015). Hence, a compromised magnetic field has to be decided upon

to counter the constraint of uniform magnetic field. Next, the swarm spreadness

should be minimized to reduce the harm caused by cytotoxicity. Finally, NSs are

chiral structure chains of magnetic nanoparticles linked together through biotin-

streptavidin interactions (Wong et al.; 1999). Although, this bondage ensures

linkage among nanoparticles, it is inevitable that some NSs may be disassembled

during the process. Hence, target homing needs to be fast enough to avoid con-

sumption of NSs in the human vasculature prior to tumor detection.
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Figure 3.1: Flowchart to illustrate tumor sensitization in natural computing where red
boxes demonstrate the key physical constraints addressed in current work.

3.1.1 Contributions of the Current Chapter

In this chapter, we aim to develop natural computing strategies that take into

account the practical challenges of in vivo computation for tumor homing. Specif-

ically,

1. We address the key physical constraint, i.e., unidirectional external magnetic

field for steering the whole swarm (demonstrated in red in Fig. 3.1). With

the help of multi-estimate fusion (MEF), we fuse the individual estimations

of the desirable moving directions into a global estimate through different

swarm steering strategies.

2. The focus throughout the tumor sensitization process is on maintaining

swarm compactness which is vital to reducing the effect of cytotoxicity.
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Hence, we propose the swarm spreadness as a key criterion for performance

evaluation of multiple swarm steering strategies.

3. To address the finite life span limitation, we propose a memory-driven gra-

dient descent (MDGD) strategy as shown in Fig. 3.1, which ensures faster

target detection.

The efficiency of the aforementioned proposed strategies is tested through ex-

tensive simulation studies. Note that this chapter is focused on the early detection

of common solid tumors such as lymphomas, sarcomas and carcinomas, which may

exist in most organs or tissues of the human body.

3.1.2 Organization of the Chapter

The chapter is organized as follows. Section 3.2 outlines background knowledge

along with the proposed externally manipulable smart nanosystem. In Section

3.3, tumor induced vasculature network and biological gradients are explained.

Section 3.4 highlights the mapping between our proposed externally manipulable

smart nanosystem and the iterative optimization process. The discretized vascular

network model along with the introduction of several objective functions used

to represent different scenarios of biological gradients are also introduced in this

section. Section 3.5 formulates the computational framework along with different

strategies for swarm steering using MEF. In addition, the direct targeting strategy

inspired by MDGD for search acceleration is highlighted. System performance

is analysed with the help of some numerical examples in Section 3.6 while some

concluding remarks are given in Section 3.7.
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3.2 Background

3.2.1 Cancer Sensitization through Systemic Targeting

Traditional tumor sensitization is passive targeting which relies on systemic cir-

culation in the body. Systemic targeting is associated with cytotoxicity that ulti-

mately harms healthy tissues along with malignant tumors. To control this side

effect, targeted drug carriers such as nanoparticles or nanoliposomes have been

proposed in the recent few decades (Upputuri et al.; 2015). Due to the influence

of systemic circulation, ample driving force is not available to target the hypoxic

regions. Moreover, nanoparticles are consumed and lost inside the human vas-

culature due to spreading (diffusion), deterioration, and branching (using wrong

vessels), etc. It is because of these reasons systemic targeting only delivers a small

fraction (< 2%) of nanoparticles to the precise tumor location (Bae and Park;

2011), (Wilhelm et al.; 2016).

3.2.2 Cancer Sensitization through Externally Manipulable

Nanoswimmers

To overcome the problem of low delivery percentage of nanoparticles, NSs assem-

bled by magnetic nanoparticles have been proposed for direct targeting (Servant

et al.; 2015), (Li et al.; 2017). These externally or physically stimulated swarm of

NS show encouraging results in cancer diagnostics. The measurable characteris-

tics of NSs such as their trajectories are observed and then externally maneuvered

in the best possible direction by using a constant external magnetic field. This

tracking (observing) and controlling (maneuvering) of NSs helps them to adopt
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Figure 3.2: Proposed externally manipulable smart nanosystems harvesting positive fea-
tures (shown in white boxes) from both smart nanosystems and direct targeting employed
by externally manipulable nanoswimmers whereas ignoring the limitations (shown in grey
boxes) of both systems.

the shortest physiological path and their systemic exposure is minimized. Prior

knowledge of the tumor location is required for external tracking and control of

NSs. This direct targeting has a number of important benefits as listed in the

white boxes on left hand side of Fig. 3.2. It has been shown that up to 55% of

drug-containing NSs reach the center of cancerous area (Felfoul et al.; 2016). How-

ever, the pre-contrast medical image quality of the diseased area is usually very

low, which poses limitation on the usage of NS-assisted direct targeting.



68

3.2.3 Cancer Sensitization through Smart Nanosystems

Tumor homing can also be amplified with the help of so-called smart nanosystems

in which the living host environment is used to assist with the detection of the

malignant tissues (Seidi et al.; Apr. 2018). Material and biological properties

do change significantly at the nanoscale under the influence of the disease, which

can be leveraged to achieve improved diagnostic capability. These smart nanosys-

tems may broadly be classified as environment-responsive and environment-primed

(Kwon et al.; 2015). The first category is comprised of nanoparticles that sense and

respond to their environment. Peritumoral area is altered by biochemical prop-

erties like redox potential, pH, enzymatic activity, and homoeostatic pathways,

which highlight the locations of tumors. The second category refers to schemes in

which a host environment is administered by external influences such as x-rays,

heat, drugs, infrared light or nanoparticles themselves (Maltzahn et al.; 2011).

After the host environment is primed, it becomes straightforward to achieve the

desired aim of host-environment and nanoparticle-nanoparticle interactions (Ali

et al.; 2020a,b). Synthetic nanoparticles can undergo autonomous motions when

they extract various energies from the peritumoral region and convert them into

mechanical output (Luo et al.; 2018). For example, nanoparticles with minimum

computational capability can perform tumor homing and obstacle avoidance in

complex human vasculature through simple principles of aggregation and migra-

tion. A swarm of nanoparticles passively “sense and share” the gradient-induced

structural changes (aggregation), translate them into a push/pull effect which re-

sults in tumor-directed locomotion (migration) (Ali et al.; 2021). Such systems do

not require prior knowledge of tumor. Tumor targeting is achieved without any
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interaction of controlling hardware or clinicians but it suffers from a number of

significant disadvantages as shown in the black boxes on right hand side of Fig. 3.2.

3.2.4 Proposed Externally Manipulable Smart Nanosystems

Fig. 3.2 summarizes the pros and cons of both externally manipulable NSs for di-

rect targeting and smart nanosystems. We can harness many advantages with the

former system like having minimum systemic exposure using the shortest physio-

logical path. On the other hand, smart nanosystems do not require the knowledge

of tumor location. However, they may not follow the shortest path and do not

guarantee minimum systemic exposure. So the idea is to combine the desired

features of both systems, which are shown as the white boxes in Fig. 3.2. We

call the new system externally manipulable smart nanosystem. In such a system

non-manipulable nanoparticles are replaced by a swarm of NSs such as the ones

assembled by iron oxide MNPs (Cheang and Kim; 2015) that provide the features

of controllability and trackability.

Biosensing can be achieved through analyzing the observable characteristics of

NS in response to the tumor-induced changes in the natural biological environ-

ment. For example, MNPs are reliably used to estimate the locations of magnetic

contrast through differential medical imaging (Bucci et al.; 2017). In a natural

environment, contrast agents accumulate at the target through adequate penetra-

tion and retention in the tissue of interest (van et al.; 2020). The large gaps in

endothelium of blood vessels facilitate leakage of contrast agents into interstitial

space (Maeda et al.; 2013). This phenomenon helps to yield an improved bio-
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distribution profile of contrast agents (Kobayashi et al.; 2014) and can be observed

externally by noticing NSs when they stop moving.

Our previous work (Chen et al.; 2017; Chen, Ali, Shi and Cheang; 2019; Chen

et al.; 2019) develops a theoretical framework for targeting strategies using exter-

nally manipulable smart nanosystems under the umbrella of computing-inspired

bio-sensitization. In this framework, an optimization variable (such as a NS) tries

to find a target (such as the tumor) by iteratively moving through the search do-

main (such as the tissue region at a high risk of malignancy) under the guidance

of an external force (such as a magnetic field to steer NS towards the possible

tumor location). In our earlier work, all NSs are steered towards a common direc-

tion due to the constraint of a uniform external field (Cheang and Kim; 2015). It

results in actuating a NS in the intended direction whereas other NSs also move

towards the common (unintended) direction. Hence, there are steering errors at

every iteration.

To solve this problem, target sensitization can be achieved through introduc-

ing some influential NSs which can help to determine the steering direction for

the whole swarm to move towards the target (Goodrich et al.; 2011). One such

influential NS can be the leader which is closest to the target. In our natural in

vivo computation framework, the leader can be selected as the one with the largest

tumor-induced physical, chemical or biological transformation. There are several

potential candidates which change their properties proportional to the biological

gradients. Examples can be temperature-sensitive polymers or liposomes, and pH-

responsive micelles. Once the leader is selected, the whole swarm is steered based

on the localized estimation of the leader. An alternative approach, in which lo-

calized estimations of all NSs are fused together, can provide a solution in finding
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the optimal heading direction of the swarm. This fusion can be average-based

(all estimations having equal weight) or proportional-based (different weights for

different estimations based on some criteria). Another potential approach can

be a geolocation-based target detection. The localization of a target that radi-

ates wireless signals is a widely investigated problem (Gavish and Weiss; 1992),

(Erol-Kantarci et al.; 2010). The signal sensed by direction-finding sensors can

be intersected to find the target location. In natural computation, the swarm

of NS can be regarded as biological gradient sensing sensors and their positions

are known. These sensors provide direction information of the “radiatin” source

(tumor), whose location needs to be estimated.

Another key physical constraint is the loss of NSs inside the human vasculature

due to deterioration, diffusion, and moving into unintended vessels, which limits

the amount of deposition of NSs in early microcarcinoma. It is thus critical to

ensure that NSs can arrive at the tumor site within the shortest possible duration to

reduce bio-degradation and scattering. The tumor homing process can be divided

into two sub-operations for NSs; biological gradient sensing and position update.

The time taken by both these operations in natural computation contribute to the

total detection time. The gradient sensing time should be large enough for reliable

estimation of the search domain, however the swarm can be moved faster while

updating its position to reduce the total detection time.



72

3.3 Biological Implications of Tumor on Proposed

System

Early studies have shown that there are notable heterogeneities in the passive

properties of early malignant tumors (Sutherland; 1988). To successfully realize

the tumor sensitization framework and address the associated physical constraints,

understanding of the tumor microenvironment is very important.

3.3.1 Tumor Vasculature

Microvascular density is lower in tumoral environment of human lungs, colon car-

cinomas and mammary than their normal tissue counterparts (Eberhard et al.;

2000). For example, microvascular density was found to be only 29% when com-

pared to the vasculature of healthy lung tissues (Nico et al.; 2008). Similarly, nor-

mal pituitary gland is more vascular than the pituitary adenomas (Turner et al.;

2000). Moreover, normal tissues are regularly vascularized that result in a ho-

mogeneous lattice comprising of straight and rigid cylindrical capillaries joining

adjacent nodes. In contrast, tumor vasculature is very complex and chaotic re-

sulting in a sparse network in the peritumoral region. Factors like vessel dilation,

angiogenesis, vessel wall degeneration and vessel collapse contribute to a loss of

hierarchical organization (Gazit et al.; 1995). Therefore, an invasion percolation

method has been used to explain higher fractal dimensions associated with the

tumor vasculature. Keeping these facts in mind, a computational model for the

possible growth of vasculature around the tumor center is introduced in 3.4.2.
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3.3.2 Tumor-induced Biological Gradients

Biological gradients arise from the physical properties of the host environment

such as changes in peritumoral vasculature architecture (Baish et al.; 1996; Baish

and Jain; 2000), blood flow velocity, and oxygen concentration. Other biological

properties such as enzyme reactions and bio-molecular cell structure are trans-

formed due to malignant tumor cells. Moreover, chemical properties such as pH,

also change in tumors due to the presence of lactic acid. It is produced to counter

the reduction of oxygen supply and other nutrients due to the rapid proliferation of

cancerous cells. Alternatively, the host environment can also be primed to induce

biological gradients. Gold nanorods, for example, are modified to circulate in blood

for longer periods of time and passively accumulate in tumors. They are used to

heat tumor tissues by amplifying the absorption of near-infrared energy that is

mostly transparent to living tissues. As a result of this hyperthermia, gradient of

blood flow velocity is amplified due to the difference in response of normal and

tumor microcirculation (Maltzahn et al.; 2011), (Park et al.; 2010). In addition,

temperature gradient can also be introduced by local hyperthermia if the tumor

is close to the skin.

Materials change their properties at the nanoscale, which enables them to have

profound applications. For example, when light is shone on nanocrystals of cad-

mium selenide (CdSe) in liquid, they glow blue (when size = 2.0 nm), green (2.5

nm), yellow (3.0 nm), orange (3.9 nm), and red (4.2 nm), whereas CdSe itself is a

big black crystal. It is not just the color that changes at the nanoscale. In medicine,

miniaturization has helped to design nanoparticles, which behave in different in-

teresting manners to tumor-induced biological gradients (Karimi et al.; 2016). For
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Figure 3.3: Analogy between externally manipulable smart nanosystem driven by biological
gradient field and iterative optimization process driven by gradient descent.

example, PNIPAA and its derivatives, commonly known as temperature-sensitive

nanopolymers, undergo structural changes due to the hypodermic nature of most

malignant tumoral environments (Beija et al.; 2011). Similarly, self-assembled mis-

celles undergo swelling in an acidic peritumoral region (pH = 6.8) from its stable

state in a healthy tissue environment (pH = 7.4) (Li et al.; 2016).

3.4 Mapping from Natural Computing to Mathe-

matical Computing

The NSs-assisted tumor sensitization exhibit a one-to-one correspondence with

iterative optimization in mathematical computing.
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3.4.1 Relationship between Tumor Sensitization and Itera-

tive Optimization

There is a fascinating analogy between the proposed externally manipulable smart

nanosystem and iterative optimization as shown in Fig. 3.3. Firstly, the global

maximum of an objective function in iterative optimization corresponds to the

epicenter of the tumor. Secondly, the domain of the objective function corre-

sponds to the tissue region under observation or the region-of-interest. Similarly,

optimization variables (OVs) in iterative optimization are the swarm of NSs in the

smart nanosystem. Both systems rely on gradients to reach the desired location.

Movement of the NSs can be externally observed, tracked and if required, can also

be maneuvered towards a particular direction through the external unit. An inte-

grated device consisting of multiple pairs of electromagnetic coils approximating

the Helmholtz coil system, can be used to generate the rotating magnetic field to

actuate the NSs (Cheang et al.; 2017) whereas a weak static magnetic field can

be used to orient the NSs in the desired direction (Cheang et al.; 2014). Working

on these lines, a wide variety of iterative methods can be applied to the design of

an optimal direct targeting strategy. However, natural biosensing presents some

unique limitations which distinguish it from the classical optimization process.

As the composition of NSs is based on natural materials, their reaction with

the biological search space is inevitable. Hence, search space can be altered as

a consequence of its biochemical interactions with NSs. Similarly, the homing in

natural environment is in discrete capillaries as compared to a continuous search

domain in the classical optimization process. The aforementioned differences are

based on the available search space around the target; however, there are also
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some fundamental differences in terms of the challenges poised by the natural

agents themselves. In natural computation, NSs can only be steered by a common

external field. This will cause steering imperfections at every iterative step as the

heading direction of one NS may not be the best direction for other NSs in the

swarm. Conversely, there is no such limitation in mathematical optimization as all

OVs can be updated towards their individual optimal coordinates. Next, interac-

tions between the biological environment and natural homing agents introduce a

limitation on the life span of NSs whereas OVs are not consumed in the mathemat-

ical operational domain. Strategies discussed in Sections 5.2 and 5.3 address the

constraints of a common steering field and finite life span, respectively. Note that

while explaining these strategies along with the general framework throughout 3.5,

we will be using OVs to represent NSs to avoid any ambiguity.

3.4.2 Discretized Vascular Network

Based on the characteristics of tumoral vasculature outlined in 3.3.1, a vascular

network is modelled for computational experiments. Tumor vasculature exhibits a

percolation-like structure due to its fractal dimension measurements (Gazit et al.;

1997). Hence, we use invasion percolation method to simulate the sprouting pro-

cess of tumor vessels (Baish et al.; 1996). In this model, uniformly distributed

random values of strength are attached to each point on the square lattice. Then

the network is populated so that the lattice points with minimum strength adja-

cent to the current location (initial starting point) are occupied. The search is

continued until a desired occupancy level is attained, which is minimum at the tu-

mor center and increases as we move away from the tumor. All adjacent occupied
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Figure 3.4: Simulated multi-layer vascular network. The level of occupancy on the lattice
reduces from 100% to 40% gradually as the distance to the tumor center decreases. The
boundaries of the layers are denoted by the red solid lines. The tumor center is denoted
by the blue dotted circle.

points are connected by the blood vessels. In the end, additional edges are added

to the developed nodes to ensure that there is no area corresponding to zero blood

flow throughout the percolation cluster. Then, a multi-layer vascular network has

been developed to depict the fuzzy and blurred boundaries of malignant tumors

(Saunders et al.; 2006). This discretized model is required to quantify the diffu-

sive nature of tissue anomaly, which is responsible for the gradual and continuous

change in the fractal dimensions across the tumor. The inter-capillary distance

of the proposed model shown in Fig. 3.4 is set to be 100 µm and the level of oc-

cupancy reduces from 100% to 40% as we move closer to the tumor with layers

1 (green), 2 (yellow), 3 (cyan), and 4 (black) having 85%, 70%, 55%, and 40%,

respectively.
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3.4.3 Objective Functions

The observable properties of NSs such as pathological vascular structure, redox

potential, pH, enzymatic activity or homeostatic regulation form a tumor-induced

biological gradient field (BGF). Therefore it is necessary that the in vivo BGF

should be mapped to an externally measurable objective function by using OVs

as a probe for analysis of the host environment. Let f represent the externally

measurable objective function defined on the domain D, which represents the high

risk tissue under observation. There has not been any widely accepted quantita-

tive model for the above mentioned BGF in the literature. As such, we have taken

the sphere, Matyas and Easom functions to evaluate the performance of the smart

nanosystem as shown in Fig. 3.5. For example, the hyperthermic nature of most

tumors acts as an internal BGF source. Shear stress is also higher in narrowed seg-

ments of microvasculature around tumors compared to healthy and wider arterial

segments. Therefore, the objective functions in Fig. 3.5 are in general agreement

with the qualitative observations made in the existing literature and provide some

useful insight into the effectiveness of the proposed direct targeting strategies with

varying levels of difficulty. Their arithmetic expressions are

1. Sphere Function (Bowl-shaped):

f(x, y) =
1,

√
x2 + y2 ≤ 0.5 and (x, y) ∈ V

1− 0.02 (x2 + y2) ,√
x2 + y2 > 0.5 and (x, y) ∈ V.

(3.1)
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Figure 3.5: Illustration of f(x, y) for three representative objective functions: (a) Sphere
function and (b) its contour plot; (c) Matyas function and (d) its contour plot; (e) Easom
function and (f) its contour plot. For the objective f(x, y), the maximum is normalized
to 1 and the minimum value is 0.

2. Matyas Function (Plate-shaped):

f(x, y) =
1,

√
x2 + y2 ≤ 0.5 and (x, y) ∈ V

1− 0.01 (x2 + y2) + 0.02xy,√
x2 + y2 > 0.5 and (x, y) ∈ V.

(3.2)
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3. Easom function:

f (x, y) =

1,
√
x2 + y2 ≤ 0.5 and (x, y) ∈ V

0.01 + 0.99 cos(3x) cos(3y)

× exp [− (9x2 + 9y2)] ,√
x2 + y2 > 0.5 and (x, y) ∈ V.

(3.3)

The term V denotes the discrete vascular network shown in Fig. 3.4. All three

landscapes have no local maxima except for the global maximum. The tumor

center is denoted by a small circle of radius 0.5 mm located at the origin which

represents the highest values of f(x, y). The maximum value of all objective func-

tions is normalized to 1. As we move away from the center, this value starts to

decrease. The minimum value at the edges of the landscapes is normalized to 0.

After adequate scaling, these extreme values can effectively emulate a large range

of BGFs with no loss of generality. Note that the Easom function has no gradient

as it abruptly goes from 1 to 0 outside the circle with radius 0.5 mm, represent-

ing the worst case scenario. For simplicity, we have just imprinted the objective

functions in (3.1), (3.2) and (3.3) on the vascular network V. The blood inflow

is assumed to be from the bottom-left corner and the outflow from the top-right

corner.
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Figure 3.6: Proposed framework where swarm alternately operate in observing-and-
recording (OR) mode and swarm-steering (SS) mode. The process keeps on repeating
through iterative feedback channel until target is detected.

3.5 Proposed Direct Targeting Strategies through

In Vivo Computation

3.5.1 Computational Framework

In the proposed framework, a swarm of OVs is randomly deployed in a pre-defined

and confined injection area instantaneously. After deployment, the swarm itera-

tively operates in two basic modes: the observing-and-recording (OR) mode and

the swarm-steering (SS) mode as explained below:

1. Initialization: Let x⃗1, x⃗2, · · · , x⃗N represent the locations of N OVs deployed

in the initial deployment region −5 mm ≤ x, y ≤ −4 mm. The overall

search space is defined by −5 mm ≤ x, y ≤ 5 mm as shown in Fig. 3.4.

After deployment, they start searching for the optimal solution based on an

iterative algorithm explained in 3.5.3. It is worth mentioning here that the

swarm is influenced by the gradient field from a single global optimum in the

current framework.
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2. OR Mode: After initialization, the OVs operate in the common OR mode. It

is in this mode that the area around each OV is explored to look for the local

gradient. In OR mode, OVs move in the search space without the influence

of any guidance, and their movements are observed and recorded to assist in

the operation of the SS mode as explained next.

3. SS Mode: After the common OR mode in which the swarm wanders freely

in the search domain, it goes into the controlled SS mode shown in Fig. 3.6.

In the SS mode, the gradients observed in the OR mode are fused together

with the help of different strategies explained in 3.5.2. As a result of gradient

estimate fusion, the swarm takes a step toward the best direction that will

most probably lead to the optimal solution. In natural computation, it

corresponds to the application of the external magnetic field to maneuver

NSs towards the location of the tumor under the guidance of the BGF as

shown in Fig. 3.3. The fusion of gradient estimates helps in resolving a key

physical constraint i.e., unidirectional external magnetic field. As the swarm

can only be steered in one direction, the individual gradient estimates of NSs

need to be fused together to get the possible steering direction for the whole

swarm.

4. Termination: The swarm switches to operate between the OR and SS modes

while homing for the target until detection is achieved. In natural envi-

ronment, termination of the homing process can be observed externally by

noticing NSs when they tend to stop their movement as mentioned in 3.2.4.
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Figure 3.7: Pictorial representation of time division multiplexing of OR and SS modes
at top left. Bottom right represents an enlarge illustration of an OR mode in which
optimization variable follows a free walk in a zigzag pathway, x⃗1 (tOR,1), x⃗1 (tOR,1 +∆t),
· · · , x⃗1 (tOR,1 +K∆t) with ∆t being the observation time interval.

3.5.2 Swarm Steering using MEF for Global Direction Find-

ing

In the OR mode, each OV follows a free and uncontrolled walk in the discrete vas-

cular network shown in Fig. 3.4; x⃗1 (tOR,1), x⃗1 (tOR,1 +∆t), · · · , x⃗1 (tOR,1 +K∆t),

x⃗1 (tSS,2), where ∆t = (tSS,2 − tOR,1) /(K + 1) as illustrated in Fig. 3.7. Subse-

quently, the direction of the gradient is estimated by

θ1 (tSS,2) = ∠ (∇f (x⃗1 (tOR,1)))

≈ ∠ (x⃗1 (tOR,1 + k1∆t)− x⃗1 (tOR,1 + k2∆t)) ,

(3.4)
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and

(k1, k2) =

argmax
k′1,k

′
2

[
f (x⃗1 (tOR,1 + k′

1∆t))− f (x⃗1 (tOR,1 + k′
2∆t))

]
∥∥∥x⃗1 (tOR,1 + k′

1∆t)− x⃗1 (tOR,1 + k′
2∆t)

∥∥∥
2

,

where k′
1 > k′

2 and k′
1, k

′
2 ∈ {0, 1, · · · , K}.

(3.5)

Note that ∥ · ∥2 is the ℓ2 norm and K represents the total number of random

steps in a single OR mode. Hence θ1(tSS), θ2(tSS), · · · , θN(tSS), can be visualized

as the directions of localized gradient estimations by N OVs. For the collective

swarm locomotion through uniform steering force, we need to find the desired

direction which ensures the maximum number of OVs reaching the target. We

propose the MEF strategy for swarm steering which tries to find the global estimate

θG(tSS), at time tSS, using the localized gradient information through the following

optimization metric:

• Mean Angular Misalignment: If the actual target location is x⃗T,act, then the

aligned heading direction θA(tSS) is the angle between the x-axis and the

vector defined by x⃗T,act − ϵ⃗(tSS), where ϵ⃗(tSS) is the swarm center defined as

ϵ⃗(tSS) =
1

N

N∑
i=1

x⃗i(tSS). (3.6)

The difference between the aligned and estimated heading directions can be

represented as

ϕ(tSS) = |θA(tSS)− θG(tSS)|. (3.7)
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Hence, a θG(tSS) which ensures minimum mean angular misalignment

1
L

∑L
l=1 ϕ(tSS,l) is the desirable estimate. Here, the index l represents the lth

SS operation and L is the total number of SS operations performed in the

entire tumor homing process.

To solve this problem, different swarm steering strategies are outlined in 3.2.4.

They are realized for tumor sensitization problem as below:

1. Leader-based Swarm Steering: During the OR mode, each OV estimates

the local gradient and its fitness is evaluated in the search space which is

the largest value of the objective functions shown in Fig 3.5. The uniform

steering direction for the swarm depends upon the highest ranked OV, having

the highest fitness value among all OVs in the swarm. So

θLG (tSS) = θi∗(tSS),

such that i∗ = argmax
i

f (x⃗i (tOR +K∆t)) ,

where θi∗ = ∠ (∇f (x⃗i∗)) and i = 1, · · · , N.

(3.8)

θ1(tSS), θ2(tSS), · · · , θN(tSS) are the directions of localized gradients learned

by the OVs for the SS mode and x⃗i (tOR +K∆t) represents the position of OV

after the final step in the OR mode. Existing models in the literature exhibit

a direct relationship between the number of leaders and the swarm size for

guiding the swarm. However, in the current work, there can be only one

leader due to the limitation of the unidirectional magnetic field. Also note

that as the selection criterion for the leader depends upon the largest value

of the objective function (i.e., the OV which is closest to the target), any
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OV can be selected as the leader of the swarm. After each iteration, current

locations of all OVs homing in the search space are observed to determine

the new leader.

2. Weight-based Swarm Steering: Alternatively, every OV in the swarm can

contribute in finding the global heading direction θG(tSS), if all the locally

learned gradients by OVs are somehow fused together. One combining ap-

proach for localized estimations can be through proportional weighted fusion

(PWF). During PWF, learned gradients from all the OVs may be fused to-

gether such that the weight of each estimate is proportional to the value of

fitness in representative objective functions outlined in 3.4.3. Hence

θPWF
G (tSS) =

N∑
i=1

φi(tSS) θi(tSS), (3.9)

where φi(tSS) are the weighting factors such that

φi(tSS) =
f (x⃗i (tOR +K∆t))∑N
i=1 f (x⃗i (tOR +K∆t))

. (3.10)

A much simpler approach in which all the OVs contribute with their localized

estimations, is to assign equal weights to their estimated gradients and fuse

them to form θG(t) for the whole swarm. We call it equal weighted fusion

(EWF). This strategy is unrestrained of fitness-dependent weighted alloca-

tion as each estimation effectively has the same weight. The overall swarm

heading direction is simply the mean of individual estimated gradients of the

OVs.

θEWF
G (tSS) =

1

N

N∑
i=1

θi(tSS). (3.11)
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It is worth mentioning here that the global heading direction for the swarm

may or may not be the best direction for a particular OV.

3. Geolocation-based Swarm Steering: In the least-square-position-estimation

(LSPE) method (Pages-Zamora et al.; 2002), the target estimation problem is

translated into a linear mathematical problem. As demonstrated in Fig. 3.8,

the target is located at x⃗T = (xT , yT ), whereas the ith OV position is x⃗i(tSS) =

[xi(tSS), yi(tSS)] with its estimated gradient as θi(tSS). The LSPE method

estimates the target location (Raju et al.; 2016) as

x⃗est(tSS) =

xest(tSS)

yest(tSS)

 =
[
HT

θ Hθ

]−1 HT
θ Aθ, (3.12)

where

Hθ =



− sin θ1(tSS) cos θ1(tSS)

− sin θ2(tSS) cos θ2(tSS)

...
...

− sin θN(tSS) cos θN(tSS)


(3.13)

and

Aθ =



−x1 sin θ1(tSS) + y1 cos θ1(tSS)

−x2 sin θ2(tSS) + y2 cos θ2(tSS)

...

−xN sin θN(tSS) + yN cos θN(tSS)


(3.14)

whereas, the heading direction, θG(tSS) of the swarm through (3.11) will be

the angle between the x-axis and the vector defined by x⃗est(tSS) − ϵ⃗(tSS),

where ϵ⃗(t) is again the swarm center.
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Figure 3.8: Illustration of least-square-position-estimate (LSPE) method in which swarm
of nanoswimmers with localized gradient estimations perform target homing through the
aid of biological gradient field.

Using (3.6), the aforementioned swarm steering strategies are compared by taking

the mean angular misalignment as the optimization parameter.

3.5.3 Swarm Steering using MDGD for Search Acceleration

In order to achieve successful target homing, the total detection time should al-

ways be less than the life span of NSs as mentioned in 3.2.4. For natural com-

puting, learning the environment and location update are time-consuming steps,

contrary to the mathematical computing where such operations are performed in-

stantly. The direct targeting strategy inspired by the MDGD starts with generic

optimization variables OV1, OV2, · · · , OVN located at x⃗1, x⃗2, · · · , x⃗N attempting to

find the global maximum f (x⃗∗). For the framework shown in Fig. 3.6, consider the

sequence x⃗1

(
t
(1)
OR,1

)
, x⃗1

(
t
(2)
OR,1

)
, x⃗1

(
t
(3)
OR,1

)
, · · · , x⃗1

(
t
(K)
OR,1

)
representing the posi-

tions of OV1 observed by the external system. Here, x⃗1

(
t
(k)
OR,1

)
represents the
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location of the OV1 after kth step during the zigzag movement in the OR mode as

illustrated in Fig. 3.7. During each OR mode, OV1 goes through K OR processes

with the velocity vOR. The variable then needs to update its position during SS

mode moving with the velocity vSS. In the classical gradient descent, for location

update, we have

x⃗1

(
t
(k)
OR,1

)
= x⃗1

(
t
(k−1)
OR,1

)
+ γk−1∇f

(
x⃗1

(
t
(k−1)
OR,1

))
where k = 2, 3, · · · , K.

(3.15)

However, in our case, where location updating is interrupted by multiple OR and

SS modes, the position update is modified as

x⃗1

(
t
(1)
OR,2

)
= x⃗1 (tSS,2) + γk∇f (x⃗1 (tSS,2)) . (3.16)

The gradient ∇f (x⃗1 (tSS,2)) is estimated through K OR processes. If the gradient

is not changing much from t
(k)
OR,1 to t

(k+1)
OR,1 , it can be estimated as

∇f (x⃗1 (tSS,2)) ≈ max
k=1,2,··· ,K

{
∇f

(
x⃗1

(
t
(k)
OR,1

))}
. (3.17)

Otherwise, only the final gradient estimate is used such that

∇f (x⃗1 (tSS,2)) ≈
{
∇f

(
x⃗1

(
t
(K)
OR,1

))}
. (3.18)

Suppose that f (x⃗) is convex and ∇f (x⃗) is Lipshitz, the step size γk can be cho-

sen to guarantee convergence to a global optimum by using the Brazilai-Borwein

method (Barzilai and Borwein; 1988).
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To meet the physical constraint imposed by the finite life span, it is worth

noting that OVs are moved more swiftly in the SS mode as compared to the

OR mode i.e. vSS > vOR. This is because the movement of the OVs during

the OR mode should be steady in order to obtain accurate and precise gradient

estimations. As a consequence, the distance covered in the SS mode should be as

large as possible to reduce the total detection time. We propose a memory-driven

approach which helps to accelerate the traditional memory-less gradient descent

(MLGD) (Chen, Ali, Shi and Cheang; 2019) in the relevant direction through

dampening of oscillations (see Fig. 2(b) in (Ruder; 2016)). Faster detection is

achieved by adding an α-term (memory) of the update vector β(tSS,L−1) of the

past time step to the current update vector β(tSS,L) as

β(tSS,L) =

(
L−1∑
l=1

ζlβ(tSS,l)

)
+ γk∇f (x⃗1 (tSS,L−1)) , (3.19)

where

ζl = α e−
l

λL . l = 1, 2, 3, · · · , L. (3.20)

Here, the index l represents the lth SS operation and L is the number of SS steps till

the current state. The term ζ is called the forgetting factor and has an exponential

term which determines the weight given to the past time SS steps. For λ → 0,

zero weight is assigned to the older SS steps for l ≥ 2. The larger λ is, the larger

is the contribution of previous SS steps to the ζ. As λ → ∞, an equal weight

is assigned to all the past SS steps. For simulation studies, different numerical

values are assigned to α (α ≥ 0), where α = 0 corresponds to the special case

of memory-less gradient descent. Finally, the position update is expressed as
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x⃗1 (tOR,L) = x⃗1 (tSS,L) + β(tSS,L). When using the MDGD strategy, we actually

push our OV in the direction of maximum gradient. The step size for the SS mode

increases for dimensions whose gradients point in the same directions that results

in faster convergence to the global maximum (i.e. tumor location) with reduced

oscillations.

3.6 Performance Analysis

We use MATLAB® as the simulation tool to evaluate the tumor homing and

targeting performance of the proposed swarm steering strategies. The results are

compared with the brute-force search (i.e., systemic targeting) for analysis purpose.

3.6.1 Computational Results for MEF Strategies

3.6.1.1 Simulation Setup

The objective functions shown in Fig. 3.5 are overlaid on the multi-layer vascular

network presented in 3.4.2. The deployment region is set to be −5 mm ≤ x, y ≤

−4 mm. The maximum search time allowed is set to be 200 s for each run of 1000

simulations. To analyze the targeting performance of the aforementioned swarm

steering strategies, the swarm consists of five OVs. The target is considered to be

detected if 60% of the OVs successfully reach the target and the searching process

is stopped. It is assumed that the remaining OVs will be guided towards the target

if they have not overshoot the tumor location. The overall targeting efficiency (η)

of the system is calculated as the ratio of the number of OVs that have detected
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Figure 3.9: Performance comparison of MEF-based swarm steering strategies for the
sphere, Matyas and Easom landscapes when: target is at the center of search space (a,d),
target is off-centered at x = 2 (b,e) and x = 4 (c,f). The blood flow is assumed to be from
bottom left to top right. EWF-based swarm steering outperforms other strategies when
target is in the direction of blood flow (tumor at center) whereas leader-based swarm
steering gives best results when target is not in the direction of blood flow (tumor off-
centered).

the tumor to the total number of deployed OVs over the aforementioned simulation

settings. The swarm spreadness δ is given by

δ =
L∑
l=1

N∑
i=1

∥ϵ⃗(tSS,l)− x⃗i(tSS,l)∥2, (3.21)

where ∥ · ∥2 is the ℓ2 norm, is also used as the performance measure. Cytotoxic

effect is minimized when the swarm remains compact.
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Table 3.1: Mean Angular Misalignment of MEF Strategies (Target Centered)

MEF Mean Angular Misalignment ϕ

Strategies Sphere Matyas Easom

Leader 8.47 10.07 11.60

PWF 7.29 9.35 10.38

EWF 7.07 8.14 10.46

LSPE 10.70 12.25 13.60

Random 20.79 21.41 22.57

3.6.1.2 Simulation Results

Initial statistical results are outlined in Table 3.1 which demonstrate that the

mean angular misalignment (ϕ) is minimized for weight-based fusion strategies.

For simplicity, results are shown only for the case when the target is at the center

of the landscapes. In terms of search space, the sphere landscape with smooth BGF

leads to smaller ϕ than the Matyas and Easom landscapes. As expected, random

steering (brute-force search) has the largest ϕ as it follows systemic targeting to

detect the tumor.

Fig. 3.9 represents the performance of the leader-based, weight-based (PWF

and EWF) and LSPE-based swarm steering strategies compared to random steer-

ing for target detection. Fig. 3.9(a,d) shows that the EWF strategy achieves the

best detection and targeting efficiency (PD = 90.50% and η = 49.74%) when the

target is at the center of the search space. Hence, for a symmetrical swarm-target

orientation, the mean of individual estimates provides the best results. How-

ever, when the swarm-target orientation is non-symmetrical i.e., target is off-center
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(moved to x = 2 mm and 4 mm), leader-based swarm steering outperforms other

strategies for all three landscapes as shown in Fig. 3.9(b,c,e and f). Nevertheless,

all MEF-based swarm steering strategies perform better than the random steering

of the swarm.

Table 3.2 outlines the statistical results related to swarm spreadness (δ) for

the MEF-based swarm steering strategies. Again for simplicity, the results are

for target being at the center of landscapes. δ is selected as the performance

measure (as mentioned in 3.1.1) because we want the swarm to remain closely

packed. Weight-based (PWF and EWF) swarm steering shows the lowest values

of δ whereas random search gives the maximum swarm spreadness. Comparing

the search landscapes, the swarm remains more compact for the sphere function

than the Easom and Matyas landscapes.

Table 3.2: Swarm Spreadness of MEF Strategies (Target Centered)

MEF Swarm Spreadness δ

Strategies Sphere Matyas Easom

Leader 25.94 26.98 29.67

PWF 23.87 25.35 27.47

EWF 23.85 24.92 26.15

LSPE 25.89 27.83 32.62

Random 31.25 30.37 31.39
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Figure 3.10: Trajectories of optimization variables for: (a) “◦” - MDGD-inspired direct
targeting and “□” - Brute-force search (b) “◦” - MLGD-inspired direct targeting and “◦”
- MDGD-inspired direct targeting.

3.6.2 Computational Results for MDGD-based Direct Tar-

geting

3.6.2.1 Simulation Setup

As the prime focus is on fast detection of the target through MDGD-based direct

targeting, the number of OVs is reduced to two for simplicity. Moreover, as EWF
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performs best in terms of detection probability and targeting efficiency, it is used

to accelerate the searching process through MDGD. It is assumed that the OVs

move faster during the steering process in the SS mode (i.e. vSS = 120 µm/s) as

compared to the gradient estimation in the OR mode (i.e. vOR = 80 µm/s). Again,

the maximum search time allowed is set to be 200s for each run of 1000 simulations.

Finally, the limiting case of λ → 0 in Eq. (3.19) is used for numerical analysis

while focusing on the impact of α-term on system performance. The searching

process is stopped if any of the OVs reach the cancer center assuming that the

other OV will be guided to the tumor center if it has not overshoot the tumor

location. For the brute-force search, each OV goes through a random walk in the

lattice. The brute-force search does not use the information related to gradients

to look for the tumor and the OV stops searching if it reaches the tumor center.

However, the other OVs continue their random drift in the absence of an external

guidance.

3.6.2.2 Simulation Results

Fig. 3.10(a) shows the typical trajectories of OVs for the landscape of the sphere

function when both the proposed MDGD-inspired direct targeting and the brute-

force search are considered. As demonstrated, the proposed strategy successfully

detects the tumor center whereas the brute-force search fails to do so. Fig. 3.10(b)

shows the comparisons of gradient descent with and without the memory. As

illustrated, MDGD goes into the OR mode (represented with a cluster of points in

Fig. 3.10, detailed SS and OR modes in Fig. 3.7) just twice before it detects the

target whereas the classical MLGD requires four OR modes consuming more time

to reach the target.



97

Figure 3.11: Impact of α-term (memory) on system performance for accelerated search
through memory-driven gradient descent (MDGD): (a) Probability Detection (PD) and
(b) Targeting Efficiency (η).

The impact of α-term (memory) on the detection probability and targeting

efficiency is shown in Fig. 3.11(a and b) respectively. The spike in performance
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at α = 0 for all landscapes is associated with the absence of any memory-driven

component (classical MLGD). However, this better performance of MLGD is at

the expense of longer sensitization time. For MDGD, PD and η follow bell-shaped

curves and give better results if 0.8 ≤ α ≤ 1.4 for the sphere and Matyas land-

scapes. The performance of the Easom function is the worst and follows a straight

line as expected from a gradient-less search domain. Specifically, graphs show that

for the sphere landscape at α = 0.9, system performance is the best (PD = 72.60%

and η = 66.90%). It is also evident that the sphere landscape always outper-

forms the Matyas and Easom landscapes at any particular value of α. Finally,

PD becomes lower than the average detection probability of brute-force search for

α < 0.5 and α > 1.8; however η remains better than the brute-force search for all

values of α. In summary, α should be within the range 0.8 ≤ α ≤ 1.4 for optimum

performance of the proposed strategy.

Finally, Fig. 3.12 represents the histograms of search time for all the landscapes.

The graphs demonstrate that the MDGD-based strategy detects the tumor faster

as compared to MLGD. This is due to the fact that the current step taken by

the OV considers the direction of the previous steps taken by it. If it finds that

the direction is correct (i.e. towards the global maximum), it increases its step

size resulting in faster target detection. However, there is a trade off between

detection performance and search time of both strategies. MDGD starts detecting

the target at around 50 seconds whereas MLGD detects at around 100 seconds.

However, MDGD detection performance (PD = 72.60% and η = 66.90%) is lower

than MLGD (PD = 89.60% and η = 78%) for the sphere landscape. The same

trend is observed in the Matyas and Easom landscapes. The search time of 200s

indicates that none of the two OVs are able to detect the tumor.
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Figure 3.12: Histograms of search time for direct targeting inspired by MDGD in: (a)
Sphere landscape, (c) Matyas landscape, (e) Easom landscape, and for MLGD in: (b)
Sphere landscape, (d) Matyas landscape, (f) Easom landscape.

3.7 Conclusion

We have proposed novel MEF-based swarm steering strategies to address the

physical constraint of unidirectional magnetic field. We have shown by compu-

tational experiments that EWF-based swarm steering provides the best solution

(with PD = 90.50% and η = 49.74% compared to the brute force search with

PD = 41.29% and η = 20.74%) when tumor is in the direction of blood flow whereas

leader-based swarm steering outperforms other strategies for non-symmetric NS-

tumor orientations. Statistical results also illustrate that uniform swarm steering
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direction, obtained from equal weighted fusion of individual estimates, ensures

minimum swarm spreadness. MDGD-inspired search acceleration method for tu-

mor sensitization addresses the challenge of finite life span of NSs. Simulation

studies demonstrate that the proposed MDGD strategy results in faster localiza-

tion of the tumor (approximately 50% less time) than the classical MLGD and

brute force search.

In future, the proposed framework may be applied to multi-modal optimization

where multiple tumors are present in the region-of-interest. Furthermore, the pro-

posed strategies and objective functions should be validated by real experiments

to justify their clinical relevance. Finally, apart from memory-based gradient de-

scent, other optimization algorithms may also be looked in to achieve more efficient

tumor sensitization.
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Chapter 4

Autonomous In vivo Computation

in Internet-of-Nano-Bio-Things

Different natural biological processes are possible because of the collaboration

among simple living cells. Similarly computerized systems such as multi-agent

systems (MAS) rely on multiple interacting agents with simplified and reduced ca-

pability, to collectively solve difficult problems that are impossible for individual

agents to solve on their own. This work highlights an autonomous tumor sensiti-

zation strategy in complex human vasculature, where target detection is achieved

through swarm coordination mechanism, with no prior knowledge of tumor lo-

cation. We propose that small-scale biocompatible organisms such as nanoparti-

cles, can perform deterministic tasks following the simple principles of aggregation

and migration. We aim to show through computational experiments that tumor-

triggered bio-physical gradients can be leveraged by nanoparticles to collectively

move towards the potential tumor hypoxic regions. Although individual nanopar-

ticles have no target-directed locomotion ability due to limited communication
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and computation capability, we demonstrate that once passive collaboration is

achieved, they can successfully avoid obstacles and detect the tumor. Numer-

ical experiments demonstrate that the overall targeting efficiency could improve

considerably from 10% to 90% through passive collaboration among nanoparticles.

Furthermore, with the introduction of noisy search space and mobile obstacles, the

targeting performance would reduce by 25%. Such self-regulating particles can be

used as homing agents for target amplification, and hence can assist in early can-

cer detection through contrast-enhanced medical imaging. We believe that our

work will motivate self-dependent and non-centralized approach for magnification

of tumor location.

4.1 Introduction

Cancer is one of the leading cause of human deaths for the past few decades (Siegel

et al.; 2017). The number of fatalities can be significantly reduced if the tumors

are detected at their early stage. This is challenging through existing medical

imaging technologies due to their resolution limits. As an emerging nanotechnol-

ogy, computational nanobiosensing has great potential in the field of biomedicine

(Seidi et al.; 2018; Shi et al.; 2019). With the rapid development of mart nanosys-

tems, present diagnostic and therapeutic strategies can be vastly revolutionized.

As an example, nanoparticles with inherit biosensing ability along with chemical

or physical tumor-induced sensitivity, may perform autonomous detection of small

tumors in hard-to-reach tissues and human body cavities.
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4.1.1 Background

4.1.1.1 Early Cancer Detection

Cancer grows exponentially, therefore detecting cancer in its early stage is the

most important factor for successful treatment of this life threatening disease, es-

pecially for prostate and penile cancer in men and for cervical and breast cancer in

women. Modern era medical imaging techniques (MITs) such as MRI, computed

tomography and X-rays have insufficient resolutions for detecting very small ma-

lignant tumors having no clinically evident symptoms (Kasban et al.; 2015). For

example, small high risk breast cancer (< 2 mm) and micro-metastasis are un-

detectable due to limited potential of present clinical imaging modalities (Zhou

et al.; 2015). These malignant tumor cells can metastasize to bones, liver, lungs,

and brain. In an effort to detect small tumors before they start metastasizing,

researchers are turning to nanoparticles or liposomes (Qian et al.; 2012; Ferrari;

2005; Malekzad et al.; 2017) as candidates for contrast agent in MITs (Bucci et al.;

2017; Wen et al.; 2016). Contrast agents such as CREKA-Tris (GD-DOTA)3, have

been used in getting robust contrast enhancement by enabling the detection of

small metastatic tumors (< 0.5 mm), extending the detection limit of imaging

modalities (Zhou et al.; 2015). Healthy and tumoral tissues can have more promi-

nent distinguishing features, once these contrast enhancing nanoparticles deposit

themselves on malignant tumors, making early cancer detection practicable with

the help of existing medical imaging techniques.
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4.1.1.2 Tumor Homing through Systemic Circulation

Chemotherapy is regarded as one of the most effective treatments of cancer and

is widely used around the globe. However, it is associated with systemic toxicity

that ultimately harms healthy tissues as well as malignant tumors. Cells in the

bone marrow for blood forming, hair follicles, and cells in the digestive tract and

reproductive system are most likely to be damaged by chemotherapy. To control

this side effect, targeted drug carriers have been proposed in the recent few decades

(Mimeault et al.; 2008). Nevertheless, with knowledge-less systemic targeting, a

very small percentage of nanoparticles are delivered to the cancerous site. Due

to the influence of systemic circulation, ample driving force is not available to

target the hypoxic regions. Moreover, nanoparticles are consumed and lost inside

the human vasculature due to spreading (diffusion), deterioration and branching

(taking a wrong vessel), etc. It is because of these reasons that systemic targeting

only delivers a small fraction (< 2%) of nanoparticles to the precise tumor location

(Bae and Park; 2011; Wilhelm et al.; 2016).

4.1.1.3 Tumor Homing through External Manipulation

Recent work has increased the detection probability and targeting efficiency of

nanoparticles with the aid of external tracking and control (Chen, Ali, Shi and

Cheang; 2019). The main advantage of tumor sensitization through external ma-

nipulation is that the nanoparticles take the shortest path to reach diseased tissues

ensuring their minimum exposure to the systemic circulation. However, a priori

knowledge of the tumor location is required in order to guide nanoparticles towards

the tumor. It has been shown that through the aid of external magnetic field, 55%
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of the drug containing nanoliposomes harnessed by the magneto-aerotactic bac-

teria called Magneto-coccus marinus strain (MC-1) reached the tumor hypoxic

regions (Felfoul et al.; 2016). Alternatively, tumor detection can also be achieved

with no prior knowledge of the tumor location through smart nanosystems. These

systems can be broadly classified into “environment-responsive system” and the

“environment-primed systems”(Seidi et al.; 2018; Kwon et al.; 2015; Von Maltzahn

et al.; 2011; Park et al.; 2010). They are designed in a way so that the in vivo envi-

ronment itself assists in early microcarcinoma detection. However, in the absence

of information related to tumor location, the detection process does not guarantee

fast detection of cancer, as it may not always adopt the shortest path. Externally

manipulable smart nanosystems are proposed by Chen et al. (Chen, Ali, Shi and

Chaeng; 2019), that profits from the benefits of smart nanosystems along with ex-

ternal control and tracking, resulting in an increase of tumor detection capability.

It is worth mentioning here that nanoparticles are being treated individually or

as a single entity in all of the detection procedures mentioned above. There is no

communication or cooperative behaviour among nanoparticles that may help them

to move towards malignant tumors. In the case of external manipulation, there

is a macro unit for control and tracking which is used to guide the nanoparticles

towards the possible tumor location.

4.1.2 Self-Regulated and Coordinated Tumor Targeting

4.1.2.1 Tumor-triggered Gradient Responsiveness

Passive physical properties of the host environment are changed in the presence of

a tumor. These include alterations in blood velocity and oxygen content (Baish
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et al.; 1996; Komar et al.; 2009), variations in temperature and reshaping of vas-

culature architecture (Gazit et al.; 1995) in the peritumoral region. Moreover,

chemical properties such as the redox potential and pH profile are also changed in

the tumoral environment. The rapid proliferation of cancerous cells results in an

inadequate supply of blood, causing a reduced supply of oxygen and other nutri-

ents. As a result, lactic acid is produced in cancerous cells, contributing to a lower

pH in tumors than normal tissue (pH = 7.4). Finally, biological properties such as

the bio-molecular cell structure and enzymes are also changed in the peritumoral

region. These biochemophysical gradients are regarded as internal stimuli while

external stimuli such as light, ultrasound or magnetic fields can also be used to in-

duce tumor-specific triggers that can prime the host environment with bio-physical

gradients (Shen et al.; 2015; Kelley et al.; 2013).

Such a change in conditions in the tumoral environment stimulate nanoparticles

to undergo morphological and structural changes. For example, the hyperthermic

nature of most tumor sites can act as an internal stimulus for temperature-sensitive

polymers such as PNIPAAm and its derivatives. Their structure is switched from

a swollen form to a shrunken form and vice versa in response to a change in

temperature around upper and lower bounds of critical values called the upper

critical solution temperature (UCST) and the lower critical solution temperature

(LCST); thereby, a phase transition leading to swelling or shrinking occurs (Yan

and Okuzaki; 2008; Beija et al.; 2011; Karimi et al.; 2016). Similarly, “brush

hydrogels”, consisting of NiPAAm and arcylic acid (AAc) co-polymers also possess

the temperature-dependent capability of shrinkage/swelling of the brushes (Lue

et al.; 2011). Moreover, temperature-sensitive liposomes are another potential

nanoparticles with limited toxicity that exhibit a phase transition after a change
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in temperature. In the past few years, there have been abundant advances in

finding pH-responsive nanoparticles which have extremely low cytotoxicity towards

healthy cells (Song et al.; 2014). For example, self-assembled micelles (Li et al.;

2016), which are stable at the physiological pH of 7.4, undergo swelling in acidic

intratumoral (pH = 6.8) and endosomal (pH = 5.5) environments. These phase

transition behaviours, which can also be seen in several biological growth processes

(s Vicsek; 1992), help to achieve clustering and transportation of nanoparticles by

aligning the directions of their motion after collaborating with neighbours (Li

et al.; 2019; Vicsek et al.; 1995). As a result, they start to have a self-regulated

movement towards the desired target.

4.1.2.2 Autonomous Tumor Sensitization

Nanoparticles have been mainly considered as individual entities in the previous

research that require a central macro unit to externally guide them (Cheang et al.;

2017; Ali et al.; 2019). The nanoparticles’ behaviour is observed externally which

helps in selecting the best direction of magnetic field that is used to steer nanopar-

ticles to the possible tumor location. Similarly, an external control unit is required

to explicitly manipulate individual components in most of the current robotic sys-

tems designed for target homing or object transportation. By contrast, Li et al.

(Li et al.; 2019) has designed loosely coupled particles that can collectively move

towards a light source (photo-taxis). These particles can only perform uniform

oscillations with no independent locomotive ability. By mutual collaboration and

coordination, they attain the capability to perform robust locomotive features such

as avoiding obstacle and transporting load without taking help from any external

source.
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An alternative approach proposed in the current research work, inspired by

the natural biological systems such as wound healing (Friedl and Gilmour; 2009;

Weijer; 2009), morphogenesis or the growth of cancer itself, is the independent and

fully autonomous system in which very simple nanoparticles with minimum com-

putation ability, when combined together, can perform tumor homing and obstacle

avoidance in complex human vasculature (Ali, Sharifi, McGrath, Cree and Chen;

2020). The swarm of such biological gradient field (BGF) sensing nanoparticles

successfully detects the target through the principles of cooperation and coordina-

tion. These nanoparticles collectively achieve target-directed locomotion through

internal structural changes, caused by the in vivo physical, chemical or biolog-

ical alterations in the peritumoral region (Park et al.; 2017). Similar collective

and collaborative phenomena can also be observed during flocking, shoaling, and

swarming behaviours of birds, fish, and insects, respectively. One such system is

shown in Fig. 4.1(a), where injected nanoparticles (in black), under the influence

of biophysical gradient field (in red shading) around the early microcarcinoma,

collaborate with their neighbours and move towards the possible target location.

The number of neighbours that each nanoparticle can interact with, depends upon

its physical characteristics like shape, size, coating or material and must be de-

signed in order to maximize efficacy. Future micro- or even nano-scale medical

applications in which the prime focus is to scale up the number of components

while reducing the size of each component has a huge potential for such a system.

In the current work, tumor sensitization is performed through autonomous and

independent nanoparticles which form the basis of the proposed self-regulating in

vivo computation framework. Previous research either focused entirely on sys-
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Figure 4.1: (a) Bio-inspired tumor sensitization. Nanoparticles (in black) passively col-
laborate and move towards potential tumor after sensing gradient (red circle). (b) Illus-
tration of collaboration among agents to move collectively towards a gradient source in a
typical Multi-agent system.

temic circulation during the tumor homing process (Bae and Park; 2011; Wilhelm

et al.; 2016) or used an external controlling unit to guide nanoparticles towards

the possible tumor location (Chen, Ali, Shi and Cheang; 2019; Felfoul et al.; 2016;

Cheang et al.; 2017; Ali et al.; 2019). In contrast, the current work is inspired

by multi-agent systems (MAS) in which swarm intelligence of autonomous agents

helps to solve complex computer science and engineering tasks. One such problem

may be target detection in complex search domains where agents using multi-

ple aiding inputs such as environment sensing, collaboration among neighbouring
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agents and/or their own history of actions, try to find the possible target location

as shown in Fig. 4.1(b).

Working along the same lines, we propose that the BGF-triggered response

of the nanoparticles along with collaboration among neighbours can help in col-

lectively deciding about the next course of movement leading to target-directed

locomotion. Note that isolated nanoparticles can only go through gradient depen-

dent morphological changes and do not possess any ability to move towards the

target. It is only in a collective action, that a targeting behaviour arises. The sim-

ple design and working principle of our proposed tumor homing strategy makes it

a very promising approach for applications like contrast-enhanced medical imag-

ing or targeted drug delivery. Due to the nature of human vasculature, the prime

objective is to go small scale in size which makes it very demanding to achieve

individual addressability (Zhang et al.; 2012; Sitti; 2009; Hu et al.; 2018). More-

over, the framework is robust due to the locomotion depending upon collaboration

among all the particles rather than on any internal or external individual entity.

Hence, it remains operable even if some nanoparticles are lost in the host environ-

ment due to degeneration, branching or finite life span of nanoparticles. Finally,

due to the absence of any fixed design or pre-specified orientation, the swarm of

nanoparticles is highly flexible which can maneuver itself to avoid any obstacle that

comes in its way during target homing. Nevertheless, this system always requires

a BGF to work in an acceptable manner as demonstrated in Section 4.4.
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4.1.3 Main Contributions of the Current Chapter

This work is an extension of our previous research (Ali, McGrath, Shi, Cree,

Cheang and Chen; 2020) and provides a detailed explanation of computational

experiments for autonomous in vivo computation. First of all, a novel analogy of

the natural computing problem is established with the multi-agent system (MAS).

A one-to-one mapping is presented between tumor sensitization through natural

computation and autonomous MAS which was not presented in (Ali, McGrath,

Shi, Cree, Cheang and Chen; 2020). Secondly, in the current work, reality checks

of natural computing that may affect the system efficacy are outlined, providing a

critical insight about the limitations of the natural computation problem. These

important aspects on the real-life constraints are missing in our previous work.

(Ali, McGrath, Shi, Cree, Cheang and Chen; 2020) focuses only on the ideal case

of a noise-less search domain, whereas the current work considers imperfections

poised by natural biological environments through a noisy search domain. A range

of standard deviations of the noise have been chosen to demonstrate its effect on

the targeting efficiency. Furthermore, our previous work considers the simplified

scenario of static obstacles. However, there are always some mobile obstacles in

the blood circulatory system in the form of red blood cells, white blood cells,

platelets, and plasma. These constituents of blood will have effects on the target-

directed locomotion of nanoparticles. To emulate these and test the robustness of

the algorithm, we have introduced mobile obstacles in our current work. Finally,

we have included a new objective function following a bell-shaped Gaussian curve

for our simulation experiments.
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4.1.4 Organization of the Chapter

The chapter is organized as follows. Section 4.2 first mentions the general char-

acteristics of MAS, followed by mapping of MAS to the natural tumor homing

process and the associated challenges. In Section 4.3, we discuss the measurable

objective functions for the systemic targeting of tumoral tissues mapped on to in

vivo biophysical gradients along with different search domains representing tumoral

environments. Moreover, general steps of the target amplification framework are

also introduced in this section. Section 4.4 give details of the proposed bio-inspired

self-regulated in vivo computation framework. Section 4.5 describes the simulation

parameters followed by the performance analysis of different design parameters to

demonstrate the effectiveness and robustness of our proposed framework. Finally,

Section 4.6 draws some concluding remarks along with future possible directions.

4.2 MAS Inspired Biosensing

4.2.1 Characteristics of MAS

Multi-agent systems have recently gained enormous popularity among researchers

because of their capability to solve complex problems (Dorri et al.; 2018; Shamshir-

band et al.; 2013). Difficult tasks are divided into simpler sub-tasks for independent

and autonomous identities called agents. These agents after sensing the environ-

ment and using historical data in some cases, collaborate amongst neighbouring

agents to solve their individual tasks. MAS are efficient because a harder problem

is divided into simpler tasks for each individual agent making it relatively easy

to accomplish. With the simplified task allocated to each agent contributing to a
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rather uncomplicated framework with low communication overhead, MAS ensure

easy scalability due to limited exchange of information. They are highly flexi-

ble because of their inherent potential to learn and make decisions independently.

The primary goal of each agent is to gain knowledge of the environment and its

neighbours which is achieved by having the following features:

• Sociability: In order to solve complex tasks, agents share information with

their neighbours. This information can be knowledge of the environment, of

their present state and/or of their history of actions.

• Autonomy: All agents are completely independent and hence decide about

their future actions by themselves. There is no external interference in the

critical process of decision making.

• Proactivity: Every agent takes a decision after sensing the environment and

using the historical data along with knowledge of collaborating neighbours.

All individual actions taken by agents results in achieving the ultimate and

collective goal. Hence it is the proactiveness of the agents in solving their

simpler tasks that helps in resolving the complex problems.

4.2.2 Mapping from MAS to Natural Computing

Natural computing refers to the novel problem-solving techniques inspired from

information exchange in nature (Rozenberg et al.; 2012). Natural processes like

biological transport, protein-protein interactions, development processes and self-

assembly undergo information processing. As a result, natural computing methods

employ natural materials such as molecules or micro/nano biological particles for
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Figure 4.2: Mapping (shown with double headed green arrows) of autonomous MAS to
tumor sensitization through autonomous natural computation with reality checks explained
in Section 4.4.2.

computation purpose. Swarm intelligence, which is inspired by the behaviour of

a group of natural organisms may vice versa provide useful insight into the nat-

ural computing procedures. Notably, the collective and social behaviour forming

the fundamental working principle of MAS and their salient features mentioned

in Section 4.2.1, make them a potential candidate to be researched for natural

computing problems like tumor detection which is associated with a complex and

uncertain biological environment at a very small scale. MAS do not require any

external manipulation or intervention to achieve the common goal and entirely

rely on self and autonomous actions. There exists a fascinating analogy between

MAS and the tumor homing process which is highlighted below.
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1. Agents: Agents which are the building blocks of any MAS, correspond to

nanoparticles in natural computing as shown in Fig. 4.2. As agents sense

their environment to solve their individual sub-tasks, nanoparticles are also

capable of sensing the tumoral environment and go through certain morpho-

logical changes. Such an alteration in their physical, chemical or biological

properties along with their socializing ability (for example, push-and-pull ef-

fect due to change in size of an individual nanoparticle) helps them to collab-

orate with their neighbouring nanoparticles to take decisive actions. Unlike

MAS, where agents actively share the sensed information, nanoparticles in

natural computing process only go through uniform structural oscillations

resulting in passive exchange of information.

2. Domain: Domain or environment of the agents in MAS is similar to the

biological search space for nanoparticles to look for potential tumoral tis-

sues. A MAS environment may or may not be deterministic but for natural

computing process, it is always non-deterministic as the outcome of an ac-

tion is not entirely predictable because of random in vivo conditions such as

finite life span of nanoparticles and discretized nature of vascular networks.

Furthermore, the peritumoral region is dynamic as the changes that occur

in that region are caused by the tumor itself rather than as a consequence of

the actions taken by nanoparticles. On the other hand, an environment in

MAS can be both static or dynamic.

3. Parameters: Parameters are the different types of data available in the do-

main that are sensed by an agent and its neighbouring partners. This is

similar to having different bio-physical gradients in natural computing that
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originate due to the presence of tumoral tissues. After sensing the appro-

priate data, it is shared among the neighbours to take decisive actions. An

appropriate decision is achievable through two inputs to agents in MAS,

namely domain parameters and neighbouring agents, corresponding to bio-

physical gradients and neighbouring nanoparticles in natural computing as

shown in Fig. 4.2. Apart from possessing the natural ability to sense the per-

itumoral region, it is very important for nanoparticles to passively exchange

the sensed information with neighbouring nanoparticles through structural

changes.

4. Actions: After sensing the domain parameters, agents perform certain tasks

or actions which help them to solve their sub-tasks. Once the individual

simplified task is accomplished for each agent, the ultimate complex goal

of the whole system is achieved. For example, in a computer soccer game,

a certain player (agent) evaluates parameters such as position of the ball,

speed and position of opponent players to decide about his action. Simi-

larly, as mentioned in Section 4.1.2, nanoparticles undergo BGF-dependent

structural changes in the peritumoral region. For example, swelling and

shrinking of temperature-sensitive nanopolymers, along with their proac-

tiveness, autonomous nature and socializing ability, help their swarm to

mutually collaborate and potentially move towards the desired target. Al-

though, nanoparticles-oriented biosensing for tumor detection is similar to

agents-oriented MAS, the former has several unique reality checks which are

explained comprehensively in Section 4.4.2.
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4.3 Autonomous Tumor Homing Framework for Tar-

get Amplification

4.3.1 Objective Functions

As the research is still in its early stage, there are no quantitative models for the

tumor-induced physical (thermal), chemical (pH changes) or biological (enzyme al-

terations) gradients. As such, we look into some functions that have been routinely

applied in standard test problems and could represent the BGFs around the tumor

with different modes of fluctuation. Hence, for the purpose of initial investigation,

four objective functions represented by f(x, y): sphere function, Matyas function,

Gaussian function, and disc function, are chosen to evaluate the performance of

the proposed simulation framework. The sphere function has a smooth change in

the gradient and is represented by a bowl-shaped landscape (Fig. 4.3(a)). Next,

the gradient of the Matyas function is not as smooth as the sphere function but

still better than the one we have in the form of a disc function; hence the Matyas

function which forms a plate-shaped landscape (Fig. 4.3(c)), can be treated as an

average case. The Gaussian function which follows a normal distribution forming

a bell-shaped curve is shown in (Fig. 4.3(g)) with mean zero and variance σ2.

These functions should be in general agreement with the qualitative observations

made in the existing literature, and thus allow for some useful insight being pro-

vided into the effectiveness of the proposed approach for tumor detection with

varying levels of difficulty. For example, shear stress can be viewed as an inter-

nal mechanical stimulus that can cause change in the morphological structure of

nanoparticles. It is higher in narrowed segments of arteries and microvasculature
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around the tumor compared to healthy and wider arterial segments, and thus can

be qualitatively represented by the sphere, Matyas or Gaussian functions. Finally,

the disc function (Fig. 4.3(e)), corresponds to the worst-case search space with

zero gradient everywhere except the tumor location. All the objective functions

mentioned above can be defined as

1. Sphere Function:

f(x, y) =


1,

√
x2 + y2 ≤ 0.5

1− 0.02 (x2 + y2) ,
√
x2 + y2 > 0.5

(4.1)

2. Matyas Function:

f(x, y) =


1,

√
x2 + y2 ≤ 0.5

1− 0.01 (x2 + y2) + 0.02xy,
√
x2 + y2 > 0.5

(4.2)

3. Gaussian Function:

f(x, y) =


1,

√
x2 + y2 ≤ 0.5

1/ (2πσ2)× exp [− (x2 + y2)/ (2σ2)],
√

x2 + y2 > 0.5

(4.3)
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Figure 4.3: Illustration of f(x, y) for three representative objective functions: Sphere
function with its contour plot (a) and (b); Matyas function with its contour plot (c) and
(d); Gaussian function with its contour plot (e) and (f); Disc function with its contour
plot (g) and (h). For the objective function f(x, y), the small yellow circle in the centre
of contour plots represents the maxima.

4. Disc Function:

f (x, y) =


1,

√
x2 + y2 ≤ 0.5

0,
√
x2 + y2 > 0.5

(4.4)
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The search space domain is defined within −5 mm ≤ x, y ≤ 5 mm where the

maximum and minimum values of the objective functions are normalized to 1 and

0 respectively. The maximum is in the centre of the domain for all four functions

and is denoted by a small circle (representing tumor). As we move away from the

center towards the boundaries of the representative functions, their value starts

decreasing and eventually becomes 0 at the edges of the search domain. For

simplicity, we have chosen 1 (for maximum) and 0 (for minimum) as the extreme

values which can effectively emulate a wide variety of biological gradient field

landscapes (after adequate scaling) without loss of generality. Note that the disc

function is an exception, which has no gradient and abruptly goes from to 1 to

0 outside the circle with radius 0.5 mm. It synthesizes the worst-case scenario

without any gradient in the landscape.

4.3.2 Proposed Computational Framework

We propose a non-centralized and independent system in which stochastic (ran-

dom) movements of nanoparticles when allowed to aggregate and migrate together,

result in deterministic behaviours (Li et al.; 2019). These nanoparticles have to

be injected simultaneously to start collaborative movements (socializing) in the

homing process. Natural phenomena such as morphogenesis, spreading of cancer

or healing of a wound are a consequence of collaboration and migration achieved

by living organisms. Going along the same lines, a swarm of gradient-selective

nanoparticles attempts to swim in a complex vascular network and search for the

potential location of the tumor. The group of nanoparticles is highly flexible and

scalable due to the absence of individual identity and addressability of nanopar-
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Figure 4.4: Illustration of four major steps involved in the proposed framework. After
initial deployment, neighbour selection, aggregation and migration are repeated for tumor
sensitization process.

ticles. The non-centralized and independent swarm can orient itself in unfamiliar

environments to perform difficult tasks such as object transport (drug delivery)

and obstacle avoidance (bypassing wrong vessel). Moreover, these non-centralized

nanoparticles are self-evolving in terms of their collective locomotion because of

their inherited proactive and autonomous nature, and hence do not require any

monitoring unit. Although randomness of this approach prevents its employment

in applications where complex pre-specified geometry is vital, its potential is huge

in nanomedicines where the prime objective is to maximize the number of compo-

nents while minimizing the size of each component.

For simplicity, it is assumed that the centre of the tumor introduces an in

vivo bio-physical isotropic gradient that is sensed by all nanoparticles. The steps

involved in the proposed framework are shown in the Fig. 4.4 and explained as

follows:
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1. Deployment: The N nanoparticles are randomly deployed in a pre-defined

and confined injection site simultaneously, prior to the start of actual tumor

homing in the simulation framework. Under the influence of BGF from a

source (tumor), these nanoparticles experience a change in their physical

properties such as size. It is important to mention here that the case of one

global optimum (centre of tumor) is considered here, which is represented by

f (x, y)∗ in the domain D.

2. Neighbour Selection: After deployment, K neighbours of a nanoparticle are

chosen from the swarm of N nanoparticles based on the minimum distance

criterion. Hence, the closest K nanoparticles become the neighbours of a

particular nanoparticle. In MAS, agents “actively” share their knowledge

or request information from other agents to improve their performance in

meeting their goals. On the same lines, selecting neighbours in natural in

vivo computation is critical to help nanoparticles “passively” share the sensed

BGF response (structural changes) among them. The simulation framework

is flexible and allows for selecting different numbers of neighbours which af-

fect the computational capacity as well as the targeting efficiency (number

of nanoparticles successfully detecting the target from the overall deployed

swarm) of the homing process. The algorithm demonstrates that more neigh-

bours require large computational power but can also achieve higher target-

ing efficiency of the homing process.

3. Aggregation: Once the neighbours are selected for a certain nanoparticle,

the next step is to determine their effect on it. This step is all about col-

laboration among nanoparticles and can be further divided into two opera-
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tions namely “sensing” and “sharing” as can be seen in the mapping demon-

strated in Fig. 4.2. A particular nanoparticle is pushed or pulled by its

neighbour, depending on whether its neighbour has experienced higher or

lower gradients respectively. This pushing/pulling effect can be envisaged

because of the difference in sensed BGF by nanoparticles (such as ther-

mal responsive nanopolymers explained in Section 4.1.2) in the peritumoral

region. The BGF-dependent pushing and pulling among nanoparticles is

actuated by maintaining a favorable distance which is not too large that

structural changes do not have any effect on neighbouring nanoparticles and

not too small that the interaction cannot be translated into target-oriented

locomotion. After calculating the magnitude of the interaction caused by the

difference in sensed gradients, the direction of the displacement is calculated

which is simply a ratio between the position of a nanoparticle and its neigh-

bour. The process is repeated for all K selected neighbours to determine the

resultant displacement direction.

4. Migration: The final step in our proposed tumor sensitization strategy is to

update the position of the nanoparticle based on the resultant magnitude

and direction of the cooperative effect calculated in the previous step. An-

other important factor that helps in determining the location of the next

position is the step size γ that works out the magnitude of displacement of a

nanoparticle under the aggregated influence of its neighbours. Nanoparticle

behaviours such as its ability to move (step size) and interaction with the

environment depends upon its composition features like initial size, material,

shape, charge or combination of them (Hauert and Bhatia; 2014).
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Figure 4.5: Flowchart representing an autonomous computation framework in which N
nanoparticles are deployed to search for the tumor. Loop in blue shows the combined
effect of interactions among the K selected nanoparticles, helping to determine the next
location of nanoparticles.

4.4 Autonomous Targeting Strategy For Tumor Sen-

sitization

4.4.1 Algorithm for Natural In vivo Computation

In the proposed framework, we start with N nanoparticles of which the jth nanopar-

ticle is deployed at point x⃗j in an injection site which is a localised region in

the simulation domain D. After successful deployment, K closest neighbours
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are selected as shown in Fig. 4.5. All injected nanoparticles experience the

BGF as ζ1, ζ2, ζ3, . . . , ζN in the domain D where ζ1 = f (x⃗1) , ζ2 = f (x⃗2) , ζ3 =

f (x⃗3) , . . . , ζN = f (x⃗N). The sensed gradient ζ is inversely proportional to the

distance between a nanoparticle and its target. As every nanoparticle and its col-

laborating neighbours have unique positions in the search domain, they possess a

non-identical value of ζ, BGF-dependent structural changes such as change in size

are different for all of them. The difference in the sensed BGF values is

∆ζ = ζp − ζn (4.5)

where ζp and ζn are the gradients sensed by a nanoparticle and its neighbour

respectively. Eq. (4.5) describes the case of a noiseless search space, however

natural environment is always associated with distortions due to non-idealities

such as learning errors of nanoparticles and the propagation delays in mechani-

cal wave communications as explained in Section 4.3.2. Learning errors incurred

during gradient sensing can be internal (due to physical properties of nanoparti-

cles) or external (caused by the ever-changing characteristics of biological search

space) around the tumor. Similarly, long delays in translating BGF-induced mor-

phological changes into target-oriented motions will cause the neighbours of each

nanoparticle to induce inter-reaction interference. These phenomena can be viewed

as causing noisy communications among the swarm as they both modify the collab-

orative effect in a disruptive manner. To counter these non-idealities, a normally

distributed random noise is added in Eq. (4.5), such that

ζD = ∆ζ + χ(µ, σ) (4.6)
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where ζD represents the distorted difference in the sensed BGF values and χ is

the noise with zero mean (µ = 0) and a standard deviation of σ∆ζ for simplic-

ity. Another important parameter during gradient information sharing is the dis-

tance between a nanoparticle and its collaborating neighbour. If it is too large,

gradient-dependent morphological changes in nanoparticles will not be able to in-

duce pushing or pulling, and hence will not be translated into an overall swarm

movement towards the target. On the other hand, closely packed nanoparticles

will also make it time consuming for structural variations to be transformed into

collective locomotion. Each neighbour of a nanoparticle will push or pull it due to

the difference in the sensed BGF values as

M =


∆ζ

[∆d/dref ]
l∠ [ϕ] , for selected nanoparticle and its K neighbours.

0, for other swarm nanoparticles.

(4.7)

where M shows the effect of interaction experienced by a nanoparticle because of

its neighbour as shown in Fig. 4.6. ∆ζ is the difference in the BGF values sensed

by the nanoparticle and its neighbour, ∆d is the Euclidean distance between the

nanoparticle and its neighbour, dref is a normalization factor, ϕ is the direction of

the effective passive collaboration and l is the path loss exponent. For simplicity,

noiseless BGF difference is represented in this section; however, for simulation

experiments, both noisy and noiseless cases have been considered. Let x⃗p and

x⃗n be the locations of the nanoparticle and its neighbour, then the displacement

between ith neighbour and nanoparticle pair is given by

X⃗
(i)
off = x⃗p − x⃗(i)

n , (4.8)
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Figure 4.6: Illustration of sensed gradient sharing among nanoparticle and critical dis-
tances used for simulations.

and
⃗̂
X

(i)
off =

X⃗
(i)
off

|X⃗(i)
off |

, (4.9)

where

|X⃗(i)
off | =

√
{X(i)

off}2 + {Y (i)
off }2 . (4.10)

Eqs. (4.5), (4.7) and (4.8) demonstrate the socializing behaviour of a single

nanoparticle-neighbour pair. This passive collaboration is repeated for all K se-

lected neighbours which is represented by a loop in Fig. 4.5 (in blue). The number

of neighbours selected to collaborate with a single nanoparticle strikes a balance

between the performance and the computation capacity. The accuracy of the

step taken by a nanoparticle as a result of collaboration from a large number of

neighbours is higher thereby increasing the targeting efficiency; however, it also in-
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troduces a higher propagation delay due to the mechanical wave communications

among nanoparticles. The overall magnitude of the interactions with resultant

direction is calculated as

A⃗ =
K∑
i=1

∆ζ(i)

[∆d(i)/dref ]
l

⃗̂
X

(i)
off , (4.11)

where A⃗ represents a net directed effect of interactions due to K selected neigh-

bours. During the aggregation process, the difference between the BGF values

is computed for each nanoparticle-neighbour pair and is also dependent on the

distance between them. A higher number of neighbours will increase the number

of parallel computations required to calculate the net effect of interactions experi-

enced by a single nanoparticle as shown in Eq. 11. During natural computation,

the above operations are realized through simultaneous biological-gradient-induced

morphological changes. Hence, from the design prospective, to achieve parallel

computation, a higher number of neighbours will require a more complex design

to induce the net effect from all the neighbours. For example, the nanoparticle

surface area should be larger so that the push or pull caused by the morphologi-

cal change of the neighbouring nanoparticles in the swarm can be translated into

target-directed locomotions.

After sensing the environment and sharing the tumor induced BGF values

among neighbours, the next step is to take a decisive step (migration) towards the

global optimum. The location of nanoparticle is updated according to

P⃗n+1 = P⃗n + γ
⃗̂
A , (4.12)
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where P⃗n is the previous position and P⃗n+1 is the current position of the nanoparti-

cle. Step size γ is an important factor that helps in determining the location of the

next position. Smaller γ will introduce large propagation delays and degeneration

of nanoparticles due to their finite life span whereas larger γ may cause target

overshooting. Note that γ is a design parameter determined by the basic com-

position properties of nanoparticles such as their material, shape, initial size or a

combination thereof. However, in the natural environment, identical nanoparticles

will behave in a faintly unique manner as they will experience different environ-

mental features such as blood velocity, vessel diameter or fluid pressure. Hence, γ

is considered as an averaged value of the step size corresponding to non-identical

responses of nanoparticles in the natural environment. Therefore, the resultant

direction of the nanoparticle, which is a consequence of neighbour collaboration, is

used for location update, where γ governs the magnitude of migration step towards

the possible target as shown in Eq. (4.12).

4.4.2 Reality Checks for Natural Computing

Operational challenges such as task allocation, controllability and localization that

are resolved by generic MAS are handled equally well by natural autonomous

computation. The simple working principle of “natural” agents like temperature-

dependent structural changes of nanopolymers eliminates communication overhead

associated with task allocation. For example, sensed gradient-related information

sharing and nanoparticle reaction are naturally integrated through mechanical

wave communications. Controllability is required when MAS have to be steered

from one state to another (Liu et al.; 2014). In natural computation, nanoparticles
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are independent and self-regulate their motions to move towards a global target,

thanks to their proactiveness and autonomous nature. Finally, localization which

refers to locating an agent in MAS is not a challenge any more as autonomous

natural computation is self-evolving and there is no need to locate them as natural

agents aggregate in the tumoral area through the receptor-ligand binding process.

Nevertheless, nanoparticles-assisted autonomous biosensing is a special category

of “natural” MAS which poses its own unique reality checks as mentioned below.

4.4.2.1 Connectivity among Agents

In natural computation, collaboration among neighbours is very vital. All “nat-

ural” agents must maintain connection among them to ensure collective locomo-

tion while interacting with the biological search space. As there is no central-

ized controlling unit available like MAS, agents have to always maintain a certain

acceptable distance among themselves so that their morphological changes have

an pushing-pulling effect on neighbours resulting in an overall swarm motion to-

wards the target. If the distance among nanoparticles is too large, their gradient-

dependent morphological changes such as change in their size will not have any

effect on the neighbours. On the the other hand, if the distance is too small, it will

result in a packed rigid formation of the swarm posing difficulty in target-directed

locomotion.

4.4.2.2 Fault Detection and Isolation

It is highly likely that in natural environments that are associated with many

uncertainties, some of the “natural” agents will stop sensing the gradient accurately

or will not be able to correctly react to the sensed gradient. Such agents should be
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isolated so that their overall effect on the locomotion of the system is minimized.

In MAS, fault detection and isolation is achieved with the help of a central agent

that isolates faulty agents (Davoodi et al.; 2016). However, natural computing

process has to be robust enough to cater for this challenge on its own.

4.4.2.3 Learning Errors and Synchronization

In natural computation, sensing environmental parameters like the biophysical gra-

dient is very essential. Due to the ever-changing characteristics of biological search

space around the tumor, there are some errors associated with learning the envi-

ronment. Synchronization, which is the alignment of actions taken by a “natural”

agent in time with all other agents, is directly affected by these gradient sensing

errors. To ensure an adequate performance of autonomous in vivo computation,

it is crucial to consider the distortion caused by the learning errors.

4.4.2.4 Propagation Delay

Collaboration among agents in natural in vivo computation can only be achieved

through non-electromagentic communications such as mechanical wave communi-

cations or molecular communications which will impose delay while sharing in-

formation among nanoparticles and their neighbours. This propagation delay in-

troduces inter-reaction interference which may affect the overall efficiency of the

homing process.

4.4.2.5 Finite Life Span

During the collective swarm movement of all “natural” agents toward the global

optimum (tumor), it is inevitable that some agents may be disassembled and lost in
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the biological environment through degeneration (deterioration of nanoparticles)

or diffusion (spreading of nanoparticles), referred to as having finite life span.

Thus, it is important to ensure a strong bond between nanoparticles and consider

their finite life span during in vivo natural computation.

4.4.2.6 Formation during Obstacle Avoidance

Proliferation of vessels in peritumoral region leads to a very complex vasculature

architecture which acts as a source of hindrance for “natural” agents homing for

the tumor. Nanoparticles swarm assembly should be flexible enough to avoid these

obstacles with strong bondage among them. Some of the nanoparticles are lost

in the vascular architecture by sticking to the obstacles or following an undesired

path (branching effect) which should be considered during the in vivo computing

process.

4.5 Performance Analysis

4.5.1 Simulation Set-up

For evaluating the performance of our proposed strategy, MATLAB® is used

as the simulation tool in the computational experiments. Self-regulated tumor

homing is tested for different cost functions depicting contrasting domains. The

search time allowed for each of the 200 independent simulation is 120 seconds where

each simulation consists of 2000 iterations (position updates). There are four cost

functions used to run simulations: sphere, Matyas, Gaussian and disc functions,

representing the smooth, average, normally distributed, and zero-gradient domains
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respectively. Fig. 4.7 illustrates the process. The nanoparticles (shown in blue)

are randomly deployed at the same time in the region −5 mm ≤ x, y ≤ −4 mm.

When the nanoparticles cross the green circle of radius 0.5 mm, they are considered

to have reached the tumor (shown with green colour of nanoparticles).

Five different search domains shown in Fig. 4.7 with an increased level of

complexity from top to bottom are imprinted on the representative objective func-

tions explained in Section 4.3.1. The algorithm is first tested in free space with

no obstacles (Fig. 4.7(a)) which represents the ideal case. The search domain is

extended to have a single horizontal or vertical obstacle (Fig. 4.7(b) and (c)). A

host environment with layers of obstacles (dashed) poses multiple hindrances to

nanoparticles, and thus a higher level of complexity is shown in Fig 4.7(d). Next,

because normal capillaries produce a two-dimensional regularly vascularized ho-

mogeneous vessel network (Baish et al.; 1996; Baish and Jain; 2000) outlined by

straight and rigid cylindrical vessels (McDougall et al.; 2002; Chen, Ali, Shi and

Chaeng; 2019), we develop a two-dimensional grid network (Fig. 4.7(e)) to test

the robustness of the proposed strategy. The grid structure is not present in the

vicinity of the tumor as the occupancy of vessel network normally reduces near a

tumor because of decrease in micro-vascular density. The direction of blood flow

is assumed to be from bottom left to top right for all search domains. Finally,

due to the ever presence of platelets and plasma (containing blood cells, nutrients

and wastes) in the blood circulatory system, the two-dimensional grid structure

is enhanced to incorporate mobile obstacles (red squares) with sizes much larger

than nanoparticles as shown in Fig. 4.8. In addition to disintegrating the swarm

of nanoparticles into smaller groups, these mobile obstacles will cause distortions

during biological sensing. To emulate this phenomena, random and normally dis-
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Figure 4.7: Demonstration of mean trajectory (shown in red) of tumor homing nanoparti-
cles that are randomly deployed in the sphere search space without any obstacle (a). Any
nanoparticle coming inside the vicinity (shown with green circle) of the tumor (shown
with black dot) is considered to have successfully located the tumor that is represented by
going green from its original blue colour. (b-c) shows nanoparticles successfully avoiding
horizontal and vertical obstacles respectively. More complex search domains are shown in
(d-e).
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Figure 4.8: Illustration of swarm of nanoparticles avoiding static (grid network) and
mobile obstacles (small red squares) during target directed locomotion.

tributed noise with zero mean and a standard deviation of σ∆ζ is being introduced

during the target homing.

Fig. 4.7 shows typical trajectories of nanoparticles for the sphere function.

The tumor is shown with a black dot in the centre whereas the green circle of

radius 0.5 mm around the tumor is used to evaluate the targeting efficiency η

of the proposed framework. Any nanoparticle that touches or crosses the green

circle of radius 0.5 mm is considered a successful detection and can deposit itself

on the tumor because of the enhanced permeability and retention (EPR) effect or
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receptor ligand binding. The overall targeting efficiency of the system is calculated

as the ratio between the nanoparticles that have detected the tumor (in green) to

the total number of deployed nanoparticles (green and blue) over the simulation

settings defined in Section 4.5.1. If Td and Ts represent the successful detection

time and total search time respectively, and location of jth nanoparticle is x⃗j ≤ 0.5

for Td ≤ Ts, then Nd = Nd+1. Here, Nd represents number of nanoparticles which

are inside the tumor region (the circle with the radius of 0.5 mm). η is then simply

the ratio (Nd/N), for the swarm of N tumor homing nanoparticles.

4.5.2 Simulation Results

Fig. 4.7(a)-(c) show that nanoparticles while sensing the gradient and follow-

ing the aggregation and migration principles explained in Section 4.3.2, success-

fully reached the tumor. Fig. 4.7(d) and (e) illustrate the path followed by the

nanoparticles when complex search domains are presented. Fig. 4.8(a)-(d) shows

the behaviour of the swarm on encountering the mobile obstacles. The swarm is

disintegrated into smaller groups and forced to coordinate with lesser number of

neighbours due to their cluster breakage. Once the swarm is split into smaller

sub-groups by mobile obstacles, there are two main challenges for each obstructed

nanoparticle. First, maneuvering across the obstacle which is much larger in size

results in an excess time delay. Second, the number of neighbours available for

passive collaboration is reduced. Both these factors will have a negative influence

on the targeting performance of the swarm. Furthermore, different levels of noise

(due to learning and synchronization errors) are presented to the swarm. Although

nanoparticles continue to move towards the target, the overall targeting efficiency
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Figure 4.9: Targeting efficiency (η) under the influence of step size (γ) for sphere, matyas
and disc landscapes. Solid lines shows the results for free space while dotted line is for
search space with obstacles.

of the swarm is degraded when compared to the case with no mobile obstacles

(simulation results in Fig. 4.13 and Fig. 4.14). Nevertheless, it is successfully

demonstrated that the proposed targeting strategy is flexible and robust enough

to help nanoparticles avoid obstacles (static and mobile) coming in their path while

tumor homing.

Fig. 4.9 represents the targeting efficiency η of the swarm of nanoparticles with

respect to the step size γ. Ideally, γ should be higher when the swarm is away

from the target to achieve faster convergence and smaller when it gets closer to
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the target to avoid by-passing of the target. Due to the absence of any external

intervention and autonomous nature of our framework, it is not possible to change

γ values during the homing process. For smaller γ values, our framework achieves

targeting efficiency of more than 90% for the landscapes with gradient (sphere

and Matyas), however when the step size is increased, the targeting efficiency

degrades considerably due to target overshooting for all landscapes (sphere, Matyas

and disc). During the target sensitization process, the sphere function with the

smoothest transition in gradients, outperforms the Matyas and disc functions,

whereas the disc function shows the the worst performance as expected due to

lack of any gradient.

Fig. 4.10 demonstrates the influence of the number of neighbours K on target-

ing efficiency. It is clearly shown that the performance of the proposed algorithm

is better with higher values of K even for the gradient-less disc landscape. For

both sphere and Matyas functions, η increases significantly with the number of

collaborating nanoparticles, for both free space (>90% for K = 3) and landscapes

with obstacles (>80% for K = 5). The surface contact area of a nanoparticle which

can be shared among its neighbours limits the value of K. A more complex design

such as a chain-like structure of the swarm can help to increase the number of col-

laborating neighbours. If a large number of neighbours somehow can be linked to

a particular nanoparticle and some nanoparticles of the swarm start self-regulated

movements and blindly find the target, it will be interesting to have an acceptable

η even for the gradient-less search domains such as the disc function.

In general, linear path loss is defined as the ratio of the transmitted information

to the received information. However, for the current work, sharing of information

is the BGF values sensed by the swarm of nanoparticles. Taking into account the
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Figure 4.10: Targeting efficiency (η) under the influence of number of neighbours (K)
for sphere, matyas and disc landscapes. Solid lines shows the results for free space while
dotted line is for search space with obstacles.

effect of path loss exponent l, further simulations are run to see its influence on the

targeting efficiency η. The range of l is typically from 2 to 6 in the field of wireless

communications; 2 is for the free space propagation, 4 is for the lossy mediums

while it is between 4 and 6 for indoor environments such as multi-storey buildings

or crowded stadiums. For our computational experiments, path loss exponent

showed the similar trend. For higher values of l, the targeting efficiency η is lower

(around 40% for l=6). Targeting efficiency can be improved by increasing the

number of collaborating neighbours K = 10, 20, 30 and 40 as shown in Fig. 4.11 but
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Figure 4.11: Targeting efficiency (η) under the influence of path loss exponent (l) with
different collaborating neighbours (K) for sphere and disc landscapes.

the homing process becomes more computationally extensive requiring a complex

(for example chain-like) design for a natural computing environment. Moreover,

from a biological perspective, higher values of K introduce larger propagation

delays as the sensed information needs to be shared and translated into overall

locomotion for a greater group of nanoparticles. Note also that l does not have

any effect on targeting efficiency for a disc landscape.

The grid structured search space in Fig. 4.7(e) is manipulated in the current

simulation set-up to demonstrate the effect of occupancy on targeting efficiency

η. A lower level of percentage occupancy (20%) gives better performance than a
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Figure 4.12: Targeting efficiency (η) under the influence of percentage occupancy with
different collaborating neighbours (K) for sphere and disc landscapes.

higher level (80%). Natural computing environments such as peritumoral regions

normally have higher levels of occupancy where the number of collaborating neigh-

bours K can be increased to obtain the desired targeting efficiency. It can be seen

in Fig. 4.12 that for the disc search space, even with K = 40, it does not give

rise to satisfactory performance. However, for the sphere function, the targeting

efficiency is increased as K is increased from 10 to 40.

All of the above mentioned simulation results are for noise-free gradient sensing

without considering the non-idealities of the natural computation with prime focus

on free-space and stationary obstacles. Fig. 4.13 and Fig. 4.14 show the results
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Figure 4.13: Targeting efficiency (η) under the influence of noise χ with zero mean and
different standard deviations (σ∆ζ) for sphere, matyas and Gaussian landscapes with and
without mobile obstacles.

after incorporating the non-idealities along with the ever-existing mobile obstacles

that can affect the targeting performance of nanoparticles. Learning errors and

propagation delays will introduce distortions during biological gradient sensing

and on its induced effect respectively. Fig. 4.13 demonstrates that such distorting

noise degrades the performance for all landscapes. Specifically, higher values of

standard deviation contribute to larger noise levels, resulting in lower values of

targeting efficiency. However, the Gaussian function performs better than the

sphere and Matyas functions, both with and without the introduction of mobile

obstacles.
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Figure 4.14: Targeting efficiency (η) under the influence of different dominant radii (Rd)
for sphere, matyas and Gaussian landscapes with and without mobile obstacles.

Fig. 4.14 shows the effect of distance between a nanoparticle and its neighbour

in a noisy environment for a grid-structured network. We introduced a circular

threshold distance around a nanoparticle defined by the dominant radius Rd. For

simplicity, it is assumed that any neighbour outside the circle of radius Rd will

not have any effect on the nanoparticle. Hence, only those neighbours with their

distance from the nanoparticle no greater than Rd are considered to be active

neighbours, contributing in the homing process. Simulation results show that the

Gaussian function performs better than the sphere and Matyas landscapes in the

grid network. The trend remains the same when mobile obstacles are introduced

during the target homing.
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4.6 Conclusion

A novel self-regulated and bio-inspired autonomous approach for tumor detec-

tion has been proposed in this work. We have used computational experiments

to demonstrate that morphological changes caused by the tumor-triggered bio-

physical gradients can be used to achieve target-directed locomotion for a swarm

of nanoparticles. For noise-free search domains, different design parameters like

path loss exponent, number of collaborating neighbours, step size and occupancy

are considered with their impact on system performance. For a smooth gradient

landscape such as a sphere function, the targeting efficiency is considerably im-

proved from 10% to almost certain detection (>90%) when passive collaboration

is achieved among as few as four nanoparticles. We also considered noisy search

domains with the introduction of normally distributed random noise, along with

the ever present mobile obstacles in complex grid structure to verify the robustness

and flexibility of the proposed strategy. This work will certainly open new doors

of research for in vivo cancer detection through self-evolving systems which are

operable without the aid of any external stimulus.

Current work can be extended in future to the discrete search domains, mim-

icking the actual vasculature around the tumor in which nanoparticles are lim-

ited to only pre-specified paths. Moreover, this framework can be applied to a

multi-objective optimization approach where more than one tumor (metastasis)

are present in the region of interest. Finally, the proposed targeting strategy should

be validated with the help of experiments, taking into account the non-idealities of

nanoparticles such as limited life span and their consumption in human vasculature

due to the inevitable phenomena of branching and diffusion.
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Chapter 5

Semi-Autonomous In Vivo

Computation in Internet of

Bio-Nano Things

Magnetically assembled bioresorbable nanoswimmers can be used to highlight

small tumors, thereby increasing the diagnostic capability of existing medical imag-

ing techniques. Built upon our earlier work, this paper proposes a novel in vivo

computational framework for early cancer detection. Engineered nanoswimmers

experience a change in their physical properties under the influence of tumor-

induced biological gradients. The biologically sensed data by such bio-nano things

(nanoswimmers) can either trigger an autonomous target-directed motion or be

assisted through external manipulation for steering the swarm towards the tar-

get. Previously developed externally manipulable in vivo computation requires

constant monitoring of nanoswimmers, introducing positioning and steering errors

along with a limit on the swarm size. A parallel approach called autonomous in
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vivo computation helps to resolve the above drawbacks, but the tumor homing is

slow contributing to a higher percentage of pre-detection loss of nanoswimmers.

We propose the spot sampling strategy for an autonomous swarm which considers

the whole swarm as a single entity for the purpose of its tracking and steering. We

show through computational experiments (1) that the proposed semi-autonomous

in vivo framework can achieve faster tumor sensitization in complex environments

having static and mobile obstacles, and (2) that the spot sampling provides suf-

ficiently precise data to steer the swarm towards the target, saving around 90%

of the monitoring resource. Our proposed framework also helps to achieve a large

swarm size (number of nanoswimmers) which in return can achieve higher deposi-

tion of nanoswimmers on malignant tumors.

5.1 Introduction

Early stage tumor detection is very vital to curing cancer which is a life threat-

ening disease (Hori and Gambhir; 2011). The number of most cancerous cells

grow exponentially and their detection at stage-1 can save significant number

of lives worldwide (Tao et al.; 2017). However, early diagnosis of cancer is im-

peded by the low resolution of present medical imaging techniques (Kasban et al.;

2015). Biodegradable nanoparticles (Qian et al.; 2012; Malekzad et al.; 2017) have

profound applications in current theranostic approaches. The resolution quality

of imaging modalities can be improved through contrast enhancement, which is

achieved by potential contrast agents such as magnetically selective nanoparticles

(Felfoul et al.; 2016).



161

After performing their required task (i.e., highlighting the diseases tissues),

nanoparticles are dissolved in the body causing no harm to the healthy tissues.

Penetration into diseased tissues and adequate retention are necessary for high ac-

cumulation of contrast agents at the tumor site. Due to their small size, nanopar-

ticles are an ideal candidate to yield improved biodistribution profiles compared

to small molecules, as their passive accumulation in diseased tissues may bene-

fit from the enhanced permeability and retention (EPR) effect (Kobayashi et al.;

2014). However, the delivery of such nanoparticles from a remote injection site

to the tumors comes with its own set of challenges. The conventional systemic

targeting which relies only on the human circulation system, delivers only a small

percentage (0.7%) of the injected nanoparticles to the tumors (Wilhelm et al.;

2016).

Loss of nanoparticles in the human vasculature can be due to their movement

towards wrong vessels that do not lead to the tumor (branching effect) or because

of their diffusion and degradation (finite life span), before reaching the desired tar-

get. Moreover, they lack a steering force which is required to push them towards

the target for faster tumor sensitization. Hence, nanorobotic technologies should

be implemented to construct maneuverable nanoswimmers (NSs). External con-

trolling equipment can be used to provide that much needed propelling force to the

swarm of NSs (Ali et al.; 2016). However, such external manipulation is associated

with real world constraints such as a uniform magnetic field for the whole swarm

(Chen, Ali, Shi and Cheang; 2019). Moreover, to steer NSs towards the desired

direction, they are continuously tracked and controlled externally which leads to

positioning and steering errors (Shi et al.; 2020).
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The aforementioned challenges of an externally manipulable system can be re-

solved through an autonomous and self-regulatable system. Engineered NSs can be

tuned to the tumor-induced biological gradients based on the principle of “particle

robotics” (Li et al.; 2019). Specifically, the strength of biological gradient which

is passively sensed by each NS (acting like a biosensor), can trigger morphological

changes in them, i.e., changes in their size and shape. This causes NSs to expand

or contract, evolving into the pushing-and-pulling effect among their loosely cou-

pled neighbors. Such collaboration among NSs behaves like an internet of bio-nano

things where the sensed biological gradients can be translated into target-directed

locomotion (Ali et al.; 2021). This decentralized approach is robust but can be

slow in the absence of an external propelling force. As a result, higher consumption

of NSs occurs in the human body before the target is detected.

In summary, conventional targeting strategies based on systemic circulation

can deliver a small number of passive nanoparticles to the tumor. Factors such

as branching, diffusion and biodegradation of nanoparticles in human vasculature

contribute to poor targeting performance. To overcome this problem, NSs with

state-of-the-art features such as biosensing, actuation and signaling (Rahul et al.;

2017), along with some sort of external steering, can improve the targeting effi-

ciency of the tumor homing process. However, constant tracking of the swarm for

external manipulation is challenging, particularly when the swarm size is large. Al-

ternatively, an independent and noncentralized target localization approach, which

is based on the stochastic (random) movements of NSs is tracking-free but suffers

from slow detection of the target.
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5.1.1 Contributions of the Current Chapter

This chapter is focused on developing a natural computing framework through

the fusion of bio-sensed data by internet of bio-nano things. We aim to provide

a solution to the limitations of the existing natural computational approaches,

i.e., constant monitoring of an unscalable swarm with external steering in the

manipulable in vivo computation (MIVC) and slower detection of the tumor in

the autonomous in vivo computation (AIVC).

We propose a semi-autonomous framework called hybrid in vivo computation

(HIVC) that achieves faster tumor sensitization through a highly scalable swarm.

With the help of the autonomous swarm spot sampling (ASSS) strategy, we show

that constant monitoring of the swarm is not essential for steering it towards the

best possible direction. Specifically, the swarm first moves autonomously in the

search space and then, the information about its gradient-dependent locomotion

is fused to drive it towards the target. Finally, the ASSS strategy also reduces

the steering and positioning imperfections incurred in the MIVC framework by

spot sampling the collective movement of the swarm rather than continuously

monitoring individual NSs.

The efficiency of the proposed tumor sensitization approach is evaluated through

extensive simulation studies.

5.1.2 Organization of the Chapter

The paper is organized as follows. Section 5.2 gives the essential background

knowledge about the MIVC and AIVC, which helps in presenting the HIVC. Sec-

tion 5.3 starts with outlining the objective functions required to represent the
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tumor-induced biological gradients. The proposed semi-autonomous framework is

formulated next, highlighting the ASSS strategy for swarm steering. In Section

5.4, numerical examples are used to evaluate the performance of HIVC while some

concluding remarks are drawn in Section 5.5.

5.2 Background

5.2.1 Externally Manipulable In vivo Computation

The local tumoral microenvironment is heterogeneous due to the presence of ma-

lignant tumors (Sutherland; 1988). This can be either due to the diversified passive

properties of the peritumoral environment such as blood flow velocity, pH, tortuous

blood vessel architecture, or through utilization of some “activator” nanomaterials

such as gold nanorods that induce biological changes around the tumor. Such bio-

logical gradients are used to aid in developing agile early tumor diagnostic systems.

Nanoparticles assembled by 50–100 nm magnetic iron oxide nanoparticles can

be used in such microenvironment that possess tumor-induced biological gradients.

These NSs indirectly reveal the gradients while moving in the high-risk diseased

area (Li et al.; 2017). Hence, the observable characteristics of NSs such as their

velocity, size or trajectories can be probed by an external monitoring unit. The

swarm of NSs is then steered towards the possible tumor location by an external

magnetic field (Sun et al.; 2008). Once early malignant tumors are encountered,

NSs tend to stop the homing process and deposit themselves at the peritumoral

area through receptor-ligand binding. This phenomenon is perceived by the exter-
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nal monitoring unit which notices an improved biodistribution profile resulting in

contrast enhancement for medical imaging techniques.

Previously developed MIVC strategies (Chen et al.; 2016, 2017, 2019) require

real-time monitoring of NSs to gather information for external controlling unit.

Such a requirement poses a scalabilty challenge on the swarm of NSs. The increased

number of NSs, the more complex it is to track their movements. Moreover, there

are tracking errors due to the limited resolution of the positioning equipment and

steering imperfections due to the constrained accuracy of the external steering

unit. Finally, due to the limitation of a uniform magnetic field (Cheang and

Kim; 2015), it is an insurmountable challenge to actuate all NSs towards their

respective intended directions. Consequently, for any position update, the NSs are

moved towards a compromised common direction. The aforementioned limitations

are illustrated with gray boxes on the left hand side of Fig. 5.1.

5.2.2 Autonomous In vivo Computation

Computerized systems such as multi-agent systems use simplified agents with re-

duced capabilities, to solve complex engineering problems (Dorri et al.; 2018).

These agents sense the environment around them and use the acquired knowledge

along with historical data to solve simpler tasks. The results are then shared

among their neighbors which help them in finding the solution to a difficult task.

Working on the same lines, NSs (which act like in vivo bio-nano things) with no

individual target-directed locomotion ability, can successfully move towards the

target by leveraging tumor-triggered biological gradients. For example, PNIPAAm

and its derivatives, alter their structure in response to a temperature change (Yan
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Figure 5.1: Proposed semi-autonomous hybrid in vivo computation (HIVC) system ex-
tracting positive features (shown in green boxes) of the externally manipulable in vivo
computation (MIVC) and the autonomous in vivo computation (AIVC).

and Okuzaki; 2008; Beija et al.; 2011). Similarly, self-assembled miscelles undergo

swelling in an acidic tumoral environment (pH = 6.8) from the stable condition in

a healthy environment (pH = 7.4) (Li et al.; 2016). Such morphological and struc-

tural changes of NSs, along with collaboration among their neighbors (data fusion

among bio-nano things), assist in aligning their directions towards the possible

target location (Li et al.; 2019; Vicsek et al.; 1995).

This parallel approach termed as AIVC (Ali, McGrath, Shi, Cree, Cheang

and Chen; 2020; Ali, Sharifi, McGrath, Cree and Chen; 2020; Ali et al.; 2021),

addresses the aforementioned limitations of MIVC. The tumor homing is self-

regulated and tracking-free due to the inherited proactive nature of the NSs. Such
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a non-centralized swarm can orient itself in unfamiliar environments such as human

vessels and efficiently perform difficult tasks such as bypassing the wrong vessel or

drug transportation. In the absence of an external monitoring unit, this approach

does not have any tracking or positioning errors. Moreover, scalability is not an

issue here as the whole target detection procedure relies on self-evolving principles

of aggregation and migration. However, tumor homing is slower due to the absence

of any steering push from an external controlling unit (highlighted on the right

hand side of Fig. 5.1). As a consequence, more NSs may be consumed in the

human body before reaching the tumor.

5.2.3 Hybrid In vivo Computation

In the current work, we propose the HIVC framework which gives a solution to

the limitations of both MIVC and AIVC as illustrated in Fig. 5.1. The swarm

of NSs performs self-dependent tumor homing by passively sensing the tumor-

induced biological gradients. Note that each NS behaves like a computation-free

bio-nano thing with no independent ability to move towards the target. In response

to the biological gradients, the self-tuning of NSs such as change in their size,

surface properties or charge occurs, which is shared among their neighbors. Such

collaboration among NSs essentially performs a multi-sensor fusion that helps in

generating a targeting behaviour.

The scalability of the swarm in the proposed approach is not an issue as indi-

vidual addressability of NSs is not required, thanks to their self-evolving nature.

The homing process is also free of steering and positioning errors, because of

the absence of real-time external manipulation. Moreover, as the target-directed
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movement of the swarm is self-evolved, there is no unintended actuation of NSs.

However, to achieve faster sensitization of the tumor, the swarm is propelled from

time to time in the possible tumor direction with the help of an external magnetic

field. It is worth mentioning here that such noninvasive propulsion of the swarm

does not require real-time monitoring and is only done at specific time instants

(spot sampling). The prime objective in the nanomedicine field is to maximize the

swarm size, while keeping the size of each particle in the swarm to the minimum

level. The large swarm size helps to achieve better contrast enhancement whereas

smaller size of NSs is required for deeper penetration (van Moolenbroek et al.;

2020). The proposed approach is very flexible in terms of swarm size because the

whole swarm is monitored as a single entity where tracking of individual NSs is

not required.

5.3 Proposed Semi-autonomous HIVC

5.3.1 Objective Functions

Due to the presence of malignant tumors, the peritumoral region is altered physi-

cally (i.e., change in blood velocity and oxygen content (Baish et al.; 1996; Komar

et al.; 2009)), chemically (i.e., change in redox potential and pH profile), and bio-

logically (i.e., change in biomolecular cell structure and enzymes). As the research

is in its early stage, there are no quantitative models available to adequately repre-

sent this tumor-induced biological gradient field (BGF). This BGF can be viewed

as an objective function which is utilized to define the fitness landscape for the

optimization agents (OAs). Hence, we resort to the objective functions shown in
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Fig. 5.2 which are in general agreement with the qualitative observations made in

the existing literature. They are widely used in the optimization theory and can

provide some useful insights to the proposed tumor sensitization approach. The

Sphere function has a smooth change in the gradient and is represented by a bowl-

shaped landscape [Fig. 5.2(a)]. Next, the gradient of the Matyas function is more

complex than the Sphere function but still better than the one in the form of a

Disc function. The Matyas function forms a plate-shaped landscape [Fig. 5.2(c)].

Finally, the Disc function [Fig. 5.2(e)], corresponds to the worst case search space

with zero gradient everywhere except the tumor location. The above mentioned

objective functions are defined as

1. Sphere Function:

f(x, y) =


1,

√
x2 + y2 ≤ 0.5

1− 0.02 (x2 + y2) ,
√

x2 + y2 > 0.5

(5.1)

2. Matyas Function:

f(x, y) =


1,

√
x2 + y2 ≤ 0.5

1− 0.01 (x2 + y2) + 0.02xy,
√

x2 + y2 > 0.5

(5.2)
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Figure 5.2: Illustration of f(x, y) for three objective functions: Sphere function with its
contour plot (a) and (b); Matyas function with its contour plot (c) and (d); Disc function
with its contour plot (e) and (f). For the objective function f(x, y), the small yellow circle
in the centre of contour plots represents the maxima.

3. Disc Function:

f (x, y) =


1,

√
x2 + y2 ≤ 0.5

0,
√
x2 + y2 > 0.5

(5.3)
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The search space domain is defined within −5 mm ≤ x, y ≤ 5 mm whereas the

maximum and minimum values of the objective functions are normalized to 0 and

1 respectively. The maximum is placed in the center of the domain for all the

objective functions and is denoted by a small circle of radius 0.5 mm. As we

move away from the center, the values of the Sphere and Matyas functions start

decreasing and are 0 at the edges of their landscape. Note that the Disc function is

an exception in which the BGF is zero throughout the landscape and then abruptly

goes from 0 to 1 at the center.

5.3.2 Computational Framework

We propose a semi-autonomous framework in which the swarm of OAs represent-

ing NSs, move iteratively in decentralized (autonomous) and centralized (rein-

forcement) phases to detect the target. Broadly classifying, the autonomous phase

represents the operation of AIVC where the passive collaboration among neighbors

helps the swarm to achieve target-directed locomotion without the intervention of

any external force. Similarly, the reinforcement phase represents the operation of

MIVC where the swarm is steered through an external push to guide it towards the

target. For simplicity, the case of a single maximum is considered which introduces

an isotropic gradient. The steps involved in the framework are as follows.

1. Initialization: The swarm of N OAs are randomly deployed in a predefined

and confined site −5 mm ≤ x, y ≤ −4 mm which is a localized region in

the overall search space defined by −5 mm ≤ x, y ≤ 5 mm. The nth OA is

deployed at the point x⃗n within an injection area. After deployment, OAs

start experiencing BGF passively as ζ1(tAP,l), ζ2(tAP,l), . . . , ζN(tAP,l) where
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Figure 5.3: Illustration of the steps involved in semi-autonomous HIVC framework.

ζ1(tAP,l) = f (x⃗1(tAP,l)) , ζ2(tAP,l) = f (x⃗2(tAP,l)) , . . . , ζN(tAP,l) = f (x⃗N(tAP,l)).

The index l represents a small step in the autonomous phase explained next.

2. Autonomous Phase: The BGF sensed by the OAs is shared amongst them-

selves in an independent and non-centralized manner. Such autonomous

collaboration results in deterministic behaviours such as target directed lo-

comotion (Li et al.; 2019). As shown in Fig. 5.3, the autonomous phase

can be sub-divided into the decentralized learning (DL) and decentralized

movement (DM) modes which are outlined below.

(a) DL Mode: DL starts from selecting K neighbors among N OAs. This

selection is based on the minimum distance criterion, so that the closest

K OAs become neighbors of a particular OA. After neighbor identifi-

cation, passive collaboration (sensing and sharing) of BGF information

happens among an OA and its neighbors. The BGF experienced by an
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OA and its neighbor are represented by ζOA(tAP,l) and ζB(tAP,l) respec-

tively, and

∆ζ(tAP,l) = ζOA(tAP,l)− ζB(tAP,l) (5.4)

is the difference in their sensed BGFs. Depending on whether a neighbor

has sensed a higher or lower BGF, a particular OA is pushed or pulled

by its neighbors. The sharing of BGF can only take place between an

OA and its neighbor if the latter comes within the dominant radius of

the OA as shown in the top left of Fig. 5.4. Hence, to cause a push-

ing/pulling effect due to change in size, a neighbor needs to be within

the dominant radius of the corresponding OA. The effect of interaction

experienced by an OA and its neighbor is given by

M(tAP,l) =


∆ζ(tAP,l)

[∆d/dref ]
λ∠ [ϕ(tAP,l)] , for an OA-neighbor pair

0, for other OAs

(5.5)

where ∆d is the Euclidean distance between an OA and its neighbor, dref

is a normalization factor, ϕ(tAP,l) is the direction of the effective passive

collaboration and λ is the path loss exponent. The net directed effect

of interactions (aggregation) due to K selected neighbors is calculated

as

A⃗(tAP,l) =
K∑
i=1

∆ζ(i)(tAP,l)

[∆d(i)/dref ]
λ

⃗̂
X

(i)
off (tAP,l) . (5.6)
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Figure 5.4: Pictorial representation of semi-autonomous hybrid in vivo computation
(HIVC) highlighting decentralized learning (top left) and decentralized movement in the
autonomous phase and centralized learning (bottom right) and centralized movement in
the reinforcement phase. The simplest case, when the last autonomous step is used to
decide about the heading (steering) direction of the swarm is illustrated at the bottom
right. The red dots labelled as ϵ⃗ (tAP,l) and ϵ⃗ (tAP,l−1), represent the swarm centers at the
(l − 1)th and lth autonomous steps respectively.

Here, X⃗(i)
off (tAP,l) = x⃗OA(tAP,l) − x⃗

(i)
B (tAP,l) represents the displacement

between an OA and its ith neighbor such that x⃗OA(tAP,l) and x⃗
(i)
B (tAP,l)

are their locations in the search domain, respectively.
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(b) DM Mode: After learning from the search space around them, OAs

update their position based on the DL of the environment towards the

resultant direction of the cooperative effect calculated in (6). In the DM

mode, the ith OA takes small autonomous steps x⃗i (tAP,1), x⃗i (tAP,2), · · · ,

x⃗i (tAP,L), and the position update for the lth step is given by

x⃗i (tAP,l) = x⃗i (tAP,l−1) + γ
⃗̂
A (tAP,l−1) ,

and l = 1, 2, · · · , L.
(5.7)

Here, x⃗i (tAP,l−1) is the previous position of the OA, x⃗i (tAP,l) is the

current position and L are the total steps in a single DM mode. The

magnitude of this displacement (migration) depends on the autonomous

phase step size γ. In natural computation, NS behaviours such as their

ability to migrate (step size) rely on their physical properties like shape,

size, composition material or a combination of them (Hauert and Bha-

tia; 2014).

3. Reinforcement Phase: From the decentralized modes in the autonomous

phase, the swarm of OAs are then externally manipulated in the reinforce-

ment phase with the help of the centralized learning (CL) and centralized

movement (CM) modes.

(a) CL Mode: The CL mode relies on the autonomous phase as shown in

Fig. 5.3. The BGF-dependent decentralized motion of the swarm is

externally observed for P steps from the total L steps in the DM mode.

This observation assists in computing the steering direction and magni-
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tude of the swarm movement. We propose the autonomous swarm spot

sampling (ASSS) strategy for this purpose. In ASSS, the swarm is spot

sampled for certain consecutive steps rather than continuously moni-

tored as required in externally manipulable computation (Chen, Ali,

Shi and Cheang; 2019). The center of gravity of the swarm is evaluated

by dividing the swarm shape in Y small equilateral and non-overlapping

triangles. The gravity center of each triangle (µ⃗0, µ⃗1, · · · , µ⃗y) is simply

the average of its three coordinates. Averaging out all the gravity cen-

ters and weighting them by the area of each triangle such that

ϵ⃗ (tAP,l) =
1

Y

Y∑
i=1

µ⃗y (tAP,l)χy (tAP,l) , (5.8)

gives the approximate center of gravity ϵ⃗ (tAP,l) of the swarm. The

area of the yth triangle (χy), is calculated by taking 2-D cross prod-

uct of any two sides of the equilateral triangle. The angle between the

x-axis and the vector ϵ⃗ (tAP,l) − ϵ⃗ (tAP,l−1), gives the heading direction

ϕh (tRP,1) for the first reinforced step of the swarm, based on the last

autonomous step as illustrated in the bottom right of Fig. 5.4. Here

the index l represents the autonomous step in the DM mode. When the

swarm is monitored for P steps with autonomous step moving direc-

tions ϕ (tAP,1), ϕ (tAP,2),· · · , ϕ (tAP,P ), the heading direction ϕh (tRP,1)

is estimated through the least square regression line (Aldrich; 1998).

Given the collection of points (p, ϕ (tAP,p)), where p = 1, 2, · · · , P , there

is a line

ϕh (tRP,1) = β̂1p+ β̂0, (5.9)
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that best fits the data in the sense of minimizing the sum of the squared

errors. Its slope β̂1 and y-intercept β̂0 are computed using the relations

β̂1 =
SSpϕ(tAP,p)

SSpp

, (5.10)

and

β̂0 = ϕ (tAP,P )− β̂1P , (5.11)

where

SSpp =
P∑

p=1

p2 − 1

P

(
P∑

p=1

p

)2

, (5.12)

SSpϕ(tAP,p) =
P∑

p=1

p ϕ(tAP,p)−
1

P

(
P∑

p=1

p

)(
P∑

p=1

ϕ(tAP,p)

)
, (5.13)

P =
1

P

P∑
p=1

p, (5.14)

and

ϕ (tAP,P ) =
1

P

P∑
p=1

ϕ (tAP,p) . (5.15)

Using the above relationships, (5.10) gives the estimated heading di-

rection ϕh (tRP,1) for the swarm. Note, that P = L is the special case

where all autonomous steps are monitored. This may give the best

heading direction but the swarm needs to be observed throughout the

autonomous phase. However, for the simplest case (P = 1), only the lth

and (l − 1)th steps are used to find its steering direction. Hence, there

is a trade-off between the reliability of the estimated heading direction

and the use of monitoring resources.
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(b) CM Mode: The second step of the reinforcement phase is the CM mode

in which the swarm of OAs is centrally steered towards the best direction

that will most probably lead them to the optimal solution. The swarm

of OAs evolve their positions according to

x⃗i (tRP,1) = x⃗i (tAP,L) + Γ ϕh (tRP,1) , (5.16)

where Γ is the step size for the reinforcement phase, x⃗i (tAP,L) is the

position at the last autonomous step and x⃗i (tRP,1) is the current posi-

tion of the OA. The steering vector in the direction of ϕh (tRP,1) helps

in guiding the collective movement of the swarm in the CM mode. This

steering corresponds to the application of an external magnetic field in

natural computation. Such centralized movement of the swarm is cru-

cial to countering the physical constraint imposed by the finite life span

of NSs as mentioned in Section 5.1.

In natural computation, the step size during the autonomous motion

of the swarm is dependent on the inherent properties of NSs such as their

sizes or shapes, whereas the step size during the centralized motion

depends on the external steering equipment. As the aim is to achieve

faster target sensitization, the duration of the reinforcement phase is

longer as compared to the autonomous step duration. The step size for

the reinforcement phase Γ is given by

Γ = vRP dRP , (5.17)
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where, the velocity vRP of the swarm is assumed to be constant for

simplicity and the duration of the reinforcement phase dRP is given by

dRP = c e(−αs/ao) . (5.18)

Here, αs =
∑Y

i=1 χy (tAP,L) is the area of the swarm after the last au-

tonomous step in the DM mode and is determined by adding areas of all

the Y triangles (as outlined in (5.8)), ao is the normalization factor, and

c is the constant. For ao → 0, the reinforcement phase duration dRP ap-

proaches the constant c as the exponential term in (5.18) equals 1. For

ao → ∞, the exponential term and consequently dRP, both approach

zero, which implies that the swarm will not move in the reinforcement

phase for sufficiently large values of ao. It is worth mentioning here

that the swarm cannot be steered with over large steps through longer

durations in the reinforcement phase, as this will degrade the targeting

performance because of the target overshooting effect (Ali et al.; 2021).

4. Termination: The swarm of OAs continue to operate in the autonomous and

reinforcement phases iteratively (AP→RP→AP), as the swarm advances

towards the target. The homing process ends when an OA reaches the target.

In natural computation, termination can be observed externally when OAs

tend to stop their movement as mentioned in Section 5.2.1.
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Figure 5.5: (a-d) Demonstration of target homing by swarm of optimization variables
(representing nanoswimmers) when the Sphere function is overlaid on a grid network
(static obstacles). (e-f) Illustrates of the swarm avoiding both static and mobile obstacles
(small red squares).

5.4 Performance Analysis

To evaluate the target homing performance of our semi-autonomous HIVC frame-

work, we use MATLAB® as a simulation tool for numerical analysis.

5.4.1 Simulation Setup

We use different cost functions having contrasting BGF profiles as stated in Section

5.3.1, which are overlaid on the search space shown in Fig. 5.5. The normal cap-

illaries in the human body produce a homogeneous network which is vascularized

regularly in 2-D (Baish and Jain; 2000; McDougall et al.; 2002). Therefore, the

grid-like search domain depicts the vessel structure serving as the static obstacle

network for the swarm. Moreover, the human circulation system always consists
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of plasma, platelets, red and white blood cells, and some other nutrients. Hence,

to be consistent with the natural environment, we introduce mobile obstacles as

shown with red small boxes in Fig. 5.5. These mobile obstacles move from right

to left and provide an additional hindrance to check the robustness of the swarm

movement.

There are N = 50 OAs in the swarm, which are simultaneously positioned at

random locations in the region −5 mm ≤ x, y ≤ −4 mm. The search time allowed

for each of the 50 independent simulations is 150 seconds. The dominant radius

Rd (to select neighbors which can collaborate mutually) around an OA is set to

be 1 mm with the limit on the maximum number of neighbors K set to 20. So,

an OA is not considered to be a neighbor if its distance is greater than Rd from

another OA. For simplicity, the path loss exponent λ is 2. For the purpose of

spot sampling, we are using the last two steps of the autonomous phase to find

the steering direction for the swarm. The tumor is denoted by a small dot in Fig.

5.5, while any OA coming inside the green circle of radius 0.5 mm is considered to

have detected the target. The overall targeting efficiency η is defined as the ratio

between the number of OAs that have detected the target to the size of the swarm

initially deployed.

5.4.2 Simulation Results

Fig. 5.5 (a-d) show that a swarm of OAs successfully detect the target following

the principles of aggregation and migration in the autonomous phase and steering

through spot sampling. The movement of the swarm is encountered by static

obstacles (grid structure) during the homing process. Fig. 5.5 (e-h) illustrate
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Figure 5.6: Targeting efficiency of the swarm in a grid structure with and without mobile
obstacles.

a more complex environment for the swarm where mobile obstacles (shown with

red boxes moving right to left) are also present along with static obstacles. The

collision of OAs with mobile obstacles causes a delay in their collective motion

towards the target. This can be observed in Fig. 5.5 by vertically comparing

the swarm position at a particular time instant for both scenarios i.e., with and

without mobile obstacles. Nevertheless, apart from the slight delay caused due to

the scattering of swarm by mobile obstacles, their coordination is robust enough

to reach the target successfully.

Fig. 5.6 presents the targeting performance of the swarm in the grid structure,

both with and without mobile obstacles. The Sphere function gives the best per-

formance with (η = 81.44%) and without (η = 92.76%) mobile obstacles followed

by the Matyas function. As expected, the Disc function with zero gradient per-
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Figure 5.7: Comparison of detection time in grid network. The Sphere landscape with:
(a) AIVC, (b) proposed HIVC, and the Matyas landscape with: (c) AIVC, (d) proposed
HIVC.

forms the worst because the whole swarm coordination is BGF-dependent which is

not available. It is worth mentioning here that the targeting performance shown in

Fig. 5.6 is achieved by a sufficient reduction (approximately 85%) of the tracking

computation as only 2 out of 15 steps in the autonomous phase are used to find the

steering direction for OAs in the reinforcement phase. The general performance

degradation of the swarm for all landscapes attribute to the splitting of the swarm

due to mobile obstacles. First, the sub-clustering of the swarm causes a reduction

in available neighbors for passive collaboration. Next, their movement across the

mobile obstacles which are much larger in size, also results in an excess time delay.

Fig. 5.7 represents the search time of the swarm in the Sphere and Matyas

landscapes in the grid network (static obstacles only). When the swarm is not
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Figure 5.8: Comparison of detection time in grid network along with mobile obstacles.
The Sphere landscape with: (a) AIVC, (b) proposed HIVC, and the Matyas landscape
with: (c) AIVC, (d) proposed HIVC.

propelled through the proposed HIVC and target homing is fully autonomous,

Fig. 5.7(a and c) show that only a small number of OAs reach the target within

the total search time (150 secs). However, with the hybrid approach, the much-

needed push is applied to the swarm which results in a higher number of OAs

reaching the target as can been seen in Fig. 5.7(b and d). Specifically, the Sphere

function has larger number of OAs (around 41 out of 50) reaching the target which

is followed by the Matyas function. This worse performance is because of the more

complex BGF in the Matyas function.

Fig. 5.8 also represents the detection performance but here the OAs have both

static and mobile obstacles on their way to the target. The numerical results show

that with the hybrid approach, OAs start detecting the target in approximately

33% less time compared to the autonomous target detection. It can be seen in
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Figure 5.9: Performance comparison of the proposed HIVC in the Sphere and Matyas
landscapes for different reinforcement phase durations.

Fig. 5.8(a and c) that the introduction of mobile obstacles further reduces the

number of OAs reaching the target. However, for the Sphere function, the hybrid

approach still manages to get a sufficient amount of OAs (around 37 out of 50) to

the target. Again, the Sphere function performs better than the Matyas function.

Note that we have not included the BGF-less landscape i.e., the Disc function in

these results as its targeting efficiency is close to zero as shown in Fig. 5.6.

Targeting performance of the swarm for different durations of the reinforcement

phase is illustrated in Fig. 5.9. It is shown that η peak and plateau for the

Sphere and Matyas landscapes demonstrating better results within the range of
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Figure 5.10: Performance comparison of the proposed HIVC in the Sphere and Matyas
landscapes for the adaptive reinforcement phase duration model when: (a) c = 6, (b) c
= 12, (c) c = 18 and (d) c = 24.

8 ≤ dRP ≤ 20 seconds. It is also evident that the Sphere function always gives

better performance than the Matyas function for any particular value of dRP.

Finally, numerical experiments are performed for the adaptive reinforcement

phase duration based on (5.18). For simulation studies, different numerical values
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are assigned to ao (i.e. ao > 0) for multiple values of constant c (i.e. c = 6, 12, 18

and 24). It can be seen that when the constant c = 6 (Fig. 5.10(a)), the slope of

targeting efficiency η in getting to its peak value is not sharp. On the other hand,

for higher values of c (Fig. 5.10(b, c and d)), the slopes of the η graphs become

steeper. It is also observed that the peak value of η is higher when c = 12 and 18

(Fig. 5.10(b and c)), which is expected as they fall within the range of optimal dRP

observed in Fig. 5.9. Last, the potential performance deterioration of the Matyas

function compared to the Sphere function is due to the more complex landscape

of the former function.

5.5 Conclusion

We have proposed a novel semi-autonomous HIVC framework to address the lim-

itations of MIVC and AIVC frameworks. Our numerical results demonstrate that

swarm steering in the reinforcement phase helps to achieve faster sensitization (in

approximately 33% less time) of the target compared to the autonomous approach.

Moreover, simulation results also illustrate that through the ASSS strategy, a

sufficient targeting efficiency (approximately 80% in a grid network with mobile

obstacles) can be achieved, with less usage (around 85% less) of the monitoring

resources compared to the manipulable tumor homing approach. The robustness

of the targeting process has been evaluated in the presence of static and mobile

obstacles with landscapes having different BGF profiles.

Further work may be done by incorporating the dynamic nature of the natural

biological environment. The static objective functions may be replaced by the

time-varying dynamic objective functions to evaluate the targeting performance of
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the proposed framework. Finally, to justify their clinical relevance, the proposed

strategies should be validated through in vitro experiments. A two-dimensional

micro-fluidic blood vessel model can be used to depict the human vasculature and a

magnetic control system can serve as the external steering and monitoring system.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have envisaged a new paradigm of in vivo computation (IVC)

by developing different frameworks which can increase the tumor targeting perfor-

mance. Externally manipulable, self-regulatable or hybrid IVC frameworks can be

utilized as effective tools for tumor biosensing.

First, we have developed a novel iterative-optimization-based direct targeting

strategy for externally manipulable framework. Computational experiments have

shown that tumor-induced biological gradients can be used for “guided” direct

targeting. While homing for the target, the framework facilitates nanoswimmers

(NSs) to use the shortest physiological route having minimum system exposure.

Numerical results demonstrate that probability of tumor detection and accumu-

lation of drug nanoparticles can be significantly improved through the proposed

direct targeting. However, NSs-oriented natural computing have some unique lim-

itations such as uniform magnetic field to steer whole swarm (unintended actua-
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tion), finite life span of nanoswimmers, damage to healthy tissues during target

homing (cytotoxicity), steering and positioning errors due to the constrained ac-

curacy of external equipment.

Second, built upon our earlier work on direct targeting framework, we have

resolved three of the real life constraints of in vivo natural computation, i.e., (1)

finite life span of NSs, (2) uniformity of magnetic field for swarm actuation, and

(3) cytotoxicity. We have proposed the multi-estimate fusion (MEF) strategy to

find a common steering direction for the whole swarm. Numerical results demon-

strate that for symmetric orientations (tumor location in line with the blood flow

direction), the mean of the individual gradient estimates provides the best steering

direction, whereas for non-symmetric search space, estimate of the leader (with the

largest value of the objective functions used to represent biological search space)

can be selected for swarm steering to obtain best results. Next, the constraint

of finite life span can be resolved through the iterative memory-driven gradient

descent (MDGD) optimization which helps to detect the target faster compared to

the classical memory-less gradient descent (MLGD) and systemic targeting. Also,

the prime objective throughout the homing process with the proposed strategies

is to maintain compactness of the swarm which is crucial to reduce the effect of

cytotoxicity. Although, some of the key physical constraints are resolved, but the

targeting approach still suffers from positioning and steer errors caused by the

usage of external monitoring and controlling system.

Third, we have proposed a parallel framework for autonomous in vivo computa-

tion (AIVC) which as the name suggests, is independent of any external monitoring

unit. This approach is inspired from the multiagent systems (MASs) where inter-

acting agents with simplified functionalities and reduced capabilities, solve complex
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problems that could not be solved by them on their own. We have first developed a

one-to-one correspondence between the MAS and tumor detection through natural

computation. Numerical experiments have shown that the tumor-triggered biolog-

ical gradients can be leveraged by the NSs to successfully move towards the target.

The homing ability of the swarm has been tested through different environments

with non-identical orientations and complexity levels. Next, the reality checks of

natural autonomous computing have been highlighted such as the effect of noisy

search environments and interaction with ever-existing mobile obstacles. Finally,

these non-idealities have been included in the search domain parameters for com-

putational experiments, which has not only tested the robustness of the proposed

approach but also provided a critical insight of the natural computation problem.

However, this tumor homing approach is slow because there is no intervention of

an external steering force to propel the swarm towards the target.

The aforementioned MIVC requires constant monitoring of the NSs, causing

positioning and steering errors along with a scaling limit on the swarm size. On

the other hand AIVC suffers from slow detection as the target-directed motion

totally relies on self-regulated principles of aggregation and migration. Hence,

to address these limitations, we have resorted to a semi-autonomous approach

called hybrid in vivo computation (HIVC). We have proposed a spot sampling

strategy which considers the whole swarm as a single entity for the operations of

tracking and steering. The swarm is observed for a short duration to determine

its steering direction. We have demonstrated through computational experiments

that the proposed HIVC approach achieves faster target sensitization in complex

search environments with static and mobile obstacles. The spot sampling not only
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helps in reduction of monitoring source requirement but is also beneficial in the

transportation of a larger swarm to the target.

6.2 Future Work

In the current work, the proposed IVC frameworks can be applied to find a single

tumor. We have assumed that the tumor introduces an isotropic biological gradient

which is leveraged by the NSs to probe the biological environment. Next, all of our

numerical investigations are based on the hypothesis that the search environment

is time invariant, i.e., it remains the same through out the target homing process.

Hence, we are effectively considering the static function optimization problem.

Further Computational Frameworks: Future work may be done on extending

the proposed frameworks to:

• Multi-solution optimization problem for multi-tumor detection. Such ad-

dition to the current work will help to address the natural phenomena of

metastasis, in which malignant tumor cells can multiply and spread to bones,

liver and lungs.

• The biological environment is dynamic in nature due to its ever-changing

properties such as the flow of body fluids. The characteristics of the natural

environment can also vary after interacting with the nanoparticles which

makes it a dynamic optimization problem. Therefore, further investigations

are required to incorporate the dynamic nature of the biological search space.

• Although we have included a range of vascular models for numerical ex-

periments in the current research i.e., multi-layer layer discretized networks
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with static and mobile obstacles; they are all two-dimensional. Further work

needs to be done to generate three-dimensional network models which are

more realistic to the natural environment.

• Moreover, the proposed frameworks are for successful detection of the tumor

but do not consider the distribution of nanoparticles on the tumor itself.

Further work may be done to extend current frameworks so that the uni-

form distribution of the nanoparticles can be achieved which may help in

classification of the tumors.

• Finally, the current frameworks can be extended for multi-objective optimiza-

tion problem. For example, after detection of the tumor, the drug delivery

can also be performed to cure cancerous cells of malignant tumors.

In vitro Experiments: Nanomaterial-based pharmaceutical developments should

be made so that the proposed frameworks can be validated through in vitro ex-

periments. To emulate computational agents, novel magnetic Janus nanorobots

composed of polystyrene (PS) polymeric nanoparticles coated on one side with

nickel (Ni) can be utilized. A two-dimensional micro-fluidic blood vessel model

can be used to depict the human vasculature and a magnetic control system can

serve as the external steering and monitoring system.

In vivo Experiments: Verification of the results from in silico simulations by the

in vitro experiments may be the first step towards the realization of the proposed

nanobiosensing work by real experiments (with animals). The in vivo proof-of-

concept can be obtained through an animal tumour xenograft model, which will

further justify the clinical relevance of the current work.
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