59,235 research outputs found

    Pathfinder autonomous rendezvous and docking project

    Get PDF
    Capabilities are being developed and demonstrated to support manned and unmanned vehicle operations in lunar and planetary orbits. In this initial phase, primary emphasis is placed on definition of the system requirements for candidate Pathfinder mission applications and correlation of these system-level requirements with specific requirements. The FY-89 activities detailed are best characterized as foundation building. The majority of the efforts were dedicated to assessing the current state of the art, identifying desired elaborations and expansions to this level of development and charting a course that will realize the desired objectives in the future. Efforts are detailed across all work packages in developing those requirements and tools needed to test, refine, and validate basic autonomous rendezvous and docking elements

    Civil Space Technology Initiative: a First Step

    Get PDF
    This is the first published overview of OAST's focused program, the Civil Space Technology Initiative, (CSTI) which started in FY88. This publication describes the goals, technical approach, current status, and plans for CSTI. Periodic updates are planned

    An Autonomous Surface Vehicle for Long Term Operations

    Full text link
    Environmental monitoring of marine environments presents several challenges: the harshness of the environment, the often remote location, and most importantly, the vast area it covers. Manual operations are time consuming, often dangerous, and labor intensive. Operations from oceanographic vessels are costly and limited to open seas and generally deeper bodies of water. In addition, with lake, river, and ocean shoreline being a finite resource, waterfront property presents an ever increasing valued commodity, requiring exploration and continued monitoring of remote waterways. In order to efficiently explore and monitor currently known marine environments as well as reach and explore remote areas of interest, we present a design of an autonomous surface vehicle (ASV) with the power to cover large areas, the payload capacity to carry sufficient power and sensor equipment, and enough fuel to remain on task for extended periods. An analysis of the design and a discussion on lessons learned during deployments is presented in this paper.Comment: In proceedings of MTS/IEEE OCEANS, 2018, Charlesto

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Hypersonic Research Vehicle (HRV) real-time flight test support feasibility and requirements study. Part 2: Remote computation support for flight systems functions

    Get PDF
    The requirements are assessed for the use of remote computation to support HRV flight testing. First, remote computational requirements were developed to support functions that will eventually be performed onboard operational vehicles of this type. These functions which either cannot be performed onboard in the time frame of initial HRV flight test programs because the technology of airborne computers will not be sufficiently advanced to support the computational loads required, or it is not desirable to perform the functions onboard in the flight test program for other reasons. Second, remote computational support either required or highly desirable to conduct flight testing itself was addressed. The use is proposed of an Automated Flight Management System which is described in conceptual detail. Third, autonomous operations is discussed and finally, unmanned operations

    Parametric modelling of Malaysian teeth template using computer aided design

    Get PDF
    This study explored a new method and process of design denture using CAD technology to develop a template of a complete denture. Computer aided design were used as a tool of the design process. Occlusion curve was set up as variable as to follow patient size. The maxilla and mandible teeth arrangement were treated as a template of Malaysian user. The accuracy of design is the main aspect of concern that match the patients' data so that the outcome product would be suitable with maximum comfort for the patient. The product of design template will be matched with the conventional method to compare the tolerance between both. The new design template helps to reduce the time consumption of conventional carving method. The final output of 3D geometry teeth templates design will represent the patient details

    Development of coated peanut separator and frying skillet machine

    Get PDF
    Coated peanut which known as Kacang Bersalut Istimewa Deqyoung is a product made from groundnut mix with flour and special spices. Currently, there are some issues with the product that slow down the production process. The groundnut is sticking and become like a ping pong size ball and the time consuming to fry is longer. Coated peanut separator and frying skillet machine can overcome the problems and able to increase the production. Furthermore, the machine aim to facilitate workers to carry out their duties and to assist small and medium industries (SMEs) in Malaysia. The design convenient, determination of the material selection and the main components that help to operate the machine are the main aspects have been considered. Design analysis helps to identify the capability of the machine when the forces act at some main parts of the machine. The comparison between manual method and semi-automatic method shows that the production increase. By using semi-automatic method of production, the increment shows almost 84 percent of production compares to manual method

    Transfer Learning-Based Crack Detection by Autonomous UAVs

    Full text link
    Unmanned Aerial Vehicles (UAVs) have recently shown great performance collecting visual data through autonomous exploration and mapping in building inspection. Yet, the number of studies is limited considering the post processing of the data and its integration with autonomous UAVs. These will enable huge steps onward into full automation of building inspection. In this regard, this work presents a decision making tool for revisiting tasks in visual building inspection by autonomous UAVs. The tool is an implementation of fine-tuning a pretrained Convolutional Neural Network (CNN) for surface crack detection. It offers an optional mechanism for task planning of revisiting pinpoint locations during inspection. It is integrated to a quadrotor UAV system that can autonomously navigate in GPS-denied environments. The UAV is equipped with onboard sensors and computers for autonomous localization, mapping and motion planning. The integrated system is tested through simulations and real-world experiments. The results show that the system achieves crack detection and autonomous navigation in GPS-denied environments for building inspection
    • …
    corecore