127 research outputs found

    Intelligent cost-effective winter road maintenance by predicting road surface temperature using machine learning techniques

    Get PDF
    Since Winter Road Maintenance (WRM) is an important activity in Nordic countries, accurate intelligent cost-effective WRM can create precise advance plans for developing decision support systems to improve traffic safety on the roads, while reducing cost and negative environmental impacts. Lack of comprehensive knowledge and inaccurate WRM information would lead to a certain loss of WRM budget, safety reduction, and irreparable environmental damage. This study proposes an intelligent methodology that uses data envelopment analysis and machine learning techniques. In the proposed methodology, WRM efficiency is calculated by data envelopment analysis for different decision-making units (roads), and inefficient units need to be considered for further assessments. Therefore, road surface temperature is predicted by means of machine learning methods, in order to achieve efficient and effective WRM on the roads during winter in cold regions. In total, four different methods have been used to predict road surface temperature on an inefficient road. One of these is linear regression, which is a classical statistical regression technique (ordinary least square regression); the other three methods are machine-learning techniques, including support vector regression, multilayer perceptron artificial neural network, and random forest regression. Graphical and numerical results indicate that support vector regression is the most accurate method

    Corporate Bankruptcy Prediction

    Get PDF
    Bankruptcy prediction is one of the most important research areas in corporate finance. Bankruptcies are an indispensable element of the functioning of the market economy, and at the same time generate significant losses for stakeholders. Hence, this book was established to collect the results of research on the latest trends in predicting the bankruptcy of enterprises. It suggests models developed for different countries using both traditional and more advanced methods. Problems connected with predicting bankruptcy during periods of prosperity and recession, the selection of appropriate explanatory variables, as well as the dynamization of models are presented. The reliability of financial data and the validity of the audit are also referenced. Thus, I hope that this book will inspire you to undertake new research in the field of forecasting the risk of bankruptcy

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF
    In a context of global carbon emission reduction goals, buildings have been identified to detain valuable energy-saving abilities. With the exponential increase of smart, connected building automation systems, massive amounts of data are now accessible for analysis. These coupled with powerful data science methods and machine learning algorithms present a unique opportunity to identify untapped energy-saving potentials from field information, and effectively turn buildings into active assets of the built energy infrastructure.However, the diversity of building occupants, infrastructures, and the disparities in collected information has produced disjointed scales of analytics that make it tedious for approaches to scale and generalize over the building stock.This coupled with the lack of standards in the sector has hindered the broader adoption of data science practices in the field, and engendered the following questioning:How can data science facilitate the scaling of approaches and bridge disconnected spatiotemporal scales of the built environment to deliver enhanced energy-saving strategies?This thesis focuses on addressing this interrogation by investigating data-driven, scalable, interpretable, and multi-scale approaches across varying types of analytical classes. The work particularly explores descriptive, predictive, and prescriptive analytics to connect occupants, buildings, and urban energy planning together for improved energy performances.First, a novel multi-dimensional data-mining framework is developed, producing distinct dimensional outlines supporting systematic methodological approaches and refined knowledge discovery. Second, an automated building heat dynamics identification method is put forward, supporting large-scale thermal performance examination of buildings in a non-intrusive manner. The method produced 64\% of good quality model fits, against 14\% close, and 22\% poor ones out of 225 Dutch residential buildings. %, which were open-sourced in the interest of developing benchmarks. Third, a pioneering hierarchical forecasting method was designed, bridging individual and aggregated building load predictions in a coherent, data-efficient fashion. The approach was evaluated over hierarchies of 37, 140, and 383 nodal elements and showcased improved accuracy and coherency performances against disjointed prediction systems.Finally, building occupants and urban energy planning strategies are investigated under the prism of uncertainty. In a neighborhood of 41 Dutch residential buildings, occupants were determined to significantly impact optimal energy community designs in the context of weather and economic uncertainties.Overall, the thesis demonstrated the added value of multi-scale approaches in all analytical classes while fostering best data-science practices in the sector from benchmarks and open-source implementations

    Processability Analysis using Principal Component Analysis and Support Vector Machine

    Get PDF
    The obtained model developed outperforms the existing linear and logistic prediction methods in terms of content prediction error. As the proof of concept, the methodology is applied to an oil sands processing dataset created using an artificial model with such variables as bitumen content and fines content of ores, along with the processing variables such as pH and temperature

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF

    Partner selection in sustainable supply chains: a fuzzy ensemble learning model

    Get PDF
    With the increasing demands on businesses to operate more sustainably, firms must ensure that the performance of their whole supply chain in sustainability is optimized. As partner selection is critical to supply chain management, focal firms now need to select supply chain partners that can offer a high level of competence in sustainability. This paper proposes a novel multi-partner classification model for the partner qualification and classification process, combining ensemble learning technology and fuzzy set theory. The proposed model enables potential partners to be classified into one of four categories (strategic partner, preference partner, leverage partner and routine partner), thereby allowing distinctive partner management strategies to be applied for each category. The model provides for the simultaneous optimization of both efficiency in its use of multi-partner and multi-dimension evaluation data, and effectiveness in dealing with the vagueness and uncertainty of linguistic commentary data. Compared to more conventional methods, the proposed model has the advantage of offering a simple classification and a stable prediction performance. The practical efficacy of the model is illustrated by an application in a listed electronic equipment and instrument manufacturing company based in southeastern China

    Estimating the risk of suffering gender-based violence

    Get PDF
    The primary objective of this research was to create a predictive model capable of identifying socio-demographic and clinical characteristics potentially associated with the risk of experiencing gender-based violence. Additionally, the aim was to predict the likelihood of suffering gender-based violence using machine learning techniques by evaluating data from the 2019 macro-survey on violence against women conducted by the Ministry of Equality of the Government of Spain. To achieve these goals, the study employed two feature selection methods: Recursive Feature Elimination (RFE) and LASSO Regularized Regression. Furthermore, two predictive models, namely Support Vector Machines (SVM) and Random Forest (RF), were utilized to analyze the data and make predictions
    corecore