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Abstract: An extended belief rule-based (EBRB) system is superior to existing rule-based systems in managing several types of 

uncertain information and modeling complex issues effectively and efficiently. However, the accuracy and interpretability of the 

EBRB system still need to be enhanced by addressing the following shortcomings: the interpretability of the intermediate 

variables in the EBRB system should be definite and the system parameters must be effectively determined. Therefore, we 

distinguish discrete and continuous data types to perform sensitivity analysis twice: first, on the rule inference scheme to study the 

interpretability of individual matching degrees and activation weights; and second, on the rule generation scheme to examine the 

effect of utility values and attribute weights on the accuracy of the EBRB system. Based on the analyses, we propose a novel 

activation weight calculation method and parameter optimization method to enhance the interpretability and accuracy of the 

EBRB system, respectively. We then present three case studies to elucidate the effectiveness of the proposed methods. The results 

indicate that the enhanced EBRB system prevents counterintuitive and insensitive situations and obtains better accuracies than 

some studies. 
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1. Introduction 

Among various systems and models, the rule-based system, a grey-box modeling type [12], has the system structure 

constructed by a set of rules and the system parameters determined based on observational data. While several rule-based systems, 

including the fuzzy rule-based (FRB) system [20][35] and the belief rule-based (BRB) system [30][34], have been proved to be 

efficient in complex system modeling, the enhancement of interpretability and accuracy has been debated to affect modeling 

performances [19][27]. Considering the BRB system, the parameter optimization [31] and the structure optimization [36] were 

proposed to determine optimal parameter values for enhancing accuracy and reasonable parameter numbers for improving 

interpretability, respectively. 

Recently, Liu et al. [14] developed the extended belief rule-based (EBRB) system, an advanced rule-based system better than 

the FRB and BRB systems, having the following advantages: 

(1) The extended belief rule in the EBRB system has a generic information representation better than the fuzzy rule in the 

FRB system and the belief rule in the BRB system, because the extended belief rule can express probabilistic, fuzzy, 
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and incomplete uncertainties in both antecedent and consequent attributes. 

(2) The EBRB system can be knowledge-driven, or data-driven, or their combination decision model. Consequently, the 

extended belief rules are automatically generated from sample input-output data pairs, without requiring the time- 

consuming optimization process. 

Furthermore, numerous studies have been conducted to enhance the interpretability and accuracy of the EBRB system in 

recent years. Calzada et al. [3] discussed the problem of incompleteness and inconsistency in the EBRB system. They suggested 

that the dynamic rule activation (DRA) method could be used to better determine the number of activation rules. Yang et al. [33] 

introduced two types of tree-based databases to construct a multi-attribute search framework (MaSF) for the EBRB system. The 

MaSF uses the space relationship between rules for activating extended belief rules efficiently. Espinilla et al. [11] proposed the 

adaption of the EBRB system for human activity recognition based on data collected from binary sensors in a smart environment. 

They suggested using the Hamming distance for discrete binary data than the Euclidean distance in activation weight calculation 

to improve the accuracy of the EBRB system. Yang et al. [32] discussed that the EBRB system lacked methods to evaluate the 

efficiency of extended belief rules and the data envelopment analysis (DEA) method was introduced to reduce these inefficient 

rules. 

However, these studies have the following two shortcomings and demand improvements to enhance the interpretability and 

accuracy of the EBRB system. 

The first shortcoming is that none of these studies aims to assure the interpretability of intermediate variables produced by 

the interpretable parameters of the EBRB system. For example, the attribute weight denotes the importance of the antecedent 

attribute. The more important the antecedent attribute is, the bigger value will be subjectively provided to the attribute weight. 

However, intermediate variables, including individual matching degrees and activation weights, are probably uninterpretable 

because they must be objectively calculated according to the interpretable parameters, and no relevant investigations show their 

interpretability. Moreover, because these studies are based on intermediate variables, they may weaken the interpretability of the 

EBRB system.  

The second shortcoming is that none of these studies focuses on determining optimal values of relevant system parameters. 

Reviewing the previous literature [14] reveals that the basic parameter values, including the attribute weights and utility values of 

reference values for antecedent and consequent attributes, of the EBRB system are usually determined by expertise. In essence, 

the subjective method to determine the value of these basic parameters may not always be available, because lacking of domain 

knowledge and measurement data is challenging for experts to provide effective parameter values. How to optimally determine 

the basic parameter values of the EBRB system in order to enhance its accuracy has not yet been investigated. 

To overcome aforementioned two shortcomings, we perform sensitivity analysis introduced in [15][16] for the EBRB system 

to investigate its potential enhancements for interpretability and accuracy. Sensitivity analysis has been proved to be effective for 

testing the robustness of the results, facilitating understanding of the input-output variables’ relationship, and searching for errors 

in a model, among others. 
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For assuring interpretability of intermediate variables, we examine the rule inference scheme of the EBRB system to 

summarize various intermediate variables, including the Euclidean, standardized Euclidean, and Hamming-based individual 

matching degrees and activation weights. By distinguishing continuous and discrete data types, we perform sensitivity analysis 

associated with diverse test input data, extended belief rules, rule weights, or attribute weights to study the interpretability of 

individual matching degrees and activation weights. Based on the analyses, we propose a novel activation weight calculation 

method to enhance interpretability of the EBRB system. 

For determining optimal values of relevant system parameters, we examine the rule generation scheme of the EBRB system 

to summarize the influence of the basic parameters on accuracy. By distinguishing discrete and continuous data types, we perform 

sensitivity analysis for studying the relationship between the basic parameters and the accuracy of the EBRB system. Accordingly, 

we propose a novel parameter optimization method to obtain optimal values of relevant basic parameters for enhancing accuracy. 

In order to elucidate the effectiveness of the proposed methods, we use three case studies based on two prediction problems 

and five classification problems, along with meticulous comparison between the conventional EBRB system and other existing 

studies in these three studies, to demonstrate their ability in enhancing interpretability and accuracy of the EBRB system. 

The remainder of this paper is organized as follows: Section 2 briefly reviews the EBRB system. Section 3 investigates the 

interpretability of the EBRB system via sensitivity analysis and proposes a new activation weight calculation method. Section 4 

investigates the accuracy of the EBRB system via sensitivity analysis and proposes a new parameter optimization method. Section 

5 provides three case studies to demonstrate the effectiveness of the proposed methods for the EBRB system in terms of 

interpretability and accuracy, and the paper is concluded in Section 6. 

2. A review of EBRB systems 

The EBRB system, as a data-driven rule-based system, comprises three components shown in Fig. 1: EBRB that is the 

knowledge base to store uncertain information in the form of extended belief rules, rule generation scheme providing an efficient 

procedure to generate EBRB from a set of sample input-output data, and rule inference scheme having an effective procedure to 

reply test input data based on the EBRB. 

 

Fig. 1. An EBRB system 
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2.1. Basic concepts of EBRB systems 

An EBRB system comprises M antecedent attributes and one consequent attribute. The antecedent attribute Ui (i=1,…, M) is 

described by Ji reference values Ai,j (j=1,…, Ji), and the consequent attribute D is described by N reference values Dn (n=1,…, N). 

Thus, an extended belief rule of the EBRB can be written as [14]: 
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We consider the leak detection of an oil pipeline [28] to instantiate the extended belief rule as follows: 
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 The antecedent attributes are Pressure Difference and Flow Difference with reference values Low, Medium, and High; the 

consequent attribute is Leak Size with reference values Small, Medium, and Large. While 10% sure that Pressure Difference is 

Medium and 90% that it is High, and 10% sure that Flow Difference is Low and 80% it is Medium, then 50% sure that Leak Size is 

Medium and 50% that it is Large. As the total belief degree of Flow Difference is 0.1+0.8=0.9<1.0, the extended belief rule 

contains the incomplete uncertainty. Furthermore, the attribute weight of Pressure Difference and Flow Difference is 0.8 and 0.1, 

respectively, which reflect the different importance of two antecedent attributes. The rule weight of the kth rule is 0.9, and it 

represents the importance/reliability of the rule over other rules. 

2.2. Rule generation scheme 

Fig. 1 illustrates that the rule generation scheme is a vital method for the EBRB system to generate an EBRB. According to 

[14], the following two steps are summarized to describe the rule generation scheme. 

Step 1: To determine utility values and attribute weights using expert knowledge. 

Prior to generating extended belief rules from sample input-output data, pre-determining relevant system parameters of an 

EBRB is essential. These parameters include reference values required for each antecedent and consequent attributes, utility 

values assigned for these reference values, and attribute weights that are appropriate for antecedent attributes. Hence, in this step, 

expert knowledge is usually utilized to pre-determine these parameters. 

Step 2: To calculate belief distributions and rule weights using the utility-based equivalence transformation technique. 

For generating a complete extended belief rule, we suppose that {u(Ai,j); j=1,…, Ji} is a set of given utility values used for the 

ith (i=1,…, M) antecedent attribute, and xk,i is the kth (k=1,…, L) sample input data of the ith antecedent attribute. Thus, the belief 

distribution of the ith antecedent attribute generated using the utility-based equivalence transformation technique [29] is:  
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where Ai,j represents the jth reference value of the ith antecedent attribute, 
k

ji ,
  is the belief degree of Ai,j in the kth rule obtained 

from the sample input data xk,i. 

Similarly, when the kth sample output data is yk and the given utility values attached to the consequent attribute D are {u(Dn); 

n=1,…, N}, the belief distribution of the consequent attribute is: 
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According to the belief distribution of antecedent and consequent attributes, the rule weight of each extended belief rule is 

generated by using the similarity measure (please see [14] for details). Finally, these belief distributions and weights are used to 

generate an extended belief rule shown in Eq. (1). 

 

2.3. Rule inference scheme 

Fig. 1 indicates that the rule inference scheme is another vital method for the EBRB system to reply test input data. 

According to [14], the rule inference scheme consists of the following steps: 

Step 1: To calculate the activation weight of each extended belief rule based on the distance-based similarity measure. 

We consider a test input data vector x=(x1,…, xM) provided for an EBRB system; each input xi will be transformed or 

assessed into the belief distribution of the reference values of the ith antecedent attribute using Eqs. (4) and (5): 
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where ji,  is the likelihood to which the test input xi belongs to the reference value Ai,j 

Next, the individual matching degree of xi to the ith antecedent attribute in the kth rule, denoted as Sk(xi, Ui), is calculated 

using the Euclidean distance: 
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where 
k

ji ,
 (j=1,…, Ji) are the belief degrees generated from the kth (k=1,…, L) sample input data xk,i for Ui using Eq. (3), dk(xi, Ui) 

is the distance measurement, and Sk(xi, Ui) measures the matching degree between belief distribution generated from xi and the one 

generated from xk,i for the ith antecedent attribute Ui in the kth rule. 

Thus, the activation weight for the kth rule, denoted as wk, is calculated as: 
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where 
k  is the weight of the kth rule; 

i  is the weight of the ith antecedent attribute. 

Step 2: To integrate all activation rules using the ER algorithm. 

After calculating activation weights, all activation rules are integrated using the analytical ER algorithm [26]: 
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For the prediction problem, based on the utility values {u(Dn); n=1,…, N}, the numerical inference result is: 
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 For the classification problem, suppose that Dn denotes the nth class, the final inference class is: 
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3. Sensitivity analysis on the rule inference scheme for activation weight calculation 

In this section, we use the important intermediate variables involved in the rule inference scheme, including individual 

matching degrees and activation weights, to examine the interpretability of the EBRB system through sensitivity analysis. Based 

on the analyses, we propose a novel activation weight calculation method to enhance the interpretability of the EBRB system. 

3.1. Sensitivity analysis on individual matching degrees 

The individual matching degree is one kind of intermediate variables in the rule inference scheme that illustrates the 

significance of an activation rule for different antecedent attributes. A review of the rule inference scheme shows that calculating 

individual matching degrees depends on distance measures, including Euclidean, standardized Euclidean, and Hamming distances. 

For calculating individual matching degrees, consider two input data xk,i and xi attached to the ith antecedent attribute, where 

the former is a sample data to generate the kth extended belief rule and the latter is a test data likely to activate extended belief 

rules. Both input data can be transformed into belief distributions: S(xk,i)={(Ai,j, 
k

ji ,
 ); j=1,…, Ji} and S(xi)={(Ai,j, ji, ); j=1,…, 

Ji}. Therefore, in addition to the Euclidean distance-based individual matching degree shown in Eq. (8), other individual matching 

degrees based on different distance measures are listed as follows: 

The standardized Euclidean distance-based individual matching degree [33] is: 
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The Hamming distance-based individual matching degree [11] is: 
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To instantiate these individual matching degrees, we assume that the utility values of reference values for the ith antecedent 

attribute are assessed by: 

}1 ,5.0 ,0{}3 ,2 ,1);({ , ==jAu ji                                  (15) 

The input data xk,i and xi can be grouped into two categories: continuous and discrete. The continuous data are those that take 

any value having a range, such as human height, flow difference, and pressure difference, whereas the discrete data are those that 

only take certain discrete values, such as human sex, output of binary sensors, and number of classes. Hence, if the input data is 
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continuous, assume the range of both xk,i and xi is the interval [0, 1]; otherwise, assume the range is the set {0, 0.5, 1}. Figs. 2 and 

3 present the curves of three individual matching degrees. 
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 (a) Euclidean distance          (b) Standardized Euclidean distance             (c) Hamming distance 

Fig. 2. Sensitivity analysis on individual matching degrees for continuous data 

0

0.5

1

0

0.5

1

-0.5

0

0.5

1

 

Sample input data x
k,i

Test input data x
i

 

In
d

iv
id

u
al

 m
at

ch
in

g
 d

eg
re

e

Individual matching degree

 
0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

 

Sample input data x
k,i

Test input data x
i

 

In
d

iv
id

u
al

 m
at

ch
in

g
 d

eg
re

e

Individual matching degree

 
0

0.5

1

0

0.5

1
0.2

0.4

0.6

0.8

1

 

Sample input data x
k,i

Test input data x
i

 

In
d

iv
id

u
al

 m
at

ch
in

g
 d

eg
re

e

Individual matching degree

 

 (a) Euclidean distance          (b) Standardized Euclidean distance             (c) Hamming distance 

Fig. 3. Sensitivity analysis on individual matching degrees for discrete data 

Based on Figs. 2 and 3, two problems are observed in studying the interpretability of individual matching degrees. 

Problem 1: The individual matching degree may be counterintuitive. 

A significant situation is observed in the Euclidean distance-based individual matching degree for continuous and discrete 

data. Figs. 2(a) and 3(a) show numerous individual matching degrees as negative, which in fact are counterintuitive. For example, 

for test input data xi=0 and sample input data xk,i=0.5 are provided for the EBRB system, the individual matching degree is -0.414 

for continuous and discrete data.  

Another significant situation is observed in the standardized Euclidean and Hamming distance-based individual matching 

degrees for continuous data. Figs. 2(b) and 3(b) demonstrate that, with fixed test input data xi or sample input data xk,i, several 

minimal and maximal extreme points are crossed. These extreme points counterintuitively reflect the similarity between test input 

data and extended belief rules. For example, when the sample input data xk,i is 0 for the standardized Euclidean distance-based 

individual matching degree, a maximal extreme point xi=0.75 is observed in the interval between two minimal extreme points 

xi=0.5 and xi=1; however, the minimal extreme point xi=0.5 is in another interval between two maximal extreme points xi=0.75 

and xi=0. 

Problem 2: The individual matching degree may be insensitive to test input data. 

A significant situation is observed in three individual matching degrees for continuous and discrete data. Figs. 2 and 3 
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indicate that several individual matching degrees to be same for different test input data that actually are insensitive to particular 

test input data. For example, when sample input data xk,i=0 is used to calculate the standardized Euclidean distance-based 

individual matching degree, individual matching degrees are same for the different test input data xi=0.5 and xi =1 for continuous 

and discrete data. 

Another significant situation is observed in the Hamming distance-based individual matching degree for discrete data. Fig. 

3(c) illustrates that individual matching degrees are not equal to 0, indicating that the individual matching degree is in a local 

value domain while expressing the similarity between the test and sample input data. For example, although the extreme sample 

input data xk,i=0 and the test input data xi=1 are provided for the EBRB system, the individual matching degree is 0.33, not 0. 

 

3.2. Sensitivity analysis on activation weights 

In this subsection, we perform sensitivity analysis on activation weights for investigating the interpretability of another 

intermediate variable observed in the rule inference scheme. Considering extended belief rules consisting only one antecedent 

attribute, according to Eq. (9), the activation weight of the kth extended belief rule is simplified as the following unnormalized 

formula: 
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 Fig. 4 presents two curves of activation weights relative to individual matching degrees, attribute weights, and rule weights, 

assuming 1=k  in Fig. 4(a) and 1=i  in Fig. 4(b). 
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 (a) 1=k                                         (b) 1=i  

Fig. 4. Sensitivity analysis on activation weights 

According to Fig. 4, one problem is observed in investigating the interpretability of activation weights. 

Problem 3: The attribute weight is negatively correlated with the activation weight. 

Fig. 4 illustrates that both the rule weight and individual matching degree are positively correlated with activation weights. 

With an extended belief rule having bigger rule weight or individual matching degree indicating this rule is more important than 

others, producing a bigger activation weight is a high possibility. However, Fig. 4(a) indicates the relationship between the 

attribute weight and the activation weight as contradictory. It is clearly counterintuitive for the EBRB system, because a bigger 
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attribute weight produces a smaller activation weight. For example, when the antecedent attribute is ineffective for the EBRB 

system and its attribute weight is therefore assumed 0, the resulting activation weight has the biggest value. 

For investigating the interpretability of activation weights, we consider the ith antecedent attribute with three reference 

values, the utility values of its reference values are shown in Eq. (15), and the belief distribution of the ith antecedent attribute for 

the kth extended belief rule is: 
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For continuous and discrete data, Figs. 5 and 6 show the curves of three types of distance-based activation weights with 

respect to test input data xi and attribute weights. 
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 (a) Euclidean distance          (b) Standardized Euclidean distance             (c) Hamming distance 

Fig. 5. Sensitivity analysis on activation weights based on different distance measures for continuous data 
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Fig. 6. Sensitivity analysis on activation weights based on different distance measures for discrete data type 

Based on Figs. 5 and 6, another problem is observed in investigating the interpretability of activation weights. 

Problem 4: The activation weight may be counterintuitive and insensitive to test input data. 

Counterintuitive is observed in three types of activation weights for both continuous and discrete data. For the Euclidean 

distance-based activation weight, Figs. 5(a) and 6(a) illustrate several activation weights to be negative due to negative individual 

matching degrees shown in Figs. 2(a) and 3(a). In other words, when the test input data xi=0.5 is provided for the EBRB system, 

the individual matching degree is -0.414 and further produces a negative activation weight. For the standardized Euclidean and 

Hamming distance-based activation weights for continuous data, Figs. 5(b) and 5(c) show that many minimal and maximal 

extreme points are crossed when the attribute weight is fixed. In other words, when the attribute weight is 0 for the standardized 

Euclidean distance-based activation weight, a maximal extreme point xi=0.75 is observed in the interval between two minimal 
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extreme points xi=0.5 and xi=1, but the minimal extreme point xi=0.5 is observed in the interval between two maximal extreme 

points xi=0.75 and xi=0. 

Insensitivity to test input data is observed in three types of activation weights for both continuous and discrete data. For the 

standardized Euclidean distance-based activation weight, Figs. 5(b) and 6(b) indicate several activation weights to be same for 

different test input data. In other words, when the test input data xi=0.5 and xi =1 are provided for the EBRB system, the activation 

weights must be 0. Furthermore, for the Hamming distance-based activation weight, Fig. 6(c) shows that none of the activation 

weights is 0. This is similar to the individual matching degrees shown in Fig. 3(c). 

 

3.3. Proposed activation weight calculation method 

To overcome four problems identified from sensitivity analysis in Sections 3.1 and 3.2, we propose a novel activation weight 

calculation method for the EBRB system; Fig. 7 illustrates the general process. 

 

Fig. 7. Illustration of new activation weight calculation method for the EBRB system 

The proposed activation weight calculation method works as follows: 

Step 1: To transform the test input data into the distributed likelihood of the reference values using the modified similarity 

measure. 

Consider a test input data vector x=(x1,…,xM), where M is the number of antecedent attributes. Each input xi (i=1,…, M) is 

transformed into the distributed representation of the reference values of the ith antecedent attribute: 

},...,1);,{()( ,, ijijii JjAxS ==  ,                                      (18) 

where 

)}({min)}({max

)(
0.1

,,...,1,,...,1

,

,

kiJkkiJk

iji

ji
AuAu

xAu

ii ==
−

−
−=                           (19) 

Rather than using Eqs. (4) and (5), we use Eq. (19) to calculate ji ,  as a new modification, where u(Ai,j) is the utility value 

of the reference value Ai,j; ji ,  is the likelihood to which the test input xi belongs to the reference value Ai,j; and Ji is the number 

of reference values referred to the ith antecedent attribute. 

 Step 2: To calculate individual matching degrees for each antecedent attribute using the simple additive weighting method. 
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Unlike distance-based measures given in Eqs. (8), (13), or (14), we calculate the individual matching degree of xi to the ith 

antecedent attribute in the kth rule as follows: 

 =
=

Ji

j

k

jijiii

k UxS
1 ,,

),(                                       (20) 

where 
k

ji ,
 (j=1,…,Ji) is the belief degrees generated from the kth (k=1,…, L) sample input data xk,i for Ui using Eq. (3). 

 Step 3: To calculate new activation weights for each extended belief rule. 

We calculate the new activation weight wk for the kth extended belief rule as follows: 

( )

( ) 



= =

==
L

l

M

i ii

k

l

M

i ii

k

k
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i

i

UxS

UxS
w

1 1

1

1

1

)),((

),(








                                (21) 

where 
k  is the weight of the kth rule; 

i  is the weight of the ith antecedent attribute. 

In order to investigate the interpretability of the EBRB system with new activation weight calculation method, we perform 

sensitivity analysis on individual matching degrees. Fig. 8 illustrates the relationship between individual matching degree of the 

test input data xi to the kth rule generated from the sample input data xk,i for Ui for continuous and discrete data. 
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 (a) Individual matching degree for continuous data             (b) Individual matching degree for discrete data 

Fig. 8. Sensitivity analysis on new individual matching degrees 

Remark 1: Fig. 8 shows several advantages comparing to the existing distance-based individual matching degrees: first, the 

new individual matching degree belongs to the global value range [0, 1] for continuous and discrete data, and second, only one 

maximal and two minimal extreme points are available for any given test input data. Hence, it is believed that the new activation 

weight calculation method can overcome Problems 1 and 2. 

For sensitivity analysis on new activation weights, we consider the extended belief rules consisting one antecedent attribute 

for illustration; its unnormalized calculation is: 

  

( ) i

ii

k

kk
UxSw




1

),(=                                   (22)

 Fig. 9, by assuming that 1=k  and 1=i , shows two curves of new activation weights. 
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Fig. 9. Sensitivity analysis on new activation weights in terms of attribute and rule weights 

Remark 2: Fig. 9 shows that the rule weights, attribute weights, and individual matching degrees are positively correlated 

with activation weights. Hence, it is believed that the new activation weight calculation method can overcome Problem 3. 

To perform sensitivity analysis on new activation weights, we consider utility values of reference values for the ith 

antecedent attribute shown in Eq. (15) and the belief distribution of the ith antecedent attribute for the kth extended belief rule 

given in Eq. (17). Fig. 10 illustrates the curves of new activation weights with respect to test input data xi and attribute weights. 
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 (a) Activation weight for continuous data             (b) Activation weight for discrete data 

Fig. 10. Sensitivity analysis on new activation weights in terms of test input data and attribute weight 

Remark 3: Fig. 10 proves that several advantages over existing distance-based activation weights: first, new activation 

weights belong to the global value range [0, 1] for continuous and discrete data, and second, only one maximal and one minimal 

extreme point are provided for any given test input data. Hence, it is believed that the new activation weight calculation method 

can overcome Problem 4. 

 

4. Sensitivity analysis on the rule generation scheme with new activation weight calculation for parameter optimization 

In this section, we use the basic parameters in the rule generation scheme, including utility values of the reference values for 

the antecedent/consequent attribute and the attribute weights, for examining their effect on the accuracy of the EBRB system with 
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new activation weight calculation via sensitivity analysis. Based on the analyses, we propose a novel parameter optimization 

method to determine optimal values of these basic parameters for enhancing the accuracy of the EBRB system. 

4.1. Sensitivity analysis on utility values and attribute weights used for antecedent attributes 

The utility values and attribute weights used for antecedent attributes are the basic parameters for generating extended belief 

rules. However, they are normally determined by expertise, making them unreliable for complex system modeling. For studying 

their effect on accuracy of the EBRB system, we perform sensitivity analysis in term of activation weights.  

We consider that extended belief rules contain only one antecedent attribute (e.g., the ith antecedent attribute) and three 

utility values for the ith antecedent attribute whose utility values are: 

}1,1)(0,0{}3,2,1);({ 2,, == iji AujAu                                (23) 

Furthermore, we consider the input data xk,i and xi as sample data to generate the kth extended belief rule and a test data to 

activate extended belief rules, respectively. According to Eq. (21), the activation weight of the kth extended belief rule is (the 

detailed formal derivation is provided in Appendix A): 
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where 
k  is the weight of the kth extended belief rule, and 

i  is the weight of the ith antecedent attribute. 

 Eq. (24) explains that the activation weight of the kth extended belief rule can be affected by the utility values and attribute 

weights used for antecedent attributes. However, the utility value u(Ai,2) affects activation weights when the test input data xi and 

sample input data xk,i belong to the same interval of utility values. For studying the effect of utility values and attribute weights on 

accuracy of the EBRB system, we suppose that the test input data xi is 0.5 and the rule weight is 1. Figs. 11 and 12 illustrate the 

curves of activation weights for various attribute weights for continuous and discrete data. 
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 (a) 1=i                                           (b) 1.0=i  

Fig. 11. Sensitivity analysis on utility values used for antecedent attributes for continuous data 
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 (a) 1=i                                           (b) 1.0=i  

Fig. 12. Sensitivity analysis on utility values used for antecedent attributes for discrete data 

Figs. 11 and 12 summarize one conclusion while investigating the influence of utility values and attribute weights used for 

antecedent attributes on the accuracy of the EBRB system. 

Conclusion 1: Optimal utility values and attribute weights used for antecedent attributes facilitate activation of the desired 

extended belief rules for the EBRB system in response to the given test input data. 

Figs. 11 and 12 clarify a significant situation that when the sample input data xk,i is 0.5, which is equal to the test input data xi, 

the utility value u(Ai,2)=0.5 or u(Ai,2)=0 makes the kth extended belief rule to have a maximum or minimum activation weight. 

Here, the kth extended belief rule is an anticipated rule to reply the test input data xi because the sample input data xk,i for 

generating the kth extended belief rule equal the test input data xi. Furthermore, the maximum or minimum activation weight of 

the kth extended belief rule proves the influence of utility values on the accuracy of the EBRB system because activating the 

desired rule with a bigger activation weight is advantageous. In addition, Figs. 8(b) and 9(b) demonstrate that when the attribute 

weight is 0.1, a minimum activation weight for the kth extended belief rule is produced. In other words, the attribute weight affects 

the accuracy of the EBRB system.  

 

4.2. Sensitivity analysis on utility values used for consequent attribute 

In the rule generation scheme, utility values used for the consequent attribute are similar to those for antecedent attributes; 

although they are used to generate extended belief rules, they must be pre-determined based on expertise. Hence, we perform 

sensitivity analysis on utility values used for the consequent attribute. 

We suppose the output data yk and yl as sample data to generate the kth and lth extended belief rules; three utility values used 

for the consequent attribute are: 

}1,1)(0,0{}3,2,1);({ 2 == DunDu n
                             (25) 

According to the formal formula derivation provided in Appendix B, we express the integrated belief degree of the reference 

value D2 as: 
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where wk and wl are the activation weight of the kth and lth extended belief rules, respectively. 

Eq. (26) demonstrates that utility values used for the consequent attribute affect all integrated belief degrees associated with 

the reference value D2. Furthermore, we suppose the sample output data yl as 0.5, the range of the sample output data yk is the 

interval [0, 1.0] for continuous data or the set {0, 0.5, 1} for discrete data. Fig. 13 and 14 illustrate the curves of integrated belief 

degrees for different activation weights for continuous and discrete data. 
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 (a) wk=0.1 and wl=0.9                                 (b) wk=0.5 and wl=0.5 

Fig. 13. Sensitivity analysis on utility values used for consequent attribute for continuous data 

0

0.5

1

0

0.25

0.5

0.75

1

0

0.5

1

 

Sample output data y
k

Utility value u(D
2
) 

In
te

g
ra

te
d

 b
el

ie
f 

d
eg

re
e

Integrated belief degree

 

0

0.5

1

0

0.25

0.5

0.75

1

0

0.5

1

 

Sample output data y
k

Utility value u(D
2
) 

In
te

g
ra

te
d

 b
el

ie
f 

d
eg

re
e

Integrated belief degree

 

 (a) wk=0.1 and wl=0.9                                 (b) wk=0.5 and wl=0.5 

Fig. 14. Sensitivity analysis on utility values used for consequent attribute for discrete data 

Figs. 13 and 14 summarize one conclusion while investigating the influence of utility values used for the consequent attribute 

on the accuracy of the EBRB system. 
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Conclusion 2: Optimal utility values used for the consequent attribute produce the required inference results for the EBRB 

system in response to the given test input data. 

For different activation weights, such as wk=0.1 and wl=0.9, the lth extended belief rule is influential on the inference result 

of the EBRB system comparing with the kth extended belief rule. Figs. 13(a) and 14(a) show that when the utility value u(D2) and 

sample output data yl are same, it is useful to ensure the inference result of the EBRB system to approximate the output of the lth 

extended belief rule without the influence of the kth extended belief rule. 

For same activation weights, such as wk=0.5 and wl=0.5, the lth and kth extended belief rules is equally important for the 

inference result of the EBRB system. Figs. 13(b) and 14(b) illustrate that when the utility value u(D2) and sample output data yk 

are same, the inference result of the EBRB system approximates the output data of the kth extended belief rule. The same result is 

observed for the output of the lth extended belief rule for the sample output data yl.  

 

4.3. New parameter optimization model and algorithm 

Conclusions 1 and 2 verified that, with the new activation weight calculation, the optimal utility values in both antecedent 

and consequent attributes and the attribute weights are important in enhancing the accuracy of the EBRB system. However, these 

utility values and attribute weights are determined using expertise from the literature on the EBRB system, thereby making it 

fundamental to propose an appropriate method. In this subsection, we propose a new parameter optimization method and its 

methodological framework is illustrated in Fig. 15. 

 

Fig. 15. Illustration of parameter optimization involved in the rule generation scheme 

Fig. 15 shows that the new parameter optimization method includes two components: optimization model and optimization 

algorithm. The following constraints are are required for the optimization model: 

(1) Each attribute weight should have the the following constraint: 

Mii ,...,1;10 =                                         (27) 

(2) The utility value u(Ai,j) of reference value Ai,j should have the following constraints: 
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1,...,1;,...,1);()( 11,, −== + JjMiAuAu jiji                             (28a) 

MilbAu ii ,...,1;)( 1, ==                                         (28b) 

MiubAu iJi i
,...,1;)( , ==                                         (28c) 

where lbi and ubi are the lower and upper bounds of the ith antecedent attribute, respectively. 

(3) The utility value u(Dn) of reference value Dn should have the following constraints: 

1,...,1);()( 1 −= + NnDuDu nn
                                    (29a) 

lbDu =)( 1
                                                (29b) 

ubDu N =)(                                                (29c) 

where lb and ub are the lower and upper bounds of the consequent attribute, respectively. 

Furthermore, when T sample input-output data (xt, yt) (t=1,…, T) are provided for the EBRB system, the target function of 

optimization model is expressed as the mean absolute error (MAE): 

(1) For the prediction problem, the target function is : 

 =
−=

T

t tnjii fyDuAuMAE
1, )()})(),(,({min

t
x                              (30) 

where f(xt) is the inference result of the EBRB system for the sample input data xt. 

(2) For the classification problem, the target function is: 
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 where f(xt) is the final inference class of the EBRB system for the sample input data xt, yt is the real class of xt. 

For this optimization model, we observe the following remarks: 

Remark 4: As indicated in the rule generation scheme, the rule weights and belief distributions of antecedent and consequent 

attributes are generated from a set of sample input-output data. Thus, training these parameters in the optimization model is 

inessential. However, for each obtained optimal utility value and attribute weight, it is required to update rule weights and belief 

distribution of each extended belief rule. 

Remark 5: A comparison with existing optimization models [4][5][6] indicates that the proposed optimization model includes 

fewer parameters to be trained and the number of these parameters does not increase with the increasing number of rules. 

In order to obtain the minimal MAE of the optimization model, we introduce the optimization algorithm based on differential 

evolution (DE) algorithm [13][18]. The DE algorithm, a cutting-edge evolutionary algorithm for simple and straightforward 

framework, has been proved to outperform other evolutionary algorithms in a series of performance contests [17][21]. The 

proposed optimization algorithm comprises the following steps: 

Step 1 (Initialization): We suppose that the optimization algorithm comprises C individuals and S generations to train the 

basic parameters of an EBRB system, where the cth individual in the sth generation is expressed as: 
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where 
cs

i

, is the weight of the ith antecedent attribute associated with the cth individual in the dth generation, cs

ji
Au ,

,
)(  and 

cs

nDu ,)(  are the utility values of the reference value Ai,j and Dn related to the cth individual in the dth generation, 
cs

kp ,
 is the kth 

parameter related to the cth individual in the sth generation, and K is the total number of these utility values and attribute weights. 

For initializing individuals based on the constraints of Eqs. (27) to (29), we consider ubk and lbk as the upper and lower 

bounds of 
cs

kp ,
, respectively. The initial value of parameters is generated by using a random value between 0 and 1: 
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Step 2 (Evolution): In the sth generation, for the cth individual, we generate a new individual 
0cs,

P  by using three different 

individuals randomly selected from the C individuals, in which the three individuals are signed as 
1cs,

P , 
2cs,

P , and 
3cs,

P . The 

parameter value of 
0cs,

P  is assigned as follows: 
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where F is the mutation operator and CR is the crossover operator. 

Step 3 (Selection): In the sth generation, when the parameter value of 
0cs,

P  is out of the constraints shown in Eqs. (27) to 

(29), we produce a new parameter value using Eq. (34). Then, based on the rule inference scheme with new activation weight 

calculation, we generate the MAE of 
0cs,

P  by using T sample input-output data and update the parameter values of 
cs,

P : 


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Step 4 (Termination): When the current generation is equal to S, the individual with the minimum MAE is selected as the 

best individual, and its parameter values are regarded as the optimal attribute weights and the optimal utility values used for 

antecedent and consequent attributes. 

For this optimization algorithm, we provide the following remarks: 

Remark 6: On basis of optimal attribute weights and utility values, optimal rule weights and belief distributions of antecedent 

and consequent attributes are generated from sample input-output data. Finally, all these optimal parameters construct a trained 

EBRB system. 

Remark 7: In the optimization algorithm, the number of individuals C and generations S are set according to the desired 

accuracy of users. Large C and S can improve a better performance of the trained EBRB system, but compromising on the running 

time of the parameter optimization. According to the literature [5], the mutation operator F and crossover operator CR are set as 

0.5 and 0.9, respectively. 

Remark 8: In addition to the DE algorithm, Chen et al. [7][8][9] and Tsai et al. [22][23] proposed optimization techniques 

that can be further studies for obtaining the minimal MAE of the proposed parameter optimization method. 
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5. Case studies 

In this section, we consider two prediction problems, namely oil pipeline leak detection and bridge risk assessment, and five 

classification problems to demonstrate the effectiveness of the proposed activation weight calculation method and parameter 

optimization method in enhancing the interpretability and accuracy of the EBRB system. 

5.1. Datasets and experiment conditions 

The oil pipeline leak detection belongs to the continuous data because its original dataset was collected from the real-time 

parameter of an oil pipeline; the bridge risk assessment belongs to the discrete data because of discrete rating used for assessing 

bridge structures. For the five classification problems selected from the KEEL dataset repository [1], Table 1 summarizes the 

features of all datasets, indicating the number of data (#Data), number of attributes (#Attributes), number of continuous attributes 

(#Continuous) and discrete attributes (#Discrete), and number of classes (#classes). We use these datasets to observe the 

performance of the EBRB system with the proposed activation weight calculation and parameter optimization methods for 

continuous and discrete data. 

Table 1. Statistics on classification datasets 

Number Dataset #Data #Attributes #Continuous #Discrete #Classes 

1 Bupa 345 6 1 5 2 

2 Wine 178 13 13 0 3 

3 Glass 214 9 9 0 7 

4 Ecoli 336 7 7 0 8 

5 Hayes-roth 160 4 0 4 3 

A comparison of different activation weight calculation methods is performed by constructing four EBRB systems with the 

Euclidean, standardized Euclidean, and Hamming distance-based activation weight calculations and new activation weight 

calculation. These four EBRB systems are abbreviated as EBRB-E, EBRB-S, EBRB-H, and EBRB-New. 

In order to demonstrate the effectiveness of the proposed parameter optimization method, all EBRB systems are used to 

achieve the optimization of the four parameters, including attribute weights, utility values in both antecedent and consequent 

attributes. Additionally, since the proposed optimization model comprises fewer parameters to be trained than in the previous 

optimization models used in the BRB system, we set the algorithm parameter to a small value for obtaining desired accuracies. 

Based on the point of view, the number of individuals and generations are set to 20 and 40, respectively, in the case study of 

prediction and classification problems. Furthermore, we implement the EBRB systems and the proposed optimization algorithm 

through the Microsoft Visual C++ on Intel (R) Core (TM) i5-4300U CPU at 1.90GHz and 4GB RAM with Windows 7. 

 

5.2. EBRB systems for continuous prediction problem 

5.2.1. Oil pipeline leak detection using the EBRB system with the proposed methods 

The leak detection of the oil pipeline installed in Great Britain [28] is a common benchmark used for testing the BRB system 

and its improvements, including the local training BRB system [28], adaptive training BRB system [10], and optimal training 
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BRB system [6]. Totally, 2008 input-output data {(xt,1, xt,2, yt); t=1,…, 2008} are available, where xt,1 is the continuous input data 

of the flow difference (FD), xt,2 is the continuous input data of the pressure difference (PD), and yt is the output data of the leak 

size (LS) of an oil pipeline at the sampling time t.  

In order to construct an EBRB system, we randomly generate 500 input-output data from the original 2008 input-output data 

with eight and seven reference values applied to describe the FD and PD, respectively. These reference values include negative 

large (NL), negative medium (NM), negative small (NS), negative very small (NVS), zero (Z), positive small (PS), positive 

medium (PM), and positive large (PL). For the LS, we use five reference values, including zero (Z), very small (VS), medium (M), 

high (H), and very high (VH). Based on the previous study [28], the initial utility values of these reference values and the attribute 

weights are:  

 )3,(),2,(),1,)(0,(),1,(),3,(),5,(),10,())(,( PLPMPSZNVSNSNMNLAuA FDFD −−−−             (37a) 

 )02.0,(),005.0,(),002.0,)(0,(),002.0,(),005.0,(),02.0,())(,( PLPMPSZNSNMNLAuA PDPD −−−       (37b) 

 )8,(),6,(),4,(),2,(),0,())(,( VHHMVSZDuD LSLS                           (37c) 

   1,1, =PDFD                                          (37d) 

According to the rule generation scheme together with the basic parameters shown in Eqs. (37a)-(37d), 500 input-output data 

are used to generate the initial rule weight and the initial belief distributions for each extended belief rule. Finally, all these initial 

parameter values construct an initial EBRB system.  

For obtaining the optimal utility values and attribute weights, we use the 500 input-output data together with the proposed 

optimization model and algorithm to train the basic parameters. The trained parameters are shown as follows: 

 )3,(),588.1,(),1149.0,)(8962.1,(),0714.3,(),5429.6,(),8422.7,(),10,())(,( PLPMPSZNVSNSNMNLAuA FDFD −−−−− (38a) 

 )02.0,(),0129.0,(),0065.0,)(0002.0,(),0054.0,(),0152.0,(),02.0,())(,( PLPMPSZNSNMNLAuA PDPD −−−−    (38b) 

 )8,(),5345.6,(),7010.5,(),3801.2,(),1,())(,( VHHMVSZDuD LSLS                     (38c) 

   2470.0,0111.0, =PDFD                                   (38d) 

Accordingly, the optimal rule weight and the optimal belief distributions are generated based on the optimal utility values and 

attribute weights shown in Eqs. (38a) - (38d). Finally, all these optimal parameter values construct a trained EBRB system. 

Afterwards, we use the 2008 input-output data to compare the initial and trained EBRB systems. Fig. 16 shows that the initial 

and trained EBRB systems clearly detect the leaks which happened at around t=850 and ended at around t=1400. However, the 

estimated leak sizes of the initial EBRB system are different from the observed ones, but the trained EBRB system matches the 

observed leak sizes accurately. 
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(a) Estimated leak size and error of initial EBRB system       (b) Estimated leak size and error of trained EBRB system 

Fig. 16. Comparison of initial and trained EBRB systems for oil pipeline leak detection 

5.2.2. Performance comparisons with conventional EBRB systems and existing studies 

After performing 10 cycles of the parameter optimization of the EBRB system with different 500 input-output data, we 

compare the average results obtained from EBRB-E, EBRB-S, EBRB-H, and EBRB-New with the following measures: 1) 

interpretability of the EBRB system, which evaluates the number of continuous test input data leading to the counterintuitive 

execution (CE) and insensitive execution (IE) in the rule inference scheme; 2) accuracy of the EBRB system, which evaluates the 

MAE and the mean squared error (MSE) of the EBRB system; and 3) the time of the EBRB system, which indicates the training 

time of the proposed parameter optimization method.  

Table 2 presents the CE, IE, MAE, MSE, and time after comparing the EBRB-E, EBRB-S, EBRB-H, and EBRB-New using 

2008 input-output data. The EBRB-New obtains the minimum MAE and MSE by using the trained parameters and prevents the 

counterintuitive and insensitive situations for continuous input data in a relatively few training time. These are the common 

problems of the EBRB-E, EBRB-S, and EBRB-H, which are investigated in Section 3, so that the CE and IE of these EBRB 

systems are greater than 0. Moreover, the comparison of four EBRB systems with the initial and trained parameters indicates that 

the optimal utility values and attribute weights are indeed helpful to enhance the accuracy of the EBRB systems. 

Table 2. Comparisons of the initial and trained EBRB systems 

EBRB type 
Initial parameters  

Time (s) 
 Trained parameters 

CE IE MAE MSE   CE IE MAE MSE 

EBRB-E 2008 2008 0.2388 0.5072  150.4  2008 199 0.1983 0.3818 

EBRB-S 2008 2008 0.8210 1.5276  216.7  2008 72 0.4406 0.7140 

EBRB-H 1893 2008 1.5846 4.6389  173.1  0 2008 0.9107 2.3176 

EBRB-New 0 0 1.4478 4.2644  165.5  0 0 0.1671 0.3540 

To demonstrate the effectiveness of the proposed activation weight calculation and parameter optimization methods, we 

summarize existing studies in the same oil pipeline leak detection application. Table 3 presents the comparison results and clearly 

demonstrates that the proposed methods significantly facilitate enhancing the performance of the EBRB system. First, the average 
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MAE of this study is better than other improved BRB systems. Second, the average MSE of this study is the second-best result. 

Third, the number of parameters to be optimized is 22, including 15 utility values used for antecedent attributes, 5 utility values 

used for consequent attribute, and 2 attribute weights, whereas other improved BRB systems require more parameters, such as 353 

parameters in the local training and adaptive training. 

Table 3. Comparison of EBRB system and existing BRB systems 

No. Year Description  Size (train) Size (test) Parameters MAE MSE 

1 2007 [28] Local training 500 2008 353 0.2223 0.4049 

2 2011 [10] Adaptive training 500 2008 353 0.2064 0.3990 

3 2015 [6] Approximate causal inference 500 2008 107 0.2014 0.3709 

4 2017 [4] Bi-level BRB 500 2008 40 0.1941 0.2917 

5 The proposed method Parameter optimization 500 2008 22 0.1671 0.3540 

In summary, for the oil pipeline leak detection, the comparison results have proved that the proposed activation weight 

calculation method enhances the interpretability of the EBRB system better than distance-based activation weight calculation 

methods. Moreover, the proposed parameter optimization method enhances the accuracy of the EBRB system, which shows the 

best MAE in the oil pipeline leak detection applications. 

 

5.3. EBRB systems for discrete prediction problem 

5.3.1. Bridge risk assessment using the EBRB system with the proposed method 

The bridge risk assessment is a well-known benchmark to demonstrate varied conventional methods, including artificial 

neural network (ANN), evidential reasoning with learning (ERL), multiple regression analysis (MRA), and adaptive neuro-fuzzy 

inference system (ANFIS). Based on the British Highways Agency [2], there are 506 input-output data {(xt,1, xt,2, xt,3, xt,4, yt); 

t=1,…,506}, where xt,1 is the discrete input data of the safety (SA), xt,2 is the discrete input data of the functionality (FU), xt,3 is the 

discrete input data of the sustainability (SU), xt,4 is the discrete input data of the environment (EN), and yt is the output data of the 

risk score (RS) of the tth bridge project. 

For constructing the EBRB system, we use the data preprocessing strategy [24] to generate 66 input-output data from the 

original 506 input-output data. Five reference values are applied to describe the antecedent and consequent attributes. These 

reference values include none (N), low (L), medium (M), high (H), and very high (VH). Based on expert knowledge, the initial 

utility values of these reference values and attribute weights are: 

 )3,(),5.2,(),5.1,(),5.0,(),0,())(,( VHHMLNAuA SASA                                (39a) 

 )3,(),5.2,(),5.1,(),5.0,(),0,())(,( VHHMLNAuA FUFU                               (39b) 

 )3,(),5.2,(),5.1,(),5.0,(),0,())(,( VHHMLNAuA SUSU                               (39c) 

 )3,(),5.2,(),5.1,(),5.0,(),0,())(,( VHHMLNAuA ENEN                               (39d) 

 )100,(),75,(),50,(),25,(),0,())(,( VHHMLNAuD RSRS                               (39e) 

   1,1,1,1,,, =ENSUFUSA                                        (39f) 
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Next, we use a combination of the rule generation scheme and basic parameters shown in Eqs. (39a) - (39f) to generate the 

initial EBRB system from the 66 input-output data, which are also used to train these basic parameters to obtain the optimal utility 

values and attribute weights as follows: 

 )3,(),2522.2,(),3767.1,(),8842.0,(),0,())(,( VHHMLNAuA SASA                           (40a) 

 )3,(),6716.2,(),9661.1,(),8046.1,(),0,())(,( VHHMLNAuA FUFU                           (40b) 

 )3,(),3384.2,(),7311.1,(),6150.0,(),0,())(,( VHHMLNAuA SUSU                           (40c) 

 )3,(),6032.2,(),7208.1,(),9902.0,(),0,())(,( VHHMLNAuA ENEN                           (40d) 

  )100,(),0271.79,(),3227.46,(),3546.14,(),0,())(,( VHHMLNAuD RSRS                         (40e) 

   8306.0,1128.0,0540.0,0526.0,,, =ENSUFUSA                                 (40f) 

Accordingly, the 66 input-output data and obtained optimal basic parameters are used to generate optimal rule weights and 

belief distributions, and all these optimal parameters construct a trained EBRB system. Fig. 17 shows the comparisons of the 

initial and trained EBRB systems while testing 506 input-output data, where the estimated RS of the initial EBRB system fails to 

match the observed one, thereby causing large estimation errors at all testing data. Correspondingly, the training EBRB system 

assesses the RS of bridges accurately. 

 

(a) Estimated risk scores and errors of initial EBRB system    (b) Estimated risk scores and errors of trained EBRB system 

Fig. 17. Comparison of initial and trained EBRB systems for bridge risk assessment 

 

5.3.2. Performance comparisons of conventional EBRB systems and existing studies 

After performing 10 cycles of the parameter optimization of the EBRB system with the 66 input-output data, Table 4 shows 

the average results for the EBRB-E, EBRB-S, EBRB-H, and EBRB-New, which are compared by the following measures: 1) CE 

and IE, which indicate the interpretability of the EBRB system; 2) the mean absolute percentage error (MAPE), root mean squared 

error (RMSE), and correlation coefficient (R), which indicate the accuracy of the EBRB system; and 3) the time, which shows the 

training time of the proposed parameter optimization method. 
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Table 4. Comparisons of the initial and trained EBRB systems 

EBRB type 
Initial parameters  

Time (s) 
 Trained parameters 

CE IE MAPE RMSE R   CE IE MAPE RMSE R 

EBRB-E 506 411 5.5959 2.6430 0.9926  3.3  506 0 2.2996 2.1102 0.9955 

EBRB-S 0 411 14.6091 4.5384 0.9859  4.8  227 0 4.1887 2.8595 0.9925 

EBRB-H 411 411 48.0239 15.4245 0.9327  4.5  497 506 4.0278 2.4886 0.9945 

EBRB-New 0 0 33.6011 11.0746 0.8862  3.6  0 0 2.9785  1.5941  0.9976 

Table 4 indicates that the EBRB-New achieves the minimum RMSE and R by using the trained parameters and presents the 

being counterintuitive and insensitive to discrete input data, namely the values of both CE and IE are 0. Although the EBRB-E has 

the minimum MAPE, 506 CEs are observed in the rule inference scheme. In other words, all discrete input data cause the EBRB-E 

to produce the counterintuitive situation, such as negative individual matching degrees or activation weights. For the EBRB-S, 

insensitivity to all discrete input data is prevented; however, the resulting MAPE, RMSE, and R are inferior to other EBRB 

systems. 

To prove the effectiveness of the proposed activation weight calculation and parameter optimization methods, ten alternative 

models developed by using ANN, ERL, MRA, and ANFIS for bridge risk assessments are summarized here for comparison, 

denoted by BP-ANN, ER1, ER2, MRA3, MRA7, MRA8, and MRA9 based on [24], and ANFIS1, ANFIS2, and ANFIS3 while 

using triangular, trapezoidal, and Gaussian membership functions [25]. Table 5 presents these comparison results and the trained 

EBRB system with the proposed activation weight calculation method. The trained EBRB system produces satisfactory results in 

the MAPE, RMSE, and R, which are 2.9785, 1.5941, and 0.9976, respectively, and these results are better than the ten models. 

Table 5. Comparisons of EBRB system and conventional approaches 

Performance  

criterion 

Models 

BP-ANN ER1 MRA3 MRA8 ER2 MRA7 MRA9 ANFIS1 ANFIS2 ANFIS3 

The proposed 

method 

MAPE 9.6294 22.4544 18.5775 23.9799 18.7808 24.1941 19.1456 6.7280 19.6389 15.7431 2.9785 

RMSE 4.1871 8.9255 10.9527 10.4653 11.2736 10.3510 11.3653 3.4643 8.4179 6.5046 1.5941 

R 0.9834 0.9077 0.8687 0.8794 0.8918 0.8796 0.8904 0.9876 0.9254 0.9567 0.9976 

In summary, for the bridge risk assessment, the comparison results have demonstrated that the proposed activation weight 

calculation and parameter optimization methods enhance both the interpretability and accuracy of the EBRB system; the accuracy 

of the EBRB system is superior to some existing studies in bridge risk assessment. 

 

5.4. EBRB systems for continuous and discrete classification datasets 

We further demonstrate the effectiveness of the proposed activation weight calculation and parameter optimization methods 

by using the classification datasets shown in Table 1. First, for the basic parameters, we consider that the attribute weights are 1: 

Mii ,...,1;1 ==                                         (41) 

where M is the number of antecedent attributes in a classification dataset. We assume the number of reference values as three for 
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each antecedent attribute, and define the utility value of these reference values as: 
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where u(Ai,j) denotes the utility value of the reference value Ai,j, lbi and ubi are the lower and upper bounds of the ith antecedent 

attribute, respectively. 

Table 6 illustrates the accuracy of initial and trained EBRB systems and the training time of the proposed parameter 

optimization method. In term of accuracy, the EBRB-New shows significant improvement over five classification datasets than 

other three EBRB systems, which are based on distance measures. For example, 33.74% and 36.87% improvements are observed 

for the EBRB-New while testing the Ecoli and Hayes-roth datasets, respectively. However, the proposed parameter optimization 

method is not always effective for the EBRB systems with distance-based activation weight calculation because of over-fitting. As 

presented in Table 6, the accuracy of trained EBRB-E is slightly worse than that of initial EBRB-E while testing the Wine and 

Glass datasets. The similar situations are observed in the Wine dataset for EBRB-S and the Bupa, Glass, and Ecoli datasets for 

EBRB-H. In term of training time, the comparison result indicates that EBRB-H < EBRB-New < EBRB- E < EBRB-S for the five 

datasets Bupa, Wine, Glass, Ecoli, and Hayes-roth. 

Table 6. Comparisons of accuracy (%) and training time (second) for the EBRB systems 

Dataset 
EBRB-E  EBRB-S  EBRB-H  EBRB-New  

Initial Trained Time  Initial Trained Time  Initial Trained Time  Initial Trained Time  

Bupa 60.58 64.06 540.2  58.55 65.21 660.3  60.87 56.23 365.9  57.97 66.38 479.6 

Wine 95.51 94.38 277.8  96.62 96.07 332.9  12.92 13.48 156.5  97.19 97.75 210.3 

Glass 65.42 61.22 294.6  64.49 65.89 369.7  56.54 46.73 187.0  55.14 66.82 233.6 

Ecoli 75.30 80.65 551.3  66.96 79.46 734.6  66.96 50.60 328.9  48.21 81.85 501.9 

Hayes-roth 65.63 71.25 63.0  61.88 71.88 92.6  58.13 70.63 50.9  41.25 78.12 57.5 

We further verify the validity of the proposed methods by introducing the conventional classifiers to compare with the 

EBRB-New, including the k nearest neighbor (KNN), Naïve Bayes, C4.5 decision tree, support vector machine (SVM), and ANN; 

these classifiers are implemented by using the WEKA software with the method setup that 20% number of training data are set as 

neighbors for the KNN classifier, 5% as the minimum number of data per leaf for the C4.5 classifier, half of total number of 

antecedent attributes and classes are set as the number of hidden layers for the ANN. 

Table 7 provides a comparison of the results of selected classifiers and the EBRB-New, thus validating that the proposed 

activation weight calculation and parameter optimization methods produce satisfactory results, that is, for the Wine, Ecoli, and 

Hayes-roth datasets, the 97.75%, 81.85% and 78.12% accuracies have outperformed all listed classifiers. For the Bupa and Glass 

datasets, the 66.38% and 66.82% accuracies reach the second-best result in comparison with the conventional classifiers KNN, 

Naïve Bayes, C4.5, SVM, and ANN. 
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Table 7. Comparisons of accuracy (%) for EBRB system and conventional classifiers 

Dataset KNN Naïve Bayes C4.5 SVM ANN EBRB-New  

Bupa 61.74 55.07 66.09 59.42 68.99 66.38 

Wine 97.19 97.19 92.70 43.26 97.75 97.75 

Glass 60.28 50.93 63.08 66.82 67.29 66.82 

Ecoli 64.88 80.65 77.38 42.55 79.76 81.85 

Hayes-roth 35.62 75.00 70.63 81.25 68.75 78.12 

In summary, the comparison results obtained from classification datasets have demonstrated the effectiveness of the proposed 

activation weight calculation and parameter optimization methods in enhancing the accuracy of the EBRB system. Compared with 

the conventional classifiers, the enhanced EBRB system shows a absolute competitiveness for handling classification problems. 

 

5.5. Discussion on new activation weight calculation and parameter optimization 

In this subsection, we provide some intuitive comparison results based on the case studies of oil pipeline leak detection and 

bridge risk assessment to demonstrate the advantages of the proposed activation weight calculation and parameter optimization 

methods.  

Regarding interpretability, Table 8 shows the average CE and IE of the EBRB system with the proposed activation weight 

calculation and the distance-based activation weight calculation for continuous and discrete data. Although the proposed activation 

weight calculation method effectively prevents counterintuitive and insensitive situations, these situations are observed in the 

existing distance-based activation weight calculation methods. 

Table 8. Comparisons of activation weight calculation for continuous and discrete data 

Data type Activation weight calculation 
Initial parameters  Trained parameters 

CE IE  CE IE 

Continuous data  Distance-based 1970 2008  1339 760 

 This study 0 0  0 0 

Discrete data Distance-based 306 411  410 169 

 This study 0 0  0 0 

Regarding accuracy, we use the MSE obtained from continuous data and the RMSE obtained from discrete data for 

comparing different activation weight calculation methods with and without using the proposed parameter optimization method. 

Fig. 18 illustrates that the proposed parameter optimization method improves the accuracy of the EBRB system with both the 

distance-based and proposed activation weight calculation methods. Furthermore, the best accuracy is obtained from the trained 

EBRB system using the proposed activation weight calculation method.  
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(a) Comparison of MSE on continuous data             (b) Comparison of RMSE on discrete data 

Fig. 18. Comparison of EBRB systems for continuous and discrete data 

Fig. 19 shows MSE and RMSE of the EBRB system with the new activation weight calculation while including/excluding 

the optimization of attribute weights and utility values to confer the function of basic parameters in the proposed parameter 

optimization method. As shown in Fig. 19(b), the improvements of the RMSE are 0.2603, 8.9953, and 9.4805 while the proposed 

parameter optimization method considers utility values, attribute weights, and considering both, respectively. The optimization of 

attribute weights has more improvement, but the optimization of both attribute weights and utility values assure the significant 

improvement in the performance of the trained EBRB system. 

 

(a) Comparison of MSE on continuous data             (b) Comparison of RMSE on discrete data 

Fig. 19. Comparison of EBRB systems with/without attribute weight and utility value 

In addition, the importance of parameter optimization needs consideration because the EBRB system is a data-driven model 

and no study on the EBRB system involves parameter optimization, which is a time-consuming process. However, the following 

advantages should be emphasized:  

First, the existing studies of the rule generation scheme in the EBRB system fail to provide an effective method to determine 

the basic parameter values of the EBRB system. However, Figs. 18 and 19 clarify that significant improvements are observed 

between the accuracy of the initial and trained EBRB systems. Hence, the proposed parameter optimization method is essential for 

the EBRB system. 



28 

Second, the previous study [37] has proved that the time complexity of the DE algorithm can be represented as O(K, S, C), in 

which K is the number of parameters needed to be trained, S is the number of generations, and C is the number of individuals. 

Hence, for the same value of S and C, the proposed parameter optimization method is relatively efficient for the EBRB system 

compared with the existing parameter optimization models in the BRB system, because the proposed method just includes a very 

few number of parameters shown in Table 3. 

Third, although the optimization model of the EBRB system is a nonlinear optimization problem that must be solved by 

using iterative algorithms, it can be implemented before the EBRB system is used to predict or classify given input data. Hence, 

the proposed parameter optimization method has no effect on the time complexity of the EBRB system in term of prediction and 

classification purposes. 

 

6. Conclusions and future research 

This study focused on an advanced rule-based system, called the EBRB system, which has attracted much attention in the last 

few years. We investigated the interpretability and accuracy of the EBRB system through sensitivity analyses and proposed a new 

activation weight calculation method and parameter optimization method for enhancing the EBRB system. The proposed methods 

were validated using three case studies with different data sets, including discrete data situation, continuous data situation, or 

combination of both. The detailed contributions are summarized into three aspects: 

(1) We summarized six intermediate variables, including the Euclidean, standardized Euclidean, and Hamming-based 

individual matching degrees and activation weights by reviewing the rule inference scheme of the EBRB system. To 

investigate the interpretability of these intermediate variables, we performed a sensitivity analysis associated with 

different test input data, sample input data, rule weights, and attribute weights. Furthermore, we proposed a new 

activation weight calculation method for enhancing the interpretability of the EBRB system by modifying the individual 

matching degree calculation and revising the function between activation weights and attribute weights. 

(2) We deduced eight intuitive formulas, including calculating activation weights and integrating belief degrees by 

reviewing the rule generation scheme of the EBRB system. These derivations explained the composition relationship 

between inference results and basic parameters, including attribute weights and utility values used for antecedent and 

consequent attributes. Furthermore, we performed a sensitivity analysis based on these derivations and proposed a new 

parameter optimization method was proposed to enhance the accuracy of the EBRB system by determining the optimal 

value of these basic parameters. 

(3) Two prediction problems, namely oil pipeline leak detection and bridge risk assessment, and five classification 

problems were used to validate the performance of the proposed activation weight calculation method and the proposed 

parameter optimization method. The comparison revealed that the proposed activation weight calculation method 

enhanced the interpretability of the EBRB system, and no counterintuitive and insensitive situations were observed in 

the rule inference scheme of the EBRB system, and the proposed parameter optimization method enhanced the accuracy 
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of the EBRB system by outperforming other existing studies. 

For future research, the application of the proposed EBRB system and to make it more efficient is a challenge to address the 

practical problem with big data. Moreover, we recommend availability of the proposed EBRB system for comparing several 

datasets using different algorithmic approaches. 
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Appendix A. Formula derivation of activation weights 

Assuming that three utility values used for the ith antecedent attribute are shown in Eq. (23), xk,i is the sample input data to 

generate the kth extended belief rule, xi is the test input data to activate extended belief rules. Hence, when one antecedent 

attribute is in extended belief rules, the belief distribution of xk,i and xi can be simplified as follows: 

For the sample input data xk,i, the following belief distributions are obtained: 
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For the test input data xi, the following belief distributions are obtained: 
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Next, based on Eqs. (A1) and (A2), the activation weight can be grouped into four situations. 

(1) When u(Ai,1)  xk,i  u(Ai,2) and u(Ai,1) xi  u(Ai,2), the activation weight is: 
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(2) When u(Ai,1)  xk,i  u(Ai,2) and u(Ai,2)< xi u(Ai,3), the activation weight is: 
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(3) When u(Ai,2)< xk,i u(Ai,3) and u(Ai,1) xi  u(Ai,2), the activation weight is: 
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(4) When u(Ai,2)< xk,i u(Ai,3) and u(Ai,2)< xi u(Ai,3), the activation weight is: 
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Appendix B. Formula derivation of integrated belief degrees 

Assuming three utility values used for the consequent attribute are showed in Eq. (25), yk is the sample output data to 

generate the kth extended belief rule, yl is the sample output data to generate the lth extended belief rule. Hence, based on the ER 

algorithm, the integrated belief degree without normalization is expressed as follows: 
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In addition, for the sample output data yk, the following belief distributions are obtained: 
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Hence, based on Eqs. (B1) and (B2), the integrated belief degree can be grouped into four situations. 

(1) When u(D1)  yk  u(D2) and u(D1)  yl  u(D2), the integrated belief degree of D2 is: 
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(2) When u(D1)  yk  u(D2) and u(D2)< yl  u(D3), the integrated belief degree of D2 is: 
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(3) When u(D2)< yk  u(D3) and u(D1) yl  u(D2), the integrated belief degree of D2 is: 

( )

( ) )(

)(

)(1

)1()(

)()(1

)1(

)()(1

1

)()(1

)1(

2

2

2

2

22

2222

22222

Du

yw

Du

yw

DuDu

yyww

Du

y
ww

Du

y
ww

DuDu

yy
ww

wwwwww

llkklklk

l

ll

k

kk

lk

lk

l

ll

k

kk

lk

lk

+
−

−
+

−

−
=

+
−

−
+

−

−
=

++= 

                          

(B5)

 

(4) When u(D2)< yk  u(D3) and u(D2)< yl u(D3), the integrated belief degree of D2 is:
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