87,236 research outputs found

    COMPRESSION-BASED ANALYSIS OF METAMORPHIC MALWARE

    Get PDF
    Recent work has presented a technique based on structural entropy measurement as an effective way to detect metamorphic malware. The technique uses two steps, file segmentation and sequence comparison, to calculate file similarity. In another previous work, it was observed that similar malware have similar measures of Kolmogorov complexity. A proposed method of estimating Kolmogorov complexity was to calculate the compression ratio of a given malware which could then be used to cluster the malicious software. Malware detection has also been attempted through the use of adaptive data compression and showed promising results. In this paper, we attempt to combine these concepts and propose using compression ratios as an alternative measure of entropy with the purpose of segmenting files according to their structural characteristics. We then compare the segment-based sequences of two given files to determine file similarity. The idea is that even after malware is transformed using a metamorphic engine, the resulting variants still share identifiable structural similarities with the original. Using this proposed technique to identify metamorphic malware, we compare our results with previous work

    Document Type De�nition (DTD) Metrics

    Get PDF
    In this paper, we present two complexity metrics for the assessment of schema quality written in Document Type De�finition (DTD) language. Both "Entropy (E) metric: E(DTD)" and "Distinct Structured Element Repetition Scale (DSERS) metric: DSERS(DTD)" are intended to measure the structural complexity of schemas in DTD language. These metrics exploit a directed graph representation of schema document and consider the complexity of schema due to its similar structured elements and the occurrences of these elements. The empirical and theoretical validations of these metrics prove the robustness of the metrics

    Entropy as a Measure of Quality of XML Schema Document

    Get PDF
    In this paper, a metric for the assessment of the structural complexity of eXtensible Markup Language schema document is formulated. The present metric ‘Schema Entropy is based on entropy concept and intended to measure the complexity of the schema documents written in W3C XML Schema Language due to diversity in the structures of its elements. The SE is useful in evaluating the efficiency of the design of Schemas. A good design reduces the maintainability efforts. Therefore, our metric provides valuable information about the reliability and maintainability of systems. In this respect, this metric is believed to be a valuable contribution for improving the quality of XML-based systems. It is demonstrated with examples and validated empirically through actual test cases

    An Approach for the Empirical Validation of Software Complexity Measures

    Get PDF
    Software metrics are widely accepted tools to control and assure software quality. A large number of software metrics with a variety of content can be found in the literature; however most of them are not adopted in industry as they are seen as irrelevant to needs, as they are unsupported, and the major reason behind this is due to improper empirical validation. This paper tries to identify possible root causes for the improper empirical validation of the software metrics. A practical model for the empirical validation of software metrics is proposed along with root causes. The model is validated by applying it to recently proposed and well known metrics

    Evaluation Criteria for Object-oriented Metrics

    Get PDF
    In this paper an evaluation model for object-oriented (OO) metrics is proposed. We have evaluated the existing evaluation criteria for OO metrics, and based on the observations, a model is proposed which tries to cover most of the features for the evaluation of OO metrics. The model is validated by applying it to existing OO metrics. In contrast to the other existing criteria, the proposed model is simple in implementation and includes the practical and important aspects of evaluation; hence it suitable to evaluate and validate any OO complexity metric
    • …
    corecore