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Abstract. In this paper, we present two complexity metrics for the assess-

ment of schema quality written in Document Type Definition (DTD) language.

Both “Entropy (E) metric: E(DTD)” and “Distinct Structured Element Rep-

etition Scale (DSERS) metric: DSERS(DTD)” are intended to measure the

structural complexity of schemas in DTD language. These metrics exploit a

directed graph representation of schema document and consider the complexity

of schema due to its similar structured elements and the occurrences of these

elements. The empirical and theoretical validations of these metrics prove the

robustness of the metrics.

Key-words: XML schema, Document Type Definition, software metrics.

1. Introduction

The eXtensible Markup Language (XML) technologies have been promising to
provide a common standard mechanism for interoperable integration of diverse IT
processes and have been gaining extraordinary acceptance from the basic to the most
complicated business and scientific processes. Furthermore, many different domains,
organizations and content providers have been publishing and exchanging information
over the Internet by the usage of XML. In recent years, Web services [6, 12, 34 and
41] based on XML technologies have been emerging as the de-facto mechanism for
exchanging structured information between organizations and applications. Due to
its flexible nature and ease of implementation, XML serves very well as a ubiquitous,
platform-independent data representation and transport format and hence, has been
easily adopted in diverse fields.
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Efficient implementation of XML in diverse domains requires well-designed XML
schemas. In this point of view, design of XML schemas plays an extremely impor-
tant role in software development process and needs to be quantified for the ease
of maintainability. The maintainability is one of the important factors that affects
the quality of the software project and effective management of any type of software
projects requiring modeling, measurement, and quantification. Moreover, software
metrics should be used in order to improve the productivity and quality of software.
Since W3C XML Schema and DTDs are the more popular schema languages [28]
for generating XML documents, we have tried to develop metrics [3–5] for these lan-
guages. We have presented [5] a complexity metric for the assessment of the quality
of XML schema and the complexity value for a given XSD is evaluated by consider-
ing all of its components’ complexities. This metric is developed for XML Schema
Documents (XSD) written in W3C XML Schema language. In the present work, we
develop two metrics for DTD language E(DTD) and DSERS(DTD), which can dif-
ferentiate DTDs in terms of their physiological complexities due to the diversity and
repetitions in their elements’ structures. The E(DTD) metric is based on concept
of entropy from information theory and follow the similar approach taken by Davis
and LeBlanc[9]. The DSERS(DTD) metric is adopted from ARS metric proposed by
Boxell [2] as an interface metric for reusability analysis of software components and is
used to measure the consistency of the arguments that software interface uses. In the
preliminary work of this study, we have introduced E(DTD) in [3] and DSERS(DTD)
in a Workshop of SOA and Web-services [4]. In this paper, we extend our previous
work, evaluate and validate our metrics through theoretical and empirical validation.
Additionally, to prove the worth and importance of the metrics, we demonstrate a
comparative study with similar measures.

The paper is organized in five sections. The relationship between entropy and
software complexity is established in Section 2. The proposal of new metrics and its
illustrations are given in Section 3. Theoretical and empirical validations are given
in Section 4. Lastly, Sections 5 and 6 provide concluding remarks and a reflection on
future work.

2. Entropy as a Complexity Measurement

The entropy adapted from communication information theory of Shannon [38] is
defined as a measure of uncertainty or variety. According to Shannon’s definition,
if M is the message set (M1, M2, .....,Mn ) from which the message consists of, the
self-information of the ith message Mi with probability of occurrence P(Mi) is:

I(Mi) = log 2 P(Mi).

The probability P (Mi) is of ithmost frequently occurring message in a conveyed
message set M consisting of N number of messages and can be defined as:

P(Mi) = fi/N,

where fi is the number of occurrences of ith most frequently occurring message.
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Then, the value of entropy can be calculated by averaging the self-information
over all messages in M message set. Thus, entropy is given by:

H = −
n∑

i=1

P(Mi) log 2 P(Mi).

The entropy concept has been applied by many researchers [7, 10, 11, 13, 14, 15,
27, 32, 36, and 43] for the assessment of the complexity of software products that
are developed by using procedural or OO programming technologies. These measures
are developed by adapting Shannon’s entropy theory [38] as a measure of uncertainty
or variety. Davis and LeBlanc [9] have used entropy that is adopted from Shannon’s
notion of entropy to assess syntactic complexity of FORTRAN and COBOL code. In
their work, the software code is partitioned into “chunks”. Chunks are defined as a
group of related items, which can be formed into single mental concepts. The entropy
is used to measure three aspects of chunks: the structure of chunk connections, chunk
content and chunk size. In order to use entropy metric as a structure measurement
LeBlanc et al. [9] have constructed a graph that exhibits the data dependency between
these chunks. The chunks are distinguished by the number of their incoming and
outgoing edges in the graph representation of a program. From this graph it is
observed that a graph consisting of a number of similar substructures tends to have
lower entropy than the other graph not having such regularity although these two
graphs have the same number of nodes. The result drawn from this observation is
that entropy is a potentially more useful measure than McCabe’s V(G) [31] since
entropy takes into account for greater variety in structure brought by nesting, but
this variety is ignored by V(G).

Harrison [15] has used entropy as a measure of information content. Harrison’s
software complexity metric is based on empirical program entropy that allows the mea-
surement of the information content of procedural programs. Torress and Samadzadeh
[39] have shown that software reusability has an inverse relationship with entropy. In
all of these works, the usage of entropy to evaluate code complexity is based on
Zweben and Halstead’s [44] work which shows that “operators” are distributed with
a natural probability, hence, can be used to measure a product’s information content.
Bansiya et al. [1] have used “name strings” to measure Class Definition Entropy
(CDE) assuming that all “name strings” represent approximately equal information.
All these studies prove that entropy can be successfully applied to measurement of
software/software products. On the other hand, the usage of entropy as a complexity
metric has not yet been extended and validated for the assessment of XML schema
documents written in DTD language.

For measuring complexity of DTDs, several researchers have proposed different
criteria. Arnaud Sahuguet [37] have analyzed the typical characteristics of DTDs
and have presented count based measures such as number of elements, attributes,
ID and IDREF entities etc. Choi et al. [8, 29] have presented some criteria about
how DTDs should be designed for ensuring the quality of XML projects and pointed
out the challenges in XML design due to DTDs characteristics. Some well-known
metrics like LOC, McCabe, Fan-in and Fan-out, Depth of Inheritance Tree (DIT),
are also adapted for measuring the complexity of DTDs [26]. An improved version
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of this paper [26], which includes eleven metrics is produced by McDowell et al.[30].
Mustafa et al. [35] have demonstrated that the XML documents that are generated
by the DTD with higher nesting levels have higher weights and are more complicated
compared to the documents with lower nesting levels. In this demonstration, various
techniques are used to represent XML documents as a regular expression and this is
achieved by determining complexity values of regular expression; a tree representation
of XML documents and the implementation of Weight Allocation (WA) algorithm.

None of the above-proposed metrics for schema documents written in DTD con-
siders the structural similarities in the DTD components. In our opinion, similarity
in the schema components’ structure affects the effort required for comprehending the
schema document. The more similar structured elements and attributes the schema
document has, the easier it is to comprehend and remember the schema document.
Our present work is based on this assumption. In the following paragraphs, we will
introduce two metrics: “Entropy metric” and “Distinct Structured Element Repe-
tition Scale metric” to measure the complexity of schema documents in Document
Type Definition language.

3. Proposed Metrics

3.1. Definitions of E(DTD) and DSERS(DTD) Metric

Davis and LeBlanc [9] have introduced entropy metric for measuring the com-
plexities of programs written in FORTRAN. The program code is partitioned into
“chunks”. The “chunks” are defined as a group of related items, which can be formed
into single mental concepts. In our case, the chunks represent the declarations of
elements in a schema document. These components (elements) can be related with
the other elements in the form of parent-child relationship. An attribute declaration
can also be referred to as a chunk since that attribute declaration may be required as
a part of any element declaration in a schema document. A given schema document
can be represented by a directed graph where the nodes represent elements and at-
tributes, and the edges represent parent-child relations. The node that has no child
nodes is called a leaf node. Hence, our chunks can be represented by a directed graph.
We demonstrate the graph representation in the next section.

For the assessment of the structural complexity of a given DTD, the elements
appearing in the corresponding directed graph are grouped into the equivalence classes
based on their fan-in, fan-out and number of attributes. That is, elements that have
the same value of fan-in and fan-out and number of attributes are interpreted as
elements having the same structural complexity.

Accordingly, we propose Entropy metric for Document Type Definition language:

E(DTD) = −
n∑

i=1

P(Ci) log 2 P(Ci),

where n is the number of equivalence classes.
Entropy of a given schema document having n distinct classes of elements can

be calculated using relative frequencies as unbiased estimates of their probabilities
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P(Ci), i = 1, 2,. . . , n. The distinct class of elements means that elements having the
same structural complexities are grouped in the same class called equivalence class.

The entropy value of the schema document is calculated by considering its equiv-
alence classes. The relative frequency of occurrence of the equivalence classes of the
schema document is the number of elements and attributes inside the equivalence
class divided by the total number of element and attributes of the schema document.
When all elements are placed in the same equivalence class, the minimum entropy
value is evaluated. Since there is only one class, i.e. n = 1, and all elements are
grouped in that class, the relative frequency of occurrence of that class, P(C1) = 1
and the entropy value is:

E(DTD)= −
n∑

i=1

P(Ci) log 2 P(Ci) = P(C1)log2P(C1) = 0.

On the other hand, the possible maximum entropy occurs when each element/
attribute in the schema document has different fan-in and fan-out values i.e. each
has a different structural complexity value. In such a case, the number of equivalence
classes is equal to the number-of nodes in its directed graph representation and P
(Ci) is the probability of ith class (i.e. the number of elements inside the equivalence
class divided by the total number of elements in the Schema document), and equal
to 1/n, where i = 1, 2,. . . , n, and n is the number of nodes in the directed graph or
the number of equivalence classes of the schema. The entropy value of the schema, in
this case is:

E(DTD) = −
n∑

i=1

P(Ci) log 2 P(Ci) = −
n∑

i=1

(1/n) log 2 (1/n) = log2n.

Our second metric is Distinct Structured Repetition Scale (DSERS), which can be
used for measuring the interface complexity of schema documents and can be defined
as:

DSERS(DTD) =
p∑

i=1

de2i /#e,

where p is the number of equivalence classes, dei is the number of members inside the
ith class and #e is the total number of element nodes in the graph representation of
DTD.

Possible values for DSERS will be in the range 1≤ DSERS ≤ #e. The relation
between DSERS and E metric is that while higher DSERS value indicates lower
data complexity of schema, the higher E metric value indicates the opposite. In
other words, higher DSERS and lower E show that the developer makes less effort to
understand the structures of elements due to repetition of similar structured messages.

3.2. Illustration of E(DTD) and DSERS(DTD) Metrics

We demonstrate our E(DTD) and DSERS(DTD) metrics by three example schema
documents: publications.dtd, order.dtd and tvschedule.dtd shown in Listing
1, Listing 2 and Listing 3 respectively. The directed graph representations of the three
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DTDs are given in Fig. 1, Fig. 2 and Fig. 3. From the directed graph representations
of these three DTDs we evaluate the equivalence classes that are given in Listing 4,
Listing 5 and Listing 6 respectively.

<!ELEMENT publications

(book|article|conference)*>

<!ELEMENT book

(title, author+, edition, publisher)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (Firstname, Lastname)>

<!ELEMENT Firstname (#PCDATA)>

<!ELEMENT Lastname (#PCDATA)>

<!ELEMENT edition (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT article ((#PCDATA)>

<!ELEMENT conference

(conftitle, city, year)>

<!ELEMENT conftitle (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT year (#PCDATA)>

Listing 1. The schema document publications.dtd.

<!ELEMENT Order (Customer, Part+)>

<!ATTLIST id CDATA #REQUIRED>

<!ELEMENT Customer (Firstname, Lastname, Email)>

<!ELEMENT Firstname (#PCDATA)>

<!ELEMENT Lastname (#PCDATA)>

<!ELEMENT Email (#PCDATA)> \newline

<!ELEMENT Part (key, ExtendedPrice, Tax, Shipment+)>

<!ELEMENT key (#PCDATA)>

<!ELEMENT ExtendedPrice (#PCDATA)>

<!ELEMENT Tax (#PCDATA)>

<!ATTLIST Part color CDATA #REQUIRED>

<!ELEMENT Shipment (ShipDate, ShipMode, Address)>

<!ELEMENT ShipDate (#PCDATA)>

<!ELEMENT ShipMode (#PCDATA)>

<!ELEMENT Address(#PCDATA)>

Listing 2. The schema document order.dtd.

<!ELEMENT TvSchedule (Name,Channel+)>

<!ELEMENT Channel (Banner,Day+)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Banner (#PCDATA)>

<!ELEMENT Day(Date,(Holiday|ProgramslotT+)+)>

<!ELEMENT Holiday (#PCDATA)>

<!ELEMENT Date(#PCDATA)>

<!ELEMENT Programslot (Time, Title, Description?)>
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<!ELEMENT Time (#PCDATA)>

<!ELEMENT Title (Rating, Language)>

<!ELEMENT Rating (#PCDATA)>

<!ELEMENT Language (#PCDATA)>

<!ELEMENT Description (#PCDATA)>

<!ATTLIST Channel Chan CDATA REQUIRED>

<!ATTLIST Programslot Vtr CDATA #IMPLIED>

Listing 3. The schema document tvschedule.dtd.

Fig. 1. The directed graph representation of schema document publication.dtd.

Fig. 2. The directed graph representation of schema document order.dtd.
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Fig. 3. The directed graph representation of schema document tvschedule.dtd.

In order to obtain the equivalence classes of these three example DTDs we group
their elements according to the elements’ fan-in, fan-out and number of attributes.

C1 = {publications},
C2 = {book},
C3 = {author},
C4 = {conference},
C5 = {article, publisher, edition, title, conftitle, year,

city, Firstname, Lastname}.

Listing 4. Equivalence classes of the DTD publications.dtd.

C1= {Order},
C2= {Part},
C3= {Customer, Shipment},
C4= {Key, Tax, ExtendedPrice, Email, Firstname,

Lastname, Shipdate, Address, ShipMode}.

Listing 5. Equivalence classes of the DTD order.dtd.

C1= {TvSchedule},
C2= {Channel},
C3= {Day},
C4= {Programslot},
C5= {Title},
C6={Name, Banner, Language Date, Holiday, Time,

Description, Rating }.

Listing 6. Equivalence classes of the DTD tvschedule.dtd.

Having grouped the elements of each schema document into equivalence classes
now we can calculate E(DTD) and DSERS(DTD) metrics values for them.
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The E(DTD) and DSERS(DTD) values for the schema document given in Listing 1 is:

E(DTD)publications.dtd = −
5∑

i=1

P(Ci) log 2 P(Ci) =

= –[(1/13)· log2(1/13)+(1/13)· log2(1/13) +(1/13)·log2(1/13)+
+(1/13)·log2(1/13)+ (9/13)·log2(9/13)] = 1.50588

DSERS(publications.dtd ) =
5∑

i=1

de2i /13 = (12+12+12+12+92)/13 = 85/13 = 6.53846

The E(DTD) and DSERS(DTD) values for the schema document given in Listing 2 is:

E(DTD)order.dtd = −
4∑

i=1

P(Ci) log 2 P(Ci)=

= –[(1/13)·log2(1/13)+(1/13)·log2(1/13)+
+(2/13)·log2(2/13) + (9/13)·log2(9/13)] = 1.35203

DSERS(order.dtd ) =
4∑

i=1

de2i /13 = (12+12+22+92)/13 = 87/13 = 6.69231

The E(DTD) and DSERS(DTD) values for the schema document given in Listing 3 is:

E(DTD)tvschedule.dtd = −
6∑

i=1

P(Ci) log 2 P(Ci) =

= –[(1/13)·log2(1/13)+(1/13)·log2(1/13)+(1/13)·log2(1/13)+
+(1/13)·log2(1/13)+(1/13)·log2(1/13)+ (8/13)·log2(8/13)] = 1.85429

DSERS(tvschedule.dtd ) =
6∑

i=1

de2i /13 =

= (12+12+12+12+12+82)/13 = 69/13 = 5.30769

In order to compare the usefulness of E(DTD) and DSERS(DTD) metrics we also
calculate the structural complexities of the three schema documents by using the
element fanning [25] and tree impurity [33,40] metrics and these values are shown
in Table 1. In the third column, the size metric [26] value that is evaluated by
counting the number of elements and attributes of the schema document for each
DTD file is shown for comparison. The fourth and fifth columns give fanning and tree
impurity metrics values. The values residing in the sixth and last column, E(DTD)
and DSERS(DTD) are calculated by considering the equivalence classes of the three
DTDs.

The element fanning for a given DTD is:

Fanning = e/n,
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where e is the number of edges and n is the number of nodes in the directed graph
of the schema. It can be interpreted that as the fanning value increases so does the
complexity of a given schema document. The tree impurity of a given DTD can be
calculated as:

TI = [2(e− n+ 1)/(n− 1)(n− 2)] · 100%.

where e is the number of edges and n is the number of nodes in the directed graph of
the DTD. The tree impurity, (TI), metric is defined by Fenton et al. [33] and is used
by Visser [40] as a structural complexity measure for the schema documents. The
TI indicates the degree of deviation from a tree structure with the same number of
nodes and the lower value is a better representation of complexity. From Table 1 it
can be observed that the values of structural complexity measures, the fanning, tree
impurity and size metric are consistent with each other.

Table 1. The structural complexity values of the example DTDs

DTD Graph Size Fanning TI E(DTD) DSERS(DTD)
Listing No. Figure No.

1 1 13 12/13 0% 1.50588 6.53846

2 2 13 12/13 0% 1.35203 6.69231

3 3 13 12/13 0% 1.85429 5.30769

However, E(DTD) metric gives different values for the structural complexities of
the three schema documents. It is due to the fact that the E(DTD) metric considers
the structural complexities of each element of DTD by grouping these elements into
the same equivalence classes. That is, the elements and attributes that have similar
structures and which are grouped into the same equivalence classes can be interpreted
as having the same complexities. As the diversity in structures increases, so does
the number of equivalence classes, which results in more complex schema documents
(since understanding and remembering the elements and attributes having different
structures becomes more difficult).

The schema documents that exhibit less variety in structure of elements have a
lower value of E(DTD) and a higher value of DSERS(DTD) than the schema docum-
ents that exhibit greater variety in structure of elements. Hence, higher DSERS(DTD)
and lower E(DTD) can be interpreted as a suggestion that the developer makes less ef-
fort to understand and remember the structures of elements and dependency between
them due to gained familiarity with elements having higher frequency of occurrences.
From Table 1 it can easily be observed that, although the three schema DTDs have
equal values for the size, fanning and tree impurity metrics, the complexities of them
reflected by E(DTD) and DSERS(DTD) metrics are different. Therefore, the E(DTD)
and DSERS(DTD) metrics are more realistic methods for measuring the structural
complexity of a given schema than those of the others and in terms of the complex-
ity, it can be useful in differentiating and ranking DTDs that have equal number of
elements.
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4. Validation of E(DTD) and DSERS(DTD) Metrics

In order to check the applicability of E(DTD) and DSERS(DTD) metrics through
theoretical validation, we use Weyuker’s properties [42]. For empirical validation of
these two metrics, we analyze 50 real DTD files downloaded from the web. The
statistics collected from these DTDs are shown in Table 2 and the graph based on
these statistics is depicted in Figs. 4, 5, 6 and 7. In the following section, we evaluate
our DTD metrics through Weyuker’s properties.

4.1. Evaluation of E(DTD) and DSERS(DTD)
by Weyuker’s Properties

Property 1. (∃P )(∃Q)(|P | ≠ |Q|). Where P and Q are program body. This
property states that a measure should not rank all programs as equally complex.
This property is satisfied since it is obvious that for different schema different E and
DSERS values can be calculated.

Property 2. Let c be a non-negative number then there is only a finite number
of programs having complexity c. All schema documents consist of only finite number
of chunks (i.e. elements and attributes). Now, as the E and DSERS measures depend
upon the schema (graph) structure and are calculated by entropy value, some largest
possible number can be assumed without harm to be an upper bound. Given that a
schema contains only a finite number of elements, there are only finitely many schemas
being equal to the upper bound. Hence, both E and DSERS hold this property.

Property 3. There are distinct programs P and Q such that |P| = |Q|.
This property states that a valid complexity measure allows different schema to

have the same complexity value. As pointed out by Weyuker, the only measures that
do not satisfy this property are those that assign a unique numerical name to each
program and treat this name as a program’s complexity. Therefore, it is clear that
this property is held by E and DSERS.

Property 4. (∃P )(∃Q)(P ≡ Q & |P | ̸= |Q|).
This property states that even though two programs compute the same function,

their program complexities depend upon the implementation details. In order for two
DTD documents to generate, the same XML documents should be designed in the
same structure since we do not consider the number of occurrences of the elements
in the resulting XML documents. That is, the implementation of DTDs should be
the same for validation of the same XML document. Therefore, Property 4 cannot
be satisfied by both E(DTD) and DSERS(DTD) metrics.

Property 5. (∀P )(∀Q)(|P | ≤ |P ;Q| and |Q| ≤ |P ;Q|).
Consider the example DTD documents given in Listing 4 and Listing 5. If we

combine these two DTDs then the equivalence classes of the resulting DTD are:
C1= {publications},
C2= {book},
C3= {author},
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C4= {conference, Customer, Shipment},
C5= {article, publisher, edition, title, conftitle, year, city, Key, Tax,

ExtendedPrice, Email, Shipdate, Address, ShipMode},
C6= {Order},
C7= {Part},
C8= {Firstname, Lastname}.
Note that the elements Firstname and Lastname are common in both DTDs,

hence the fan-in, fan-out and number of attributes of these two elements are 2, 0 and
0 respectively in the directed graph of combined DTD. The metrics values are:

E(DTD)publications.dtd;order.dtd = −
8∑

i=1

P(Ci) log 2 P(Ci) =

= – [(1/24)· log2(1/24) + (1/24)· log2(1/24) + (1/24)· log2(1/24) +
+ (3/24)· log2(3/24) + (14/24)· log2(14/24) + (1/24)· log2(1/24) +

+ (1/24)· log2(1/24) + (2/24)· log2(2/24)] = 2.08255

DSERS(publications.dtd;order.dtd) =
8∑

i=1

de2i /24 =

= (12+12+12+32+142+12+12+22)/24 = 8.91667

In Section 3.2 we found that

E(DTD)publications.dtd = 1.50588 and E(DTD)order.dtd = 1.35203.

Since

E(DTD)publications.dtd < E(DTD)publications.dtd;order.dtd
and

E(DTD)order.dtd < E(DTD)publications.dtd;order.dtd

our E(DTD) metric satisfies this property.
In Section 3.2 we found that

DSERS(publications.dtd) = 6.53846 and DSERS(order.dtd) = 6.69231.

Since

DSERS(publications.dtd ) < DSERS(publications.dtd;order.dtd)
and

DSERS(order.dtd) < DSERS(publications.dtd;order.dtd)

this property is also satisfied by DSERS(DTD) metric.

Property 6. (∃P )(∃Q)(∃R)(|P | = |Q|)&(|P ;R| ̸= |Q;R|).
This property asserts that we can find two DTDs of equal E(DTD) and DSERS(DTD)

values which when separately concatenated to a third DTD yield different E(DTD)
and DSERS(DTD) values. Let us assume three DTD documents P, Q and R. The
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first DTD document P.dtd having 4 equivalence classes consisting of similar struc-
tured elements and the number of elements in each classes C1 = 3, C2 = 3, C3 = 1,
C4 = 1. The second DTD, Q.dtd has elements completely different in structure from
the elements of P.dtd. However, the number of equivalent classes and the number of
member elements are C5 = 3, C6 = 3, C7 = 1, C8 = 1, which are similar to P.dtd.
Please note that the graph representation of Q.dtd and P.dtd are different to each
other, but due to similar number of equivalence classes and similar number of mem-
ber elements, both P.dtd and Q.dtd have same E(DTD) and DSERS(DTD) values.
The third schema R.dtd has same graph representation as P.dtd and its classes are:
C9 = 3, C10 = 3, C11 = 1, C12 = 1. Note that all three DTD documents; P, Q and R
do not have any elements in common i.e. their component definitions for their names-
paces [23] are different. Now to prove this property, we will examine how complexity
values are affected after adding R.dtd to P.dtd and Q.dtd.

The E(DTD) and DSERS(DTD) values for these three documents (P.dtd, Q.dtd
and R.dtd) are equal and found as:

E(DTD)P = E(DTD)Q = E(DTD)R = −
4∑

i=1

P(Ci) log 2 P(Ci) =

= – [(3/8)· log2(3/8) + (3/8)· log2(3/8) +
+(1/8)· log2(1/8) + (1/8)· log2(1/8)] = 1.81128

DSERS(DTD)P = DSERS(DTD)Q = DSERS(DTD)R =
4∑

i=1

de2i /8 =

= (32+32+12+12)/8 = 2.5

If the DTD documents P and R are combined then the combined DTD has four
classes since these two DTDs have the same graph representation with no common
nodes. Hence, the number of resulting equivalence classes with their member elements
will be C1 = 6, C2 = 6, C3 = 2, C4 = 2 and:

E(DTD)(P;R) = −
4∑

i=1

P(Ci) log 2 P(Ci) =

= – [(6/16)· log2(6/16) + (6/16)· log2(6/16) +
+ (2/16)· log2(2/16) + (2/16)· log2(2/16)] = 1.81128

DSERS(DTD)(P;R) =
4∑

i=1

de2i /16 = (62+62+22+22)/16 = 5

If the DTD documents Q and R are combined then the number of resulting classes
will be eight since these DTDs also have fully different structured elements. The
classes and member elements’ counts of combination of Q and R will be C1 = 3,
C2 = 3, C3 = 1, C4 = 1, C5 = 3, C6 = 3, C7 = 1, C8 = 1 and:

E(DTD)(Q;R) = −
8∑

i=1

P(Ci) log 2 P(Ci) =

= – [(3/16)· log2(3/16) + (3/16)· log2(3/16) + (1/16)· log2(1/16) +
+ (1/16)· log2(1/16) + (3/16)· log2(3/16) + (3/16)· log2(3/16) +

+ (1/16)· log2(1/16) + (1/16)· log2(1/16)] = 2.81128
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DSERS(DTD)(Q;R) =
8∑

i=1

de2i /16 = (32+32+12+12+32+32+12+12)/16 = 2.5

Since

E(DTD)(P;R) ̸= E(DTD)(Q;R)

and
DSERS (DTD)(P;R) ̸= DSERS(DTD)(Q;R)

this property is satisfied by our E(DTD) and DSERS(DTD) metrics.

Property 7. There are program bodies P and Q such that Q is formed by
permuting the order of the statement of P and (|P | ̸= |Q|).

If we change the place of the definitions of elements and attributes in the DTD
document E(DTD) and DSERS (DTD) metrics values for the resulting DTD will not
change. Although SE and DSERS metrics for XSD satisfy this property E(DTD)
and DSERS(DTD) do not. This is due to the fact that in XSD we can define any
local element or attribute as global element or attribute and make them reusable
components which results in different fan-in and fan-out values in the directed graph
representation of XSD. However, this is not the case for DTD. In order to confirm
the same XML document, DTD documents should be designed in the same manner
and hence element’s design style in DTD cannot be changed. As a result, both
DSERS(DTD) and E(DTD) metrics do not satisfy this property.

Property 8. The values of E(DTD) and DSERS(DTD) are real numbers so
renaming of DTD cannot change the values of both metrics. Hence, these two metrics
clearly do adhere to this property.

Property 9. (∃P )(∃Q)(|P | + |Q|) < (|P ;Q|). By using the same example given
for Property 5 this property is not satisfied by E(DTD) metric since we find that:

E(DTD)publications.dtd;order.dtd < E(DTD)publications.dtd + E(DTD)order.dtd

2.08255 < 1.50588 + 1.35203

DSERS(DTD) metric does also not satisfy this property since :

DSERS(publications.dtd;order.dtd) < DSERS(publications.dtd) + DSERS(order.dtd)

8.91667 < 6.53846 + 6.69231

In this section, we have validated E(DTD) and DSERS(DTD) metrics through
Weyuker’s properties and found that the proposed measures satisfy six Weyuker’s
properties out of nine, which established E(DTD) and DSERS(DTD) measures as
well structured ones.

4.2. Empirical Validations of E(DTD) and DSERS(DTD) Metrics

For empirical validation of these two metrics, we analyze 50 real DTD files from
web. Data evaluated after analyzing these files is given in Table 2.
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Table 2. Size, Fanning, TI, E(DTD), DSERS(DTD) metrics values for

analyzed DTD files. Last column references web addresses of analyzed DTDs

ID Size Fanning TI E(DTD) DSERS(DTD) REF
1 4 0.75 0 0.81 2.50 [17]
2 4 0.75 0 0.75 1.50 [24]
3 4 0.75 0 1.00 1.00 [24]
4 6 1.50 0.4 2.58 1.00 [17]
5 6 0.83 0 2.25 1.33 [24]
6 7 1.14 0.13 2.81 1.00 [24]
7 7 0.86 0 2.52 1.29 [16]
8 7 1.00 0.06 1.66 2.71 [17]
9 7 1.43 0.27 1.66 2.71 [18]
10 8 0.88 0 1.75 2.75 [20]
11 8 1.00 0.02 2.25 1.75 [24]
12 8 1.13 0.095 2.41 1.75 [24]
13 8 1.00 0.04 1.55 3.50 [16]
14 8 1.75 0.33 3.00 1.00 [17]
15 10 0.90 0 2.72 1.60 [24]
16 10 0.90 0 1.57 4.20 [20]
17 10 0.90 0 1.72 3.40 [20]
18 10 0.90 0 1.57 4.20 [20]
19 11 0.91 0 2.04 3.18 [24]
20 11 0.91 0 1.68 3.91 [20]
21 11 0.91 0 0.78 6.27 [20]
22 11 1.09 0.04 1.67 4.82 [17]
23 11 2.09 0.03 2.55 2.27 [18]
24 11 1.09 0.04 1.62 4.27 [19]
25 12 1.08 0.04 1.58 5.67 [17]
26 12 0.92 0 1.21 7.00 [20]
27 13 1.00 0.02 1.61 4.85 [20]
28 13 0.92 0 1.57 5.15 [17]
29 13 0.85 – 0.02 2.65 2.69 [24]
30 13 1.08 0.03 1.82 4.69 [19]
31 13 0.92 0 2.51 3.23 [19]
32 13 1.07 0.03 1.51 6.54 [17]
33 14 0.93 0 1.73 4.71 [20]
34 14 1.00 0.01 3.09 2.00 [18]
35 15 0.93 0 2.87 2.60 [24]
36 15 0.93 0 1.24 8.47 [24]
37 16 0.88 – 0.01 2.35 3.50 [20]
38 16 1.00 0.09 1.63 7.00 [17]
39 16 0.94 0 1.19 9.38 [24]
40 17 0.94 0 1.57 7.00 [20]
41 17 0.94 0 0.95 11.71 [24]
42 17 1.12 0.03 1.85 6.65 [17]
43 17 1.24 0.04 2.13 5.59 [17]
44 18 0.94 0 0.91 12.67 [24]
45 18 1.39 0.06 3.17 2.22 [24]
46 20 2.10 0.13 3.42 1.90 [21]
47 20 1.35 0.04 4.01 1.60 [18]
48 32 1.34 0.03 2.18 12.06 [19]
49 32 1.25 0.02 2.32 9.88 [17]
50 32 1.19 0.02 2.52 7.63 [22]
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Note that the data given in Table 2 is ordered by size metric values. The graphs
that depict the comparison results of E(DTD) metric with size, fanning and TI metrics
are shown in Figs. 4, 5 and 6 respectively.

Fig. 4. E(DTD) vs. Size metrics results. The data is ordered

by Size metric values for analyzed DTDs.

Fig. 5. E(DTD) vs. Fanning metrics results. The data is ordered

by Fanning metric values for analyzed DTDs.

From Table 2 and Fig. 4 it can be observed that E(DTD) metric evaluates different
values for analyzed DTDs that have the same Size metric values. This is due to the
fact that the Size metric ignores the complexity of DTD caused by frequencies of
similar structured elements defined in DTD. The same point is also missed by TI
and Fanning metrics. Furthermore, having a negative value for TI is not an indicator
of a good metric. As it can be seen from Fig. 6, most of the DTDs have 0% of TI
values whatever their sizes. From this point of view, TI metric fails in differentiating
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DTDs in terms of their complexities. The last graph shown in Fig. 7 depicts the
comparison result between E(DTD) and DSERS(DTD) metrics. Since these two
metrics have inverse relation, lower E(DTD) and higher DSERS(DTD) values have
the same meaning: lower psychological complexity of DTD. The values of these two
metrics are not in contradiction as can be observed from Fig. 7.

Fig. 6. E(DTD) vs. TI metrics results. The data is ordered

by TI metric values for analyzed DTDs.

Fig. 7. DTD vs. DSERS(DTD) metrics results.

From these observations, we can conclude that our proposed DTD metrics are
able to differentiate DTDs that have equal number of elements and can be useful to
provide feedback about psychological complexity of DTD.
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5. Concluding Remark on E(DTD) and DSERS(DTD)
Metrics

We have presented the complexity metrics for measuring the structural complex-
ity of a given XML schema document written in W3C Document Type Definition
language. It is found that measuring the complexity of the XML schema documents
by entropy metric E(DTD) and DSERS(DTD) is more realistic. The E(DTD) and
DSERS(DTD) metrics calculate the structural complexity of DTDs by considering
the fact that the schema documents, which have less diversity in elements, are less
complex in comparison to the others that have greater diversity. In other words, the
presented approach has exhibited a better representation of structural complexity of
a given schema document. In order for the proposed metric to be reliably applied
for the assessment of the XML schema documents written in DTD, it should also be
empirically validated. The empirical validations of the proposed metrics have been
carried out by collecting 50 DTD documents from the web and comparing the val-
ues of the newly proposed metrics with the values of other metrics for these DTDs.
From empirical validation results, we observed that newly proposed DTD metrics
evaluate different complexity values for DTDs that have equal element declarations
measured by Size metric. Hence, we can conclude that our metrics can be useful in
differentiating DTDs, which have the same size.

6. Future Work

As future work, we aim to develop metrics based on the grammatical context of the
XML schema documents written in W3C XML Schema and DTD. Another work to
be handled in the future can be the evaluation of the cognitive complexity of the XML
schema documents for XSD and DTD. Since XML has been also used by databases,
we are planning to develop a criterion to evaluate and maintain the quality of the
XML enabled database in future.
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