
Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 141 –

An Approach for the Empirical Validation of
Software Complexity Measures

Sanjay Misra
Department of Computer Engineering Atilim University, Ankara, Turkey
smisra@atilim.edu.tr

Abstract: Software metrics are widely accepted tools to control and assure software
quality. A large number of software metrics with a variety of content can be found in the
literature; however most of them are not adopted in industry as they are seen as irrelevant
to needs, as they are unsupported, and the major reason behind this is due to improper
empirical validation. This paper tries to identify possible root causes for the improper
empirical validation of the software metrics. A practical model for the empirical validation
of software metrics is proposed along with root causes. The model is validated by applying
it to recently proposed and well known metrics.

Keywords: Empirical validation; Preliminary empirical validation; advanced empirical
validation; software metrics

1 Introduction

The popularity of empirical studies has been rising in the field of software
engineering since the 1970s. Its importance for software metrics is pointed out by
several researchers [1], [2], [3], [4]. It is one of the major ways through which
academicians and scientists can assist industry in selecting new technology. On
the other hand, it is a common observation that the standards of empirical software
engineering research is not up to a satisfying level [5]. According to surveys on
the papers on empirical validation [1], examples of poor experimental design, the
inappropriate use of statistical techniques and conclusions that do not follow the
reported result were found. Another survey on 600 published papers reported that
a considerable amount of research papers lack experimental validation. Further,
they use informal (assertion) forms of validation and use case studies
approximately 10% of the time; it was also observed that their experimentation
terminology was sloppy [4]. In addition, empirical study is often used
synonymously with experiments and used in an inconsistent manner [6].

In the case of software complexity measures, the situation is quite similar. There is
no match in content between the increased level of metric’s activity in academia

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/12356453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

S. Misra An Approach for Empirical Validation of Software complexity Measure

 – 142 –

and industry [7]. Evidence shows that any successful adoption and implementation
of these metrics is limited [8]. We are aware of this fact that there are other factors
which impact on the successful metric program in industry, e.g. institutional forces
[8]; however, this stage occurs when a metric is applied in the industrial
environment. The major problem with the existing metrics available in literature is
that they have not been tried to implement in the industrial environment. One can
easily find many academic works in the literature of complexity in measures
without proper empirical validation. These poor findings are not only due to the
lack of clear-cut guidelines and explanations for different types of empirical
studies; additionally, the absence of availability of real environments for the
implementation of metrics is another issue to consider. In many cases it is a
challenging task to identify any direct link between researchers and the software
industry, and this makes it difficult to validate the metrics against the projects in
software business. As a consequence, researchers try to validate their metrics
through other means, such as experiments in laboratories, class rooms or with
available data/programs from the Internet. Most of the time, those means can
provide only a partial empirical validation. However, for a proper empirical
validation, we believe that one must apply the new technology/metric to real
data/projects from industry.

Based on the above rationale and motivation from the insufficient discussion on
empirical studies in literature, we have developed a model for practical empirical
validation. This model is based on the evaluation of the common practices adopted
for empirical validation of software metrics. In this model we suggest the
application of empirical validation in two parts, namely as preliminary empirical
validation, advanced empirical validation and acceptance. The preliminary
empirical validation includes the initial validation of the metric by applying it to
different test cases and examples. In advanced empirical validation a new metric is
tested by using real projects from the industry. Finally, after the replicated
experimentations in different environments, the acceptance of the metric(s) by
industry is the final step of our model. In fact all the steps given in the model are
not new; we have accumulated these different approaches and compiled/presented
them in a formal way. We continue this discussion in the next section. The validity
of our model is checked by applying it to some well known metrics, e.g. CK
metrics suite [9] and entropy metrics [10].

Research Questions and Methodology

In line with what we have presented so far, we have identified that discussions on
already proposed metrics may need further exercises for empirical validation.
With this motivation, we found this point has received less attention and care in
the literature on software metrics; hence it constitutes a potential gap. To address
this gap, we have generated the following research questions:

Why have most of the proposed metrics available in literature not received
acceptance from the software industry? (1)

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 143 –

Are the researchers following any proper guideline while proposing and
validating (empirically) their metrics? (2)

To address these questions, we made an exhaustive literature survey for metrics,
as we had already started to build a body of knowledge on measurements in
software engineering. With the large number of metrics limiting our survey, we
focus on the following two points:

Firstly, we have selected metrics including the CK metric suite and the Entropy
metric, whose goals were similar and proposed at the same time. An additional
motivation arose, namely that the CK metric suit has considerably higher
reputation and adoption in the industry, while the Entropy metric has not achieved
such acceptance, although both metrics bear strong background work. This drove
us to investigate and evaluate by which practices the CK metric suite has become
a benchmark. We are leaving out of the discussion other useful and widely
accepted metrics, such as function point analysis, due to the limitations of our
research.

Secondly, we have selected metrics which were proposed in last two years (2009
and 2010), which is another limitation within this work.

To answer (1) we have performed the survey on different types of empirical
validation techniques which are commonly adopted by the developers of software
metrics. We have reviewed all to our knowledge and propose a simple model,
which mainly consists of all the important stages required for what we call “proper
empirical validation”. We validate our model on two metrics.

Again to validate (1) by the model which is developed to overcome the problem,
we have analyzed the metrics proposed recently (in last two years).

The paper is organized in the following way. The next section summarizes the
different types/ways of the empirical validation which are commonly used for the
validation of software metrics. In section three, we introduce the metrics on which
we apply our model. We present a model for the proper empirical validation in
Section 4. A case study is presented for demonstrating our model in Section 5,
which is further validated with newly proposed metrics in Section 6. Some
observations and suggestions are given in Section 7. The conclusions drawn from
this work are given in Section 8.

Before we go any further, we want to clarify that the terms software metric,
software measure and software complexity metric/measure are used
synonymously in the literature. Although one can find several definitions [11] for
software complexity, we follow the IEEE [12] definition, which defines software
complexity as “the degree to which a system or component has a design or
implementation that is difficult to understand and verify”. Additionally, IEEE [12]
also defines metric as “as a quantitative measure of the degree to which a system,
component, or process possesses a given attribute”.

S. Misra An Approach for Empirical Validation of Software complexity Measure

 – 144 –

2 Common Practices Adopted for Empirical
Validations of Software Metrics: An Analysis

There are several practices adopted by developers of software metric programs.
Common practices adopted for empirical validations of software complexity
measures include:

1 Small application programs to demonstrate the metric(s) or measure(s)
2 Formal experiments/examples reported in literature
3 Case studies/surveys available on the web

4 Experiments in laboratories or classrooms
5 Experiments at workplaces in the industry but with users off the subject

i.e. who are not potential users.

2.1 Small Application Programs to Demonstrate the
Applicability of Metric(S) or Measure(S)

Normally, most of the metrics are demonstrated through implementation on small
application program(s). However, if a researcher is applying only this method for
their validation, it may not be sufficient even for complete demonstration of the
metric(s). For example in [13], the authors claim that their metric provides some
indications for the level of coupling; however, from the example program which
they provide in the paper, it is not straight-forward to identify how coupling can
be estimated. In addition to this issue with this type of practice, if these programs
are developed by the developer of the metric(s), these programs cannot be taken
even for demonstrating the metric. It is because the developer of the metric(s)
knows what he wants to prove with his metric and these programs may be
specifically developed for this purpose (i.e. to validate the metric). It is worth
mentioning that we do not claim that the researchers are stretching the truth;
however, the application of the metric on these programs cannot be justified as
they do not provide the reader a transparent implementation. For example, in the
validation of improved cognitive information complexity measure [14], the
authors themselves developed all the programs for theoretical validation then they
claimed that their metric were properly validated; however, there are considerable
“dark spots” left to the reader, including how one can prove its practical
usefulness without implementing on real projects.

2.2 Formal Experiments/Examples Reported in Literature

The validation of software complexity measures with formal experiments
performed on example(s) available in literature provides the only way how to
implement the metric, and they stand without practical application. In most of the

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 145 –

cases these inappropriate examples do not satisfy the purpose of real empirical
validation of the metrics proposed. Small application programs can only be used
to get a preliminary idea about a metric; however, it is hard to accept as a proof of
practical applicability as a metric, i.e. this cannot be the way of complete
empirical validation. An example of this type of practice can be observed in the
proposal of the unified complexity measure [15]. The authors have considered
several examples from a book on a programming language.

2.3 Case Studies/Survey Available on the Web

One of the other common practices to validate software metrics/measures is
through case studies. These case studies are sometimes small projects reported in
literature or on the web [16], [17], or some large programs. Naturally, this way can
only demonstrate the implementation of metric on big software products;
however, in no case does it represent the practical applicability of the programs. In
fact if the proposer of the metric is applying it on some programs/projects
available on the web, we can treat it as a survey. One of the examples for this
method is the metrics proposed by Aggarwal et al. [18], where the authors have
proposed two metrics and validated them with JAVA programs available on the
web. Observations show that their process of validation is open to discussion [19].
Further similar to the small application programs, the application of the metrics on
such projects available on the web cannot be justified as they do not provide the
reader a transparent implementation.

2.4 Experiments in the Laboratory or Classroom

Some authors [20-21] try to validate their metrics with students in classrooms or
laboratories. In fact, in software engineering, several researchers suggest
performing empirical validation with students in a classroom environment [22,
23]. The examples of experiments in the classroom are: controlled experiments
(with graduate students), observational studies (professionals, graduate students)
and case studies (projects as part of class work). Although it is arguable that
students are the future software developers, experiments with students may reduce
the practical value of experiments [1]. A validation process based on such data
may be acceptable only for gaining initial knowledge regarding some quality
factors, such as understandability.

2.5 Experiments at Workplaces in the Industry but with Users
off the Subject, i.e. Who Are Not Potential Users

Sometimes, authors/developers of a new metric program try to validate their work
in small and medium scale software industries. This may be a convenient way for
academicians whose students are working in those companies. Although there is

S. Misra An Approach for Empirical Validation of Software complexity Measure

 – 146 –

no harm in utilizing the available software industries in the vicinity, a worrying
issue is that these companies may not really evaluate or validate the metric
program. In common practice, it is not common to find such small- and medium-
sized software industries who adopt a software metric program in the organisation
[24]. Hence, assuming a real validation of a new metric program may be open to
discussion.

By adopting all these practices, one can only guess the preliminary idea for the
metric. Also it is easier to adopt these practices for a freshman developer of a
metric program; however, as a result, they can barely go beyond contributing to a
publication. This is the reason we want to point out that, while most of papers in
the area of software metrics/measures are gradually increasing, their adoption
from industries is limited. In fact this is not only the situation in the case of
software metrics, but also a problem in general; i.e. a lack of proper
experimentations in software engineering. In an analysis of the eight papers
published in IEEE [1] transactions on software engineering, the reviewer found
examples of poor experimental design, inappropriate use of statistical techniques
and conclusions that did not follow from the reported results. The reviewer further
commented that the authors of those papers are well-known for their empirical
software engineering work.

3 Chidamber et al.’s Metric Suite and Kim et al.’s
Metrics

In this section, we introduce two different metric sets. In one of them, empirical
validation is in the core of the development of the metric program, and in the
other, the authors have adopted the casual process. We want to show the result of
both practices. It is worth mentioning here that we do not discuss those papers in
which rigorous empirical validation is the core part of the reported research.

We introduce metrics which were developed by Chidamber and Kemerer [9] and
Kim, Shin and Wu [10] for object-oriented (OO) programming. Both groups
proposed their metrics approximately at the same time, in 1994 and 1995,
respectively. Although both proposals of metrics were introduced for OO systems
at the same time and for the same objective (i.e. measuring the complexity of OO
systems) Chidamber’s and Kemerer’s metric suite has gained more popularity in
the software industry. On the other hand, the metrics proposed by Kim et al. have
not found that much acceptance in the industry and are used only for literature
support in research papers. We want to clarify that our intention is not to evaluate
or criticize any particular metric(s), but rather to evaluate whether they have
success or failure in practice. Furthermore, we will use these metrics as a case
study to validate the effectiveness of our model in Section 5.

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 147 –

3.1 The Chidamber and Kemerer (CK) Metrics Suite

Chidamber et al. [9] proposed a suite of metrics which includes five well know
metrics: WMC: weighted method per class; RFC: response for a class; NOC:
number of children; LCOM: lack of cohesion in methods; and CBO: coupling
between objects.

In the WMC, they suggested that one can calculate the weight of the method by
using any procedural metric. They used cyclomatic complexity [25] for measuring
WMC and assumed the weight of each method to be one.

The second metric, RFC, is defined as the total number of methods that can be
executed in response to a message to a class. This count includes all the methods
available in the class hierarchy. The depth of inheritance tree (DIT) and the
number of children (NOC) are other two important CK measures. The former
represents the maximum length from the node to the root of the tree and the latter
is the number of immediate subclasses subordinated to a class in class hierarchy.

The LCOM metric is for cohesion and is counted as the number of common
attributes used by different methods.

Another metric in their suite is CBO, which measures interactions between objects
by counting the number of other classes to which the class is coupled. As stated
previously, these are most accepted metrics in the OO domain in the industry; we
are not providing the detail of the each metric and refer readers to the original
paper [14].

3.2 Complexity Measures for OO Programs Based on Entropy

Entropy [26] is a common concept and applied by several researchers [27-30] to
measure the complexity of software. Kim et al. [10] proposed three metrics for
OO programs based on the entropy concept. These metrics are: the class
complexity, the inter-object complexity, and the total complexity for OO
programs. Basically their first metric, class complexity, evaluates the information
flows between attributes and functions in a class. Their second metric, inter-object
complexity, measures the information flows between objects. The third metric,
total complexity, adds the class complexity and the inter-object complexity.

4 A Model for Empirical Validation for Software
Complexity Measure

Empirical studies [22] are used to investigate software development and practices
for understanding, evaluating, and developing in proper contexts. It allows the
analyst to test out the theories with the support of empirical observations. It

S. Misra An Approach for Empirical Validation of Software complexity Measure

 – 148 –

includes formal experiments, case studies and surveys observed in industry, the
laboratory or classroom [1]. All these different types of empirical validation
techniques can also be applied to the validation of software metrics. However, as
we have demonstrated in Section 2. All these independent validations are not
suitable for the empirical validation of software complexity measures. They
provide only a preliminary understanding of the proposed metrics. In other words,
all these practices are not without benefit, but they are only suitable for
introductory validation. With this point of view, we recommend these practices for
preliminary empirical validation.

Ideally, we believe that when a new metric is applied to real projects from
industry, its validity should later be evaluated against other similar metrics.
However, in many cases, the type of empirical study depends upon situation and
circumstances and, in the initial phases of any new proposal, it is not always
possible to apply a new metric directly to the real projects in industry. A reason
for this might be the following: if the developer of the metrics is an academician
and at the particular time does not have access to the proper real (industrial)
environment, then he tries to validate his proposal through other means (data and
projects on the web).

In considering these practical problems related to empirical validation, the
suggested guidelines in the proposed framework are categorized in two major
stages as preliminary and advanced empirical validations, which are further
classified into different stages. Accordingly, we suggest seven steps in total.

a) Preliminary Empirical Validation:

Preliminary empirical validation is divided into four stages. The first phase
includes small experiments, case studies, and the comparative study and
analysis of work. The second stage includes the application of the metric on
real cases from industry.

1 Demonstration of the Metric(s)

This stage is based on short experimentations. The metric(s) should be
demonstrated with real example(s). Here the meaning of real example is
that the examples must be complete enough to demonstrate each aspect of
the metric. In this respect, the example may be developed by the developer
of the metric. Further, several programs/examples can be taken, if it is
needed for demonstrating the metric. For example, for the demonstration of
the cognitive functional size metric [20], the authors have developed three
small programs. This is the first stage and most of the developers of the
metric complete this step.

2 Case Study

After demonstrating the metric with short example(s), a case study is
required. Here the case study refers to a relevant real project to which a
new metric program should be applied. In fact, preliminary ideas regarding

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 149 –

the usefulness of a new metric are only validated by applying it to data
collected from a real project. One can chose a real project from the web,
literature or working projects in the departments, to which he can apply the
metric to verify its applicability. In fact this stage is recommended when
the data from industry is not readily available.

Figure 1

Proposed Model for Empirical Validation of Software

In parallel, similar metrics should also be applied on the case study and the
results should be compared with the results of the proposed metrics. If the
developer cannot find measureable differences between the proposed
metrics and the available metrics, then he can either withdraw his proposal
or can improve it.

Preliminary Empirical Validation

Step 1

Step 2

Step 3

Step 4

Analysis of the results and
comparative study

Application on a variety
of examples/projects

Advanced
Empirical Validation

Step 5

Step 6

Demonstration with real
 example

Case study/real project

Applicaion on real
projects in industry

Series of experiments
on variety of projects

Step 7 Acceptance

Apply similar
metrics on case study

Apply similar metrics
on a variety of
examples/projects

S. Misra An Approach for Empirical Validation of Software complexity Measure

 – 150 –

3 Test Cases
A comparison with similar metrics provides valuable information on the
usefulness of the new metric. It will also help in the analysis of the
behavior of the metric in a variety of projects. In this stage, the metrics
should be applied on a variety of examples/test cases/cases studies, and it
should also be applied in different environments, if possible. Here we
recommend a variety of examples/test cases/ case studies to check the
applicability of the metric(s) on a variety of projects. Further, for
comparison, similar metrics must be applied on those projects where the
new metric is applied.

4 Analysis
The last stage of the preliminary empirical validation is to perform an
analysis of the results and the comparative study, which have been done in
previous stages. The results of the analysis and comparative study will help
the developer to convince industry to apply the new metric program for
advanced empirical validation.

b) Advanced Empirical Validation

5 Real Project in Industry
The acceptance of a new software metric is open to discussion if its
usefulness is not proved in the software industry. For its acceptance, firstly
the proposed metric must be applied by software developers on real
working projects. It is worth mentioning here that the program should be
applied by the professionals who are working on the projects. This is
because they are key informants who can really evaluate the practical
applicability of the new metric program.

6 Family of Experiments
The proposed metric must be applied in different projects and in different
environments. The reason for this is that, after performing a family of
experiments, one can build up the cumulative knowledge to extract useful
measurement conclusion to be applied in practice [31].

7 Acceptance
After the series of experiments, the results should be analyzed and
compared. If the new metric(s) is proved to be better than the existing
metrics/metric programs in an organization it can be considered for
acceptance. Otherwise it may require further improvement. After
improvement of the metric(s), the same validation process should be
revisited from the beginning, i.e. from the first stage of this model.

We have suggested seven steps for the empirical validation of metrics. These steps
are not new; however, the proper adoptions by the developers of software metrics
are limited. With this point in mind, we have presented them in a formal way in
order to provide a straightforward guideline to help developers of software metrics

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 151 –

to gain a clear understanding of the proper empirical validation process. Further,
the steps provided in this model are only guidelines and the practical
implementation of this model may depend on the actual situation and
circumstances. For example, after the demonstration of the metric in the
preliminary phase (step 1), if one can find an opportunity to apply the metric(s)
program on a project in industry, then the developer does not need to follow the
remaining stages of the preliminary validation process. On the other hand, the
developer should not forget to apply similar metrics for comparison while
applying the proposed metric(s) to an industrial project, since without comparison
the usefulness of a new measure cannot be justified.

5 Case study: Applicability for our Model

We have applied our model on the metrics developed by Chidamber and Kemerer
[9] and Kim, Shin and Wu [10]. In this section, we want to show that, although
both metrics were developed at almost the same time, for evaluating the
complexity of OO systems, CK has become a milestone in the field of metrics.
Their work is not only used by practitioners and widely adopted by the software
industry, but also a simple search by Google can yield 2791 citations. Complexity
measures for OO program based on the entropy proposed by Kim et al. is not
found to be used by practitioners and has only became a paper which is sometimes
used by some new developers of software metrics for citation purposes. We have
intentionally used these metrics to evaluate which practices and rules make a
metric useful and how our model can be handy while adopting those practices.

We start our evaluation with complexity measures for OO program based on
entropy [10]. We have already given introductory information regarding the
metrics in Section 3. Here we are evaluating them: how they validated their work?
The authors have demonstrated all three metrics: class complexity, inter object
complexity and total complexity, with a simple example. This covers the first step
of our model.

For the validation of their metrics, they showed that their complexity values fall
between log2n and zero [10]. Further, the authors evaluated their metrics
theoretically with Weyuker’s properties [32]. There is no harm in validating
metric(s) theoretically, but theoretical validation only proves that the
measure/metric(s) is developed on some sound theoretical base; in no case does it
prove any practical applicability in industry. Further, for experimentation, i.e.
empirical validation, the authors measured the class complexity for C++ classes
using 68 classes that were extracted from classes of user interfaces and data
structures [33-36]. We have surveyed these references from books on C++
programming. This part of validation is our third step of the preliminary empirical
validation. Furthermore, the authors claim that their experimental results of C++

S. Misra An Approach for Empirical Validation of Software complexity Measure

 – 152 –

classes proved the effectiveness of the proposed metrics. They further wrote that
in the future, they would gather many OO programs for analysis and for the
calculation of the correlation coefficient. This is the summary of their
experimentations on their proposed metrics.

As per our empirical validation guidelines, the metrics proposed by Kim, Shin and
Wu [10] barely fulfill the preliminary stage of empirical validation. It is because
the authors only demonstrated their metric with a small program and then used
several classes for showing the implementation of the metrics. Neither did they
perform a case study/a real project, nor any comparative study.

Now we evaluate the way the CK metrics suite was introduced. Chidamber et al.
[9] firstly provided the fundamental and theoretical background for developing the
metrics. All the metrics proposed by Chidamber et al. are straight forward for
computing the different features of OO systems, so they are easily countable from
any OOS system; e.g. NOC can be easily counted by counting the number of
immediate descendants of the class. They compared their metrics with all
available OO metrics at that time. If we evaluate their methodology for empirical
validation, we find that it closely matches with our advanced empirical validation
process. According to Chidamber et al. [9] ‘They have applied their metrics
through automated tool developed for this research at two different organizations
and referred as Site A and Site B. Site A was a software vendor that uses
OOD(object oriented design)...... Metrics data from 634 classes from two C++
class libraries Site B was a semiconductor manufacturer and used the
Smalltalk programming language for developing flexible machine control and
manufacturing systems.Metrics data from 1459 classes from Site B were
collected’.

The quote supports that the metric were developed not only on a sound theoretical
background, but also via the adoption of proper validation criteria; i.e. the authors
proved the worth of their metrics through the above rigorous empirical validation,
which we name as advanced empirical validation in our model. Also, after the
development of these metrics, they were adopted by several major organizations,
e.g. NASA. Additionally, after gaining popularity, several researchers worked on
these metrics and again validated them empirically [37]. This case study proved
that the fifth and sixth stage in our model is a necessary requirement for a
complete empirical validation process.

6 Validation of the Model with Newly Proposed
Metrics

We have applied our model to other recently proposed metrics, reported in 2009
and 2010 for a figure of new proposals. As a start, we divided the metrics into two
groups: as the first group, we have only considered those metrics which are

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 153 –

published in highly influential journals, especially in science citation indexed/
expanded Science citation indexed. The second group consists of the papers which
were published in conferences and other journals. The metrics, under
consideration in the first group are cognitive complexity measure (CCM) [20],
[38], (2009,) unified complexity measure (UCM) [15] (2010,) complexity metrics
for evaluation of metaprogram complexity [5] (2009), package coupling
measurement (PCM) in OO Software [39] (2009), and weighted class complexity
[13] (2009). The other groups belong to the metrics: a complexity measure based
on requirement engineering (2010) [40], OO cognitive-spatial complexity
measures [41] (2009), structured software cognitive complexity measurement,
[42] (2009).

Firstly, we evaluate the cognitive complexity metric, which were initially
proposed in 2004 as cognitive functional size measure (CFS) [20]; later they were
promoted by considering the remaining features (explained in forthcoming lines).
For CFS, the authors demonstrated their metrics via a case study (a single program
in three different languages) and validated their work by applying CFS on a set of
20 programs which were taken from a book. They have also performed a
comparative study with a line of code. Later, they extended their work and
proposed cognitive complexity measure [38], which was dependent on
architectural and operational complexities. The work was validated via
demonstration with a case study, examples and a comparative study. This metric
(CFS/CCM) satisfies all the steps of preliminary empirical validation; however, it
was not implemented in any industry project. Since this metric satisfies only the
first stage of empirical validation, acceptance can only be partial.

The second metric under evaluation against our model is a package coupling
measurement in OO software [39]. This metric is a coupling metric and takes into
consideration the hierarchical structure of packages and the direction of
connections among package elements. The metric was demonstrated with
examples, theoretically validated and empirically validated by using 18 packages
taken from two open source software systems. The authors claimed that they had
found a strong correlation between package coupling and the understandability of
the package, and hence the metrics could be used to represent other external
software quality factors. As per our model, the metric is well supported (1st stage)
with example(s); a case study was performed on a java project (2nd stage); it was
applied to 18 packages from an open sources (3rd stage); and it was analyzed
properly (4th stage). This metric completed all the steps of preliminary stage of
empirical validation, except for a comparative study with similar measures.
However this metric is not applied in an industry project.

Another metric under examination is the metrics for the evaluation of
metaprogram complexity [5]. The authors proposed five complexity metrics:
relative Kolmogorov complexity, metalanguage richness, cyclomatic complexity,
Normalized difficulty and cognitive difficulty for measuring complexity of
metaprograms at information, metalanguage, graph, algorithm, and cognitive

S. Misra An Approach for Empirical Validation of Software complexity Measure

 – 154 –

dimensions. For validation of their metrics, the authors demonstrated their metrics
with examples/case studies, then applied their metrics on open PROMOL, a
metaprograms created from Altera’s library for OrCAD VHDL components
library. These metrics also passed all the 4 steps of the preliminary empirical
validation; however no evidence is found for the implementation of their metrics
in industry.

Table 1
Validation of the proposed model against the newly proposed metrics

 Steps of our model

Complexity measure

1 2 3 4 5 6 7(Acceptance)

Cognitive Complexity
Metric

Y Y Y Y N N Partially
satisfied

META Program
Complexity

Y Y Y Y N N Partially
satisfied

Unified Complexity
Metric

Y Y Y Y N N Partially
satisfied

Package coupling
Measurement

Y Y Y Y N N Partially
satisfied

Complexity
measures
form SCIE
Journal

Weighted Class
complexity

Y Y Y N N N Partially
satisfied

Complexity metric for
req. Engg.

Y N Y Y N N Not
Recommended

Object-Oriented
Cognitive-Spatial
Complexity Measures

Y N N Y N N Not
Recommended

Complexity
metrics
published in
conferences
and non SCI
journals Towards Structured

software Cognitive
complexity
measurement

Y N Y Y N N Not
Recommended

Our next metric under examination is unified complexity measure (UCM) [15].
This metric includes all major factors responsible for the complexity of a program,
including cognitive aspects. The authors claimed that the applicability of the
measure is evaluated through empirical, theoretical and practical validation
processes. The authors performed test cases and a comparative study. According
to our model, UCM also satisfies preliminary empirical validation. UCM was
demonstrated with an example, validated theoretically and empirically with test
cases/ a number of examples (more than 30) and the developers performed a
rigorous comparative study with similar measures. However, it was not applied in
industry.

The last metric from the first group under examination is the weighted class
complexity (WCC) [13]. The metric was proposed to compute the structural and
cognitive complexity of class by associating a weight to the class. The authors
claimed that the theoretical and practical evaluations based on information theory

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 155 –

had shown that the proposed metric was on ratio scale and satisfied most of the
parameters required by the measurement theory. When we evaluated this metric
against our framework, we found that WCC is demonstrated with examples (1st
stage), case study was performed (2nd stage), it was also applied on a number of
classes (3rd stage), and the authors performed a comparative study with CK
metrics suite (4th stage). However, they failed to apply it in a real industry
environment.

In [31], a complexity measure based on a requirement engineering document, the
authors claim that their paper attempts to empirically demonstrate the proposed
complexity metric, which is based on IEEE Requirement Engineering Document
[43]. However in summary, they demonstrated their metrics with a single program
and then applied it on 16 small programs. They also apply the other metrics on
these sixteen programs and concluded their results. Furthermore, neither did they
apply their metric on a real example/project, nor did they apply it to any industrial
project. As result, this metric achieves only three steps, and even could not cover
the steps of preliminary empirical validation process. Hence it does not satisfy the
preliminary empirical validation.

In [41], OO cognitive-spatial complexity measures, the authors proposed a metric
by combining cognitive and spatial aspects of programming. Further, they claimed
that the proposed measures were evaluated using standard axiomatic frameworks
(which are Weyuker’s properties [32] and Briand’s framework [44]), and that they
were compared with the corresponding existing cognitive complexity measures as
well as the spatial complexity measures for OO software; hence their proposed
measures were better indicators of the cognitive effort required for software
comprehension than the other existing complexity measures for OO software.
Using our model: on the validation part, the authors demonstrated their metric by
two programs of 21 and 45 lines, and applied similar metrics on those two
programs to perform a comparison. They did not perform any of the following: a
case study, test cases, and industrial applications. As result, this metric covers only
two steps of preliminary empirical validation; hence it does not pass all steps of
our preliminary empirical validation.

In [42], towards structured software cognitive complexity measurement with
granular computing strategies, the authors integrated the concept of granular
computing and cognitive complexity. They claim that they performed the
empirical studies, which were conducted to evaluate the virtue of their metric and
also the universal applicability of granular computing concepts. In fact, the
authors demonstrated their measure with a short program and then applied it on 12
small programs. This measure satisfies three steps from our model. No case study
and test cases were performed; hence all the steps of preliminary empirical
validation of our model were not satisfied.

The examination of eight recently developed metrics against our model provides
valuable information regarding the actual scenery and facts of software metrics.

S. Misra An Approach for Empirical Validation of Software complexity Measure

 – 156 –

1 All the metrics which are published in the SCI/SCIE indexed journals
performed better in the empirical validation process.

2 All the metrics in the first group (published in SCI/SCIE journals) passed
all the steps of preliminary empirical validations.

3 Most of the developers of the metrics in the first group claimed that they
had completed the validation process, except the developer of UCM and
WCC. Although they only completed the first phase of validation, i.e.
preliminary, they do not have the intention to do later steps in future
either. This is because most of the developers are academicians and they
do not realize the real needs of the software industry. They may defend
their positions by applying their metrics on open source projects and a
complete validation process may be achieved; however, this is not
sufficient for the acceptance of the metric from the software industry.

4 The metrics in the second group, B (conferences and non SCIE indexed
journals), were weak in empirical validation; they did not even perform
simple test cases/case studies available on the web.

5 One can find the same evaluation results if he applies our model to most
of the available metrics of group B.

The above evaluation validates each step of our proposed model. Most of the
metrics in group A satisfy all the steps of preliminary validation process. On the
other hand, the failure to satisfy the steps of advanced empirical validation is due
to a lack of proper guidelines for the complete empirical validation process. Our
model is an attempt to fill this gap by mentioning the need of advanced empirical
validation in real industrial environments. In fact, the steps in the model are not
new; we have formally integrated what we have surveyed, which can act as a
guide to a developer of a new metric. With this model, a new developer can
understand all the required steps of complete empirical validation, which can help
to gain acceptance of his metric or formula within the industry.

It may be too early to assess the future of all the above metrics, because all of
them have only recently been proposed. It is possible that some of them may be
evaluated by the industry. On the other hand, in the present scenario, by using our
our model, it is proved that none of them satisfies the steps of advanced empirical
validation; i.e. they have not been evaluated in the industry. In this respect, there is
less chance of the adoption of these metrics in the industry, though they do
contribute to the community in the form of research papers. These observations
proved our statement that most of proposed metrics are inherently irrelevant to
industrial needs, which is because of improper empirical validation.

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 157 –

6 Discussion and Recommendation

We want to point out that there is a practical difficulty in advanced empirical
process because most of the software industries are likely to be unwilling to apply
a new technology/metric since it is difficult to convince them that the metric is
more beneficial in comparison to the existing ones. This is one of the reasons why
most of the new metrics are not properly empirically validated. Nevertheless,
advanced empirical validation is a considerable requirement in validating a new
metric and hence we propose the developer of a new metric should follow the
following steps:

1 He should prepare a software tool for measuring the complexity value. This
tool can be used for the advanced empirical validation as well as for
preliminary one. A simulator can also be developed at this stage to help
evaluate the new measure before applying it to real industrial data.

2 Based on preliminary observations/result of simulations, a group of
practitioners should be appointed for real observations from past sample
projects/sub-projects in the industry.

3 This group must apply the proposed technique as well as existing similar
metrics on the sample industrial data. It is worth mentioning that once this
job is done by practitioners, it will solve the problem of searching for
current data from the industry.

4 Further, this group must analyze the results by comparing them with similar
metrics. This activity will lead to the evaluation of the proposed metric.

5 At this stage, it is observed that if the developer of the new metric/measure
belongs to industry, it is relatively easier for him to follow these steps. On
the other hand, if the developer belongs to academia, then again he faces
the same practical problem, if the funding is not available. This is actually a
common problem, especially in developing countries, and when parental
organizations that are not willing to provide any funds for this purpose.
Bearing this in mind, we suggest including one practitioner in the starting
phase of the proposed metric. His contribution may be in the last phase,
which is the most important task for the proof and value of the new
metric/measure. It is also worth mentioning that advanced empirical
validation may take a few days, weeks or months, depending on the
situation (e.g. availability of project) and complexity (number and size) of
the proposal.

Conclusion and Future Work

It is generally observed that for most of the new metrics/measures, the developer
tries to prove his metric to be the most suitable measure for any particular
attributes e.g. [20]. The academicians/developers of the new metrics try to prove
their claim by evaluating their proposal through different means. These different

S. Misra An Approach for Empirical Validation of Software complexity Measure

 – 158 –

evaluating standards can be theoretical validation (for example evaluation through
measurement theory), experimentation in the classroom, case studies, different
examples from the web, etc. However, they can be essential but not complete. It is
proved that none of the newly proposed metrics are validated against an industry
project, and hence the chances for the success of these measures are not
promising. As a result, without proper preliminary and advanced empirical
validation according to our model, any other criteria for the metric validation
cannot be effective.

In general, the empirical methods suggest proposing a model, developing
statistical / qualitative methods, applying to case studies, measure and analyzing,
validating the model and repeating the procedure [45]. All these forms of
empirical validation are recommended for any empirical study in software
engineering. Our analysis has suggested that all these steps are required for the
proper empirical validation of software metrics. Accordingly, we have
accumulated them in our model in order to validate software metrics empirically.

Acknowledgment
The author is thankful to the Editor and reviewers for their valuable comments. I
am also thankful to Dr. Tolga Pusatli for improving English of the paper and
several rounds of discussions for finalization of the paper.

References
[1] Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D.

C., El-Emam, K., Rosenberg, J. (2002) Preliminary Guidelines For Empirical
Research In Software Engineering, IEEE Transaction on Software Engineering,
28(8), pp. 721-734

[2] Singer J., Vinson N. G.(2002) Ethical Issue In Empirical Studies of Software
Engineering, IEEE Transaction on Software Engineering, 28(12), pp. 1171-1180

[3] Brilliant, S. S., Kinght, J .C. (1999) Empirical Research in Software
Engineering, ACM Sigsoft, 24(3), pp. 45-52

[4] Zelkowitz, M. V., Wallace, D. R. (1998) Experimental Models For Validating
Technology, IEEE Computer, May issue, pp. 23-40

[5] Damaševičius, R., Štuikys, V. (2009) Metrics for Evaluation of Metaprogram
Complexity, Journal of Computer and Information science, 16(3), pp. 1-20

[6] Hanny, J. E., Sjoberg D. I. K., Dyba T. (2007) A Systematic review of theory
use in software engineering experiments, IEEE Transaction on Software
Engineering, 33(2), pp. 87-107

[7] Fenton N. E. (1999) Software Metrics: Success, Failure and New Directions,
J.of System and Software, 47(2-3), pp. 149-157

[8] Gopal, A., Mukhopadhyay, T., Krishnan M. S. (2005) The Impact Of
Institutional Forces of Software Metrics Programs, IEEE Transaction on
Software Engineering, 31(8) pp. 679-694

[9] Chidamber, S. R., Kemerer, C. F. (1994) A Metric Suite for Object Oriented
Design, IEEE Transactions on Software Engineering, 20(6), pp. 476-493

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 159 –

[10] Kapsu, K., Shin,Y., Chisu W. (1995) Complexity Measures For Object-
Oriented Program Based On The Entropy, In Proceedings of Asia Pacific
Software Engineering Conference, 6-9 Dec., pp. 127-136

[11] Zuse, H. (1991) Software Complexity Measures and Methods, de Gruyter
Publisher

[12] IEEE Computer Society (1990) IEEE Standard Glossary of Software
Engineering Terminology, IEEE Std. 610.12 – 1990

[13] Misra, S., Akman, I. (2008) Weighted Class Complexity: A Measure of
Complexity for Object Oriented Systems, Journal of Information Science and
Engineering, 24, pp.1689-1708

[14] Kushwaha, D. S., Misra, A. K. (2006) Improved Cognitive Information
Complexity Measure: A Metric that Establishes Program Comprehension
Effort, ACM SIGSOFT SEN, 31(5), pp. 1-7

[15] Misra, S., Akman, I. (2010) Unified Complexity Measure: a Measure of
Complexity’ The Proc. Nat. Acad. Sci. India, (Sect. A), 80(2), pp. 167-176

[16] Basci, D., Misra, S. (2009) Data Complexity Metrics for Web-Services,
Advances in Electrical and Computer Engineering, 9(2), pp. 9-15

[17] Basci, D., Misra, S. (2011) A Metric Suite for Maintainability of XML Web-
Services’ IET Software, In press

[18] Aggrwal, K. K., Singh Y., Kaur, A., Melhotra, R.(2006) Software Design
Metrices for object orinted Software Journal of Object Technology, 6(1), pp.
121-138

[19] Misra, S., Akman, I. (2008) Applicability of Weyuker’s Properties on OO
Metrics: Some Misunderstandings", Journal of Computer and Information
Sciences, 15(1), pp. 17-24

[20] Wang. Y., Shao J. (2003) A New Measure Of Software Complexity Based On
Cognitive Weights, Canadian Journal of Electrical and Computer Eng., 28(2),
pp. 69-74

[21] Wang. Y., Shao J.(2006) Psychological Experiments on the Cognitive
Complexities of Fundamental Control Structures of Software Systems, In Proc.
IEEE ICCI 2006, pp. 1-2

[22] Basili, V. (2007) The Role of Controlled Experiments In Software Engineering
Research, Empirical Software Engineering Issues, LNCS, 4336, 2007, pp. 33-
37

[23] Zazworka, N., Basili, V., Zelkowitz, M. V.(2008), An Environment for
Conducting Families of Software Engineering Experiments, Advances in
Computers,74, pp. 175-200

[24] Pusatli, T., O., Misra, S. (2011) Software Measurement Activities in Small and
Medium Enterprises: An Empirical Assessment’, Accepted for publication,
Acta Poletechnica Hungarica, 4, In Press

[25] McCabe, T. J. (1976) A Complexity Measure. IEEE Transactions Software
Engineering, 2(6), pp. 308-320

[26] Shannon, C. E., Weaver, W. (1949) The Mathematical Theory of
Communication, Urbana, IL: University of Illinois Press, USA

S. Misra An Approach for Empirical Validation of Software complexity Measure

 – 160 –

[27] Davis, J., LeBlanc, R. (1988) A Study of the Applicability of Complexity
Measures,” IEEE Transactions on Software Engineering, 14, pp. 366-372

[28] Etzkorn, L., Gholston, S., Hughes, W. E. Jr. (2002) A Semantic Entropy
Metric, Journal of Software Maintenance And Evolution, 14(4), pp. 293-310

[29] Gaffney, J. (1984) Instruction Entropy, a Possible Measure of
Program/Architecture Compatibility, ACM SIGMETRICS Performance
Evaluation Review, 12(4), pp. 13-18

[30] Basci, D., Misra, S. (2011) Entropy as a Measure of Complexity of XML
Schema Documents’ Int. A. Journal Of Information Technology, 8(1), 16-25

[31] Serrano, M., Trujillo, J., Calero, C., Piattini, M. (2007) Metrics for Data
Warehouse Conceptual Models Understandability. Information and Software
Technology, 49(8), pp. 851-870

[32] Weyuker, E. J. (1988) Evaluating Software Complexity Measure. IEEE
Transaction on Software Engineering, 14(9) 1357-1365

[33] Pold, I. (1989) C++ for C Programmers, pp. 156-157, The Benjamin Cummings
Publishing Company, Inc.

[34] Douglas A. Y., (1992) Object-Oriented Programming with C++ and OSFMotif,
Prentice Hall

[35] Robert L. S. (1992), C++ Component and Algorithm", MNT Publishing Inc.,
[36] Stevens, A. I. (1992) C++ Database Development, MIS Press
[37] Subramanyam R., Krishnan M. S. (2003), Empirical Analysis of CK metrics for

Object-Oriented Design Complexity: Implications for Software Defects," IEEE
Trans. on Software Engineering, 29(4),297-310

[38] Wang Y., Shao, J. (2009) On the Cognitive Complexity of Software and its
Quantification and formal methods. Int. Jour. Of Software Science and
Computer Intelligence, 1(2), pp. 31-53

[39] Gupta V, Chhabra J. K. (2009) Package Coupling Measurement In Object-
Oriented Software. Journal of Computer Science and Technology 24(2), pp. 1-
12

[40] Sharma, A., Kushwaha, D. S. (2010) A Complexity Measure based on
Requirement Engineering Document, Journal of Computer Science
Engineering, 1(1), pp. 112-117

[41] Gupta, V., Chhabra, J. K. (2009) Object-oriented Cognitive-Spatial Complexity
Measures, International Journal of Computer Science and Engineering, 3(2),
pp. 122-129

[42] Benjapol, A., Limpiyakorn, Y. (2009) Towards Structured Software Cognitive
Complexity Measurement with Granular Computing Strategies, In, Proc. 8th
IEEE International Conference on Cognitive Informatics, pp. 365-370

[43] IEEE Computer Society (1994) IEEE Recommended Practice for Software
Requirement Specifications, New York

[44] Briand, L. C., Morasca, S., Basili, V. R. (1996) Property Based Software
Engineering Measurement, IEEE Transactions on Software Engineering, 22(1),
pp. 68-86

[45] Basili V. (1993) The Experimental Paradigm in Software Engineering, Lecture
Notes in Compputer Science, 706, pp. 1-7

