
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2013

COMPRESSION-BASED ANALYSIS OF
METAMORPHIC MALWARE
Jared Lee
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Lee, Jared, "COMPRESSION-BASED ANALYSIS OF METAMORPHIC MALWARE" (2013). Master's Projects. 329.
DOI: https://doi.org/10.31979/etd.qm6p-jkf5
https://scholarworks.sjsu.edu/etd_projects/329

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70408642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/329?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

COMPRESSION-BASED ANALYSIS OF METAMORPHIC MALWARE

A Thesis

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Jared Lee

December 2013

c○ 2013

Jared Lee

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

COMPRESSION-BASED ANALYSIS OF METAMORPHIC MALWARE

by

Jared Lee

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2013

Dr. Thomas Austin Department of Computer Science

Dr. Sami Khuri Department of Computer Science

Dr. Teng Moh Department of Computer Science

ABSTRACT

Compression-based Analysis of Metamorphic Malware

by Jared Lee

Recent work has presented a technique based on structural entropy

measurement as an effective way to detect metamorphic malware. The technique

uses two steps, file segmentation and sequence comparison, to calculate file

similarity. In another previous work, it was observed that similar malware have

similar measures of Kolmogorov complexity. A proposed method of estimating

Kolmogorov complexity was to calculate the compression ratio of a given malware

which could then be used to cluster the malicious software. Malware detection has

also been attempted through the use of adaptive data compression and showed

promising results. In this paper, we attempt to combine these concepts and propose

using compression ratios as an alternative measure of entropy with the purpose of

segmenting files according to their structural characteristics. We then compare the

segment-based sequences of two given files to determine file similarity. The idea is

that even after malware is transformed using a metamorphic engine, the resulting

variants still share identifiable structural similarities with the original. Using this

proposed technique to identify metamorphic malware, we compare our results with

previous work.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Thomas Austin, for his invaluable

guidance. I would also like to thank my committee members, Dr. Sami Khuri and

Dr. Teng Moh, for their unwavering support. Finally, I would like to thank Dr.

Mark Stamp for his direction and encouragement, as this project would not have

been possible without him.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 Malware . 3

2.1.1 Types . 3

2.1.2 Concealment Strategies . 4

2.1.3 Metamorphic Techniques 5

2.2 Related Work . 7

2.2.1 Hidden Markov Model . 7

2.2.2 Structural Entropy . 9

2.2.3 Compression-based Classification 10

3 Design and Implementation . 13

3.1 Forming File Segments . 13

3.1.1 Splitting a File into Byte Windows 13

3.1.2 Window Compression Ratios 14

3.1.3 Wavelet Transform Analysis 16

3.1.4 File Segment Creation . 18

3.2 Sequence comparison . 19

3.2.1 Levenshtein distance . 19

3.2.2 Sequence alignment . 20

3.2.3 Similarity calculation . 22

vi

vii

4 Experiments and Results Analysis 23

4.1 Test Data . 23

4.1.1 Second Generation Virus Generator 23

4.1.2 MWOR . 24

4.1.3 Next Generation Virus Construction Kit 25

4.2 Receiver Operating Characteristic 25

4.3 Test Results . 26

4.4 Setting Parameters . 30

4.4.1 Cost Constants . 30

4.4.2 Window Slide Size . 30

4.4.3 Recursive Iterations of the Wavelet Transform 34

4.4.4 Compression Ratio Threshold 34

5 Conclusion and Future Work . 36

APPENDIX

A MWOR Results . 43

B Wavelet transforms on MWOR (0.5 padding ratio) 47

C Wavelet transforms on NGVCK 51

D Wavelet transforms on G2 . 55

LIST OF TABLES

1 Resulting File Segments . 18

2 Edit matrix for strings "books" and "broom" 21

3 Cygwin Utility Files Used For Benign Data Set 23

4 Linux Binaries Used For Benign Data Set 25

5 Results Summary . 30

6 Compression Ratio Threshold Calibration 35

viii

LIST OF FIGURES

1 Generic Hidden Markov Model 8

2 File Segmentation . 10

3 Kolmogorov Complexity Detection Framework 11

4 PPM-based Classification . 12

5 Hexdump of sample file with addresses(Left), bytes in hex repre-
sentation(Center), bytes in ascii representation(Right) 14

6 Window 1 of sample file . 14

7 Window 2 of sample file . 14

8 Compression ratios plot of sample file 15

9 Discrete wavelet transform using (a) 0 iterations, (b) 1 iteration,
(c) 2 iterations, (d) 3 iterations 17

10 Example ROC Curve . 26

11 G2 similarity . 27

12 MWOR(0.5 padding) similarity 28

13 NGVCK similarity . 29

14 ROC Curve Results . 29

15 Window Slide Size vs. Total Execution Time 31

16 Window Slide Size vs. AUC . 32

17 Window Slide Size vs. AUC . 33

18 Window Slide Size vs. AUC . 33

A.19 MWOR(1.0 padding) similarity 44

A.20 MWOR(1.5 padding) similarity 44

A.21 MWOR(2.0 padding) similarity 45

ix

x

A.22 MWOR(2.5 padding) similarity 45

A.23 MWOR(3.0 padding) similarity 46

A.24 MWOR(4.0 padding) similarity 46

B.25 Wavelet Transform → 0 iterations (MWOR 0.5) 48

B.26 Wavelet Transform → 1 iteration (MWOR 0.5) 48

B.27 Wavelet Transform → 2 iterations (MWOR 0.5) 49

B.28 Wavelet Transform → 3 iterations (MWOR 0.5) 49

B.29 Wavelet Transform → 4 iterations (MWOR 0.5) 50

B.30 Wavelet Transform → 5 iterations (MWOR 0.5) 50

C.31 Wavelet Transform → 0 iterations (NGVCK) 52

C.32 Wavelet Transform → 1 iteration (NGVCK) 52

C.33 Wavelet Transform → 2 iterations (NGVCK) 53

C.34 Wavelet Transform → 3 iterations (NGVCK) 53

C.35 Wavelet Transform → 4 iterations (NGVCK) 54

C.36 Wavelet Transform → 5 iterations (NGVCK) 54

D.37 Wavelet Transform → 0 iterations (G2) 56

D.38 Wavelet Transform → 1 iteration (G2) 56

D.39 Wavelet Transform → 2 iterations (G2) 57

D.40 Wavelet Transform → 3 iterations (G2) 57

CHAPTER 1

Introduction

Malicious software, or malware, continue to be a threat in spite of advances in

computer security [30, 35]. The detection of metamorphic malware, in particular,

remains a challenging area of research due to various complexities involved [6, 33].

Metamorphic malware modify their internal structure at each infection, while

remaining functionally equivalent [17]. This feature makes them very difficult to

detect since the obfuscation used by metamorphic engines can allow them to defeat

traditional malware detectors based on pattern matching [8, 35].

Metamorphic malware detection through static program analysis is an active

area of research and many techniques have been developed that show good

results [7]. For example, previous work has shown that despite extensive changes in

internal structure, some metamorphic malware can be effectively detected using

statistical based methods of similarity measurement [30]. It has also been shown

that metamorphic malware can be clustered by using compression ratios as a

measure of Kolmogorov complexity [29]. Unfortunately, there are a multitude of

obfuscation techniques that render malware detection through static analysis either

much less effective or highly resource intensive [6, 23, 33].

Recently, a novel approach utilizing structural entropy analysis has been

developed and shows good resilience against obfuscation [3, 22]. This approach

takes advantage of structural entropy to measure varying levels of data complexity

throughout a file and uses these characteristics to calculate a similarity measure.

The method involves two stages, file segmentation and sequence comparison. The

1

file segmentation stage uses entropy measurement along with wavelet analysis and

the sequence comparison is done using Levenshtein distance. Levenshtein distance,

or edit distance, is a similarity measure of two strings [26].

Good results were shown when the structural entropy technique was applied

to various families of metamorphic malware [3]. However, some cases proved

particularly difficult to detect. In this project, we extend the previous research by

proposing the use of compression ratios as an alternative measurement of entropy.

We also consider different adjustments to the file segmentation step and analyze the

effects on file similarity scores. Finally, we compare our experimental results with

those obtained in previous research.

2

CHAPTER 2

Background

2.1 Malware

Malware continues to be a major security threat in information systems.

Computer viruses, worms, spyware, Trojan horses, rootkits, and other intentionally

harmful software all fall under this category [12].

2.1.1 Types

A computer virus is a malicious software that attempts to copy itself into

other executable code [2]. The now infected executable code can then be expected

to infect new code when run. As a result, viruses can be defined by both their

self-replicating and parasitic nature. In addition to other executable programs,

viruses can also be commonly found in the boot sector and in memory [16].

Worms, although similar to viruses, differ in that they are standalone and do

not require external executable code in order to run [2]. They can be expected to

execute automatically on victim machines without the need for user interaction [25].

While viruses try to self-replicate to different host files within the local filesystem,

worms try to self-replicate to different hosts across networks.

A Trojan horse is considered to be a piece of software that attempts to hide

its malicious intent under the guise of benign behavior [2]. It distinguishes itself

from other malware through its standalone nature and masquerading attempts [16].

Unlike viruses and worms, Trojan horses depend heavily on users for the purpose of

dissemination. Backdoor Trojans, Distributed Attacks Trojans, and Remote

3

Administration Trojans are just some of the types that can be encountered.

Spyware is malware created with the intent to collect user activity on a victim

machine, without the knowledge and consent of the user, and send that data to a

third party [2]. While spyware does not share the self-replicating nature of viruses

and worms, they can potentially cause greater financial loss due to stolen passwords,

credit card numbers, and other sensitive information. Adware and key loggers are

common types of spyware used by malicious attackers.

Rootkits are commonly considered to be tools that allow attackers to gain

unauthorized administrative access to other systems [16]. Modern incarnations of

rootkits also attempt to efficiently hide all traces that the system has been

infiltrated and compromised. They can be categorized into user mode and kernel

mode rootkits, with both being able to cause irreparable damage.

2.1.2 Concealment Strategies

Previously, signature-based detection schemes were employed against

computer malware with great success. As time went on, however, attackers

developed a number of advanced obfuscation techniques to morph their code that

made traditional forms of detection much less effective.

One early technique used by malware writers was encrypting the body of the

malware code [2]. The encryption method was not required to be complex and often

involved a simple XOR with a fixed key [5]. The rationale was that by encrypting

the malware body, the appearance of the malware code would drastically change

thus evading signature detection. However, this technique was eventually defeated

by looking for signatures in the malware decryptor rather than the body [2].

4

Techniques were then implemented to retain the ability to encrypt the

malware body while simultaneously varying the decryption code across

generations [18]. These polymorphic malware were effective since the number of

possible unique decryptors proved to be too numerous for malware detectors to

account for them all [2]. With a near infinite amount of possible decryptors, it

quickly became infeasible for anti-virus tools to search for every possible signature.

Emulation-based techniques proved effective against polymorphic malware by

emulating the decryptor instructions in order to have the malware decrypt its own

body making it vulnerable to signature detection once again [28]. However,

emulation is typically very slow [2] which prevents it from being done in practical

situations where time efficiency is a factor. This has caused polymorphism to

remain a feasible and popular way to evade detection.

As a logical progression, metamorphic malware arose where polymorphic

techniques were applied to the entire virus code. These malware change their entire

internal structure with each generation while retaining functional equivalency [17].

This eliminated the need for encryption since signature-based detection already

proved ineffective when sufficient morphing occurred. Consequently, detecting

metamorphic malware with high accuracy is a challenging problem. Although truly

effective metamorphic engines are very difficult to implement in practice, many

already exist and we can only expect more in the future. This is the class of

malware that the technique presented in this paper attempts to detect.

2.1.3 Metamorphic Techniques

Awareness of various morphing techniques is useful in order to help counter

the obfuscation techniques employed by malware writers. We now consider an

5

overview of what techniques are commonly used.

Register swapping is a technique that involves using the same code but

changing which registers are used in each generation in order to help avoid

signature-based detection. It is often considered one of the simplest metamorphic

techniques and one such implementation of this technique is Vecna’s

Win95/Regswap virus [16]. Although this technique was initially somewhat

successful, it was quickly mitigated through the introduction of wildcards in

signatures.

Instruction substitution replaces a set of instructions with a different set

having equivalent functionality. For example, an implementation of this technique

could be to replace instances of the instruction “XOR EAX, EAX” with the instruction

“SUB EAX, EAX” [16]. Although the two previous instructions have different

opcodes, the resulting functionality is equivalent. This morphing technique helps

evade not only signature detection, but also certain detection techniques based on

static program analysis.

Instruction reordering takes advantage of the ability to change the order of a

sequence of instructions that have no dependencies [18]. For example, if two

adjacent instructions are “ADD EAX, 1” and “SUB RAX, 4”, they can be placed in

any order without affecting functionality. By making such re-orderings on a larger

scale, detection is made more difficult for detection techniques that factor in

positional information such as ones that use state transition graphs.

Subroutine permutation is a natural extension to instruction reordering that

reorders sections of code but then executes them in the original order at run-time

through the use of jump statements at the end of each section [6]. This technique is

6

useful since splitting a program into 𝑛 sections would yield 𝑛! possible variations of

the same malware.

Garbage code insertion is a simple, yet effective, technique used by many

metamorphic engines to insert instructions have no impact on the execution of the

program but makes the code look very different [16]. Inserting various amounts of

garbage code into malware is an effective way to counter detection techniques that

utilize op-code based statistical analysis. Furthermore, inserting parts of benign

software as garbage code has proved to be particularly effective.

Formal grammar mutation is another obfuscation technique and begins by

rewriting existing morphing techniques into a formal grammar [4, 13, 34]. After this

transformation, various formal grammar rules can be applied to an input sequence

to create a multitude of variations. In this case, the input sequence would be

instructions in the malware program.

2.2 Related Work

The following section pertains to previous research in calculating file

similarity. We give an overview of the techniques and review their effectiveness in

detecting metamorphic malware.

2.2.1 Hidden Markov Model

A Hidden Markov Model (HMM) is a machine learning technique that models

a system, treating the system as a Markov process with hidden states [20]. The

assumption is made that the observations are probabilistically based on the hidden

states and the only information given is the output sequence of the system. The

model consists of initial state probabilities, state transition probabilities, and

7

probability distributions for all possible observations for each state. By training an

HMM on a given set of observations, it is then possible to score another set of

observations against the model and observe how well the second set of observations

fit [20, 24]. As a result, Hidden Markov models are useful for applications that deal

with statistical pattern analysis.

Figure 1 taken from [24] illustrates a generic Hidden Markov model. 𝑋𝑡

represents a hidden state at time t with state transition probability A. Each

observation 𝑂𝑖 gives some information about the hidden state with regards to

probability distribution B. The overall idea is that with a sufficiently large amount

of observations, we can attempt to uncover the underlying Markov process and

build a model that most closely represents the data. Previous work has analyzed

Figure 1: Generic Hidden Markov Model

using HMMs as a tool to detect metamorphic malware [1, 30]. Opcode sequences

are extracted from a set of malware belonging to the same metamorphic family and

are fed as input observations to the HMM. Unknown files are then disassembled to

retrieve their respective opcode sequences and the sequences are scored against the

trained HMM model. File similarity is then determined by how well the opcode

sequences of the test files score against the trained model. By then setting a scoring

threshold, which is determined by experimental means, a binary classifier is

8

effectively produced. The previous work produced good results and demonstrates

that HMM-based detection using opcodes is an effective method of detecting

metamorphic malware. However, it was shown in [23] that malware with sufficient

amounts of dead code insertion are able to defeat this technique. This is due to

dead code causing statistical inconsistencies in the opcode sequences.

2.2.2 Structural Entropy

Recent research [3] further developed the concept of using structural entropy

calculations to identify file similarity. The structural entropy technique, originally

introduced in [22], produced good results when applied to polymorphic malware. As

a logical next step, the technique was adapted by [3] to apply it to metamorphic

malware. As opposed to several previous detection techniques, structural entropy

analysis examines the raw bytes of files rather than analyzing the disassembled

opcode sequences. The intuition appears to be that entropy and size characteristics

alone can uniquely identify families of metamorphic malware.

We now describe the technique presented in [3]. The proposed technique can

be divided into two main stages, file segmentation and sequence comparison. File

segmentation is performed by first calculating entropy using Shannon’s formula.

Immediately afterwards, a wavelet transform is applied to the resulting entropy

values. Figure 2 illustrates the overall file segmentation process. The sequence

comparison is then performed using the edit distance algorithm with a unique cost

function described in the paper. The result of the algorithm is plugged into a final

similarity formula which produces a score that can be compared against a

pre-determined threshold.

The technique produced good results. Structural entropy analysis was able to

9

Figure 2: File Segmentation

even detect malware with large amounts of dead code insertion, mitigating a

weakness of the Hidden Markov Model approach. However, results were less than

ideal for the NGVCK metamorphic family as it proved particularly challenging for

this technique. The authors in [3] attributed this phenomenon to the variation in

file sizes of the NGVCK viruses and its effect on the sequence comparison process.

2.2.3 Compression-based Classification

Previous research has also been done involving compression in the

development of malware detection methods. For example, the paper [12] presents a

malware detection framework based on Kolmogorov complexity. Kolmogorov

complexity, an information measurement, is the length of the minimal description of

a specific string 𝑠. Using this measure in a malware detection framework is based on

the following principal: given two strings, the more similar they are to each other,

the more they can be compressed when concatenated together as opposed to being

compressed separately. Treating the byte sequence of a file as a string, an unknown

10

string can be compared with several known strings. Each known string represents a

different class of file, and whichever known string the unknown string compresses

best with can be considered the closest in file similarity. The detection framework,

described in [12], is shown in Figure 3.

Figure 3: Kolmogorov Complexity Detection Framework

This detection framework provided a high rate of success. However, a

drawback mentioned in [12] was that the amount of memory usage increases

exponentially as the size of the malware code increases and thus could be a problem

in some cases where the malware instances are too large.

Another paper [36] describes a compression-based classification technique and

presents a detection framework utilizing a learning engine to train on sets of malware

and benign code. By using prediction by partial matching (PPM), an adaptive data

compression model, two compression models are built with one representing the

malware code and the other representing benign code. For each new file that needs

to be classified, the average number of bits required to encode the file is computed

11

using the two compression models. The file is then classified by determining which

model gives a greater compression rate. The algorithm is shown in Figure 4.

Figure 4: PPM-based Classification

The results in [36] appeared promising and it was noted that many techniques

that malware writers use to avoid detection by signature based scanning are largely

ineffective against compression-based analysis.

12

CHAPTER 3

Design and Implementation

The file similarity method presented in this paper is primarily derived

from [3]. Unlike in [30], for example, we examine the raw bytes of a file without the

need for code disassembly. We deviate from [3] by considering compression ratios as

an alternative measurement of entropy. Finally, our technique differs from [12, 36] in

that while we use compression to analyze files, we determine final similarity through

a technique based on Levenshtein distance.

3.1 Forming File Segments

3.1.1 Splitting a File into Byte Windows

The first step in our technique involves splitting files into windows. We

consider a window to be a string of consecutive bytes and each window should

contain the same number of bytes. When dividing a file into a series of windows, the

windows should overlap some amount since we are treating a file as a single stream

of continuous data. Therefore, we shift, or slide, some amount of bytes before

allocating bytes to the next window. These window sizes and window slide sizes are

determined experimentally in order to achieve optimal definition of a given family of

metamoprhic malware. Consider Figure 5 which shows a hexdump of a sample file

containing 103 bytes.

As an example, if we set the window size to 10 bytes and the window slide size

to 5 bytes, then the first window would be as shown in Figure 6 with the second

window being shown in Figure 7. Subsequent windows are determined in the same

way. If the final window contains less than window size bytes, null bytes are

13

Figure 5: Hexdump of sample file with addresses(Left), bytes in hex representa-
tion(Center), bytes in ascii representation(Right)

appended.

Figure 6: Window 1 of sample file

Figure 7: Window 2 of sample file

Although in this example our window size is very small, window sizes must

normally be relatively large in order for compression analysis to derive any

significant information from them. However, at the same time, the window sizes

cannot be made too large either as it would allow attackers to mask the unique

portions of their malware.

3.1.2 Window Compression Ratios

Given our series of windows, we then calculate the compression ratio of each

one. The key notion is that we expect windows containing low entropy data to

produce high compression ratios and windows containing high entropy data to

14

produce low compression ratios. Therefore, the series of compression ratio values

gives insight into the underlying structure of the file without ever needing to inspect

the actual code.

In our implementation, we use the software application, gzip, to calculate the

compression ratios. Gzip utilizes Lempel-Ziv (LZ77) coding as its main

algorithm [15]. Implementations of LZ77 compress data by replacing repeated

instances of data with references to their earlier occurrences in the data stream.

Therefore, by compressing the data in these windows, we are essentially measuring

the distribution of unique byte sequences in each window. Figure 8 illustrates a plot

of compression ratios derived from an example file.

Figure 8: Compression ratios plot of sample file

15

3.1.3 Wavelet Transform Analysis

The next step involves applying a wavelet transform to our series of

compression ratios. Observing Figure 8, we see that the data can be very volatile at

times and may make trivial differences seem overly significant when comparing two

sets of plots. By applying a wavelet transform, our data is smoothed, especially in

places where a high frequency of variation occurs.

Although there are several different wavelet transforms, we choose to use the

Discrete Haar Wavelet Transform in our implementation. This approach follows

previous work [3, 22]. The Haar Transform is both simple and efficient. If ideal

results are achieved by using the simplest wavelet transform, then using more

complicated transforms would only incur a performance penalty with little to no

benefit.

Suppose we are provided with N values,

x = (𝑥1, 𝑥2, ..., 𝑥𝑁) where N is even. (1)

Let 𝑠𝑘 and 𝑑𝑘 be defined as,

𝑠𝑘 =
𝑥2𝑘−1 + 𝑥2𝑘

2
, where 𝑘 = 1, ..., 𝑁/2 (2)

𝑑𝑘 =
𝑥2𝑘 − 𝑥2𝑘−1

2
, where 𝑘 = 1, ..., 𝑁/2 (3)

Then the Discrete Haar Wavelet Transform can be defined as the following

transformation [14],

x = (𝑥1, ..., 𝑥𝑁) → (x |d) = (𝑠1, ..., 𝑠𝑁/2 | 𝑑1, ..., 𝑑𝑁/2) (4)

The set of values 𝑠𝑘 are also known as pair-wise averages. By recursively

applying the Discrete Haar Wavelet Transform on the pair-wise averages, we can

16

(a) (b)

(c) (d)

Figure 9: Discrete wavelet transform using (a) 0 iterations, (b) 1 iteration, (c) 2
iterations, (d) 3 iterations

perform an arbitrary number of iterations of the transform. However, the transform

can only be applied to number sets that contain even amounts of values. Therefore,

for cases where our set contains an odd amount, we pad the set with a copy of the

last value to best preserve the original data. Figure 9 demonstrates the transform’s

effect on the data up to three iterations.

17

Table 1: Resulting File Segments

Segment # Segment Length Segment Value
1 1 0.820
2 1 0.640
3 3 0.897
4 2 0.575
5 3 0.903

3.1.4 File Segment Creation

Our next goal is to form file segments from the transformed compression

ratios. To do this, we first set a threshold that determines what is considered high

entropy and low entropy. In our implementation, our threshold is set to a ratio of

0.65 such that compression ratio values greater than or equal to 0.65 are considered

to indicate low entropy and ratios below 0.65 are considered to indicate high

entropy. We decided to use 0.65 after a calibration experiment described in

Section 4.4.4. Each segment boundary is then made when two adjacent values are

on opposite sides of the threshold.

As a result, each segment has both a length and a value associated with it.

The segment length is the number of compression ratio values that contribute to

that particular segment and the segment value is the mean of the associated ratios.

As an example, suppose our resulting wavelet transformed values are

0.82, 0.64, 0.79, 0.90, 1.00, 0.60, 0.55, 0.93, 0.88, 0.90

Using a threshold of 0.65, the resulting segments are shown in Table 1.

18

3.2 Sequence comparison

The resulting sequence of segments becomes the representation of that file.

This is useful because we now have reduced the problem of file similarity to a

problem of sequence comparison. We do the comparison using an algorithm based

on the Levenshtein distance. The resulting distance between the two sequences is

then used to determine their corresponding file similarity. This technique is derived

from [3, 22].

3.2.1 Levenshtein distance

Levenshtein distance, or edit distance, is a string metric for measuring how

much two sequences differ from each other [26]. More precisely, the Levenshtein

distance between two sequences a and b is the minimum number of insertions,

deletions, and substitutions of elements required to transform a into b [10]. The

smaller the number of operations needed to perform the transformation, the more

we consider the first sequence to be similar to the second.

The following example compares the string "books" to "broom" and

calculates the distance between them assuming a cost of 1 for each insertion,

deletion, and substitution.

1. books → brooks (insertion of "r")

2. brooks → brooms (substitution of "k" for "m")

3. brooms → broom (deletion of "s")

Since three operations are the minimum number of edits required to transform

"books" to "broom", the Levenshtein distance of these two strings is considered to

19

be three. Other sets of three operations can also complete the conversion.

Given two sequences 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛) and 𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑚) along with a

defined cost function, we can compute the elements of the matrix

𝐷(𝑛+1)×(𝑚+1) = {𝑑𝑖,𝑗} using the following recursion which is defined in [3],

𝑑𝑖,𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 𝑖 = 𝑗 = 0

𝑑0,𝑗−1 + 𝛿𝑌 (𝑗) if 𝑖 = 0 and 𝑗 > 0

𝑑𝑖−1,0 + 𝛿𝑋(𝑖) if 𝑖 > 0 and 𝑗 = 0

𝑑𝑖−1,𝑗−1 if 𝑥𝑖 = 𝑦𝑗

min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑑𝑖,𝑗−1 + 𝛿𝑌 (𝑗)

𝑑𝑖−1,𝑗 + 𝛿𝑋(𝑖)

𝑑𝑖−1,𝑗−1 + 𝛿𝑋,𝑌 (𝑖, 𝑗)

if 𝑥𝑖 ̸= 𝑦𝑗

(5)

where 𝛿𝑌 (𝑗) is the cost of insertions, 𝛿𝑋(𝑖) is the cost of deletions, and 𝛿𝑋,𝑌 (𝑖, 𝑗) is

the cost of substitutions.

Using the cost function 𝛿𝑌 = 𝛿𝑋 = 𝛿𝑋,𝑌 = 1 in conjunction with (5) to

calculate the Levenshtein distance in the previous example, we obtain the matrix

shown in Table 2 where 𝑑𝑛,𝑚 provides the final distance score.

3.2.2 Sequence alignment

Let 𝑋 and 𝑌 represent two files under analysis for similarity calculation. We

obtain their respective segments 𝑥𝑖 for 𝑖 = 1, 2, ..., 𝑛 and 𝑦𝑗 for 𝑗 = 1, 2, ...,𝑚 using

the segmentation process detailed in Section 3.1. We then apply the following cost

function taken from [3, 22] to account for size differences,

cost𝜎(𝑥𝑖, 𝑦𝑗) =
|𝜎(𝑥𝑖)− 𝜎(𝑦𝑗)|
𝜎(𝑥𝑖) + 𝜎(𝑦𝑗)

, (6)

20

Table 2: Edit matrix for strings "books" and "broom"

b o o k s
0 1 2 3 4 5

b 1 0 1 2 3 4
r 2 1 1 2 3 4
o 3 2 1 1 2 3
o 4 3 2 1 2 3
m 5 4 3 2 2 3

where 𝜎(𝑥𝑖) is the size of segment 𝑥𝑖 and 𝜎(𝑦𝑗) is the size of segment 𝑦𝑗. The range

of possible values for this cost function is between 0 and 1 inclusive. With respect to

compression ratio differences, we again utilize the following cost function

from [3, 22],

cost𝜖(𝑥𝑖, 𝑦𝑗) =
1

1 + 𝑒−4·|𝜖(𝑥𝑖)−𝜖(𝑦𝑗)|+6.5
− 0.001501, (7)

where 𝜖(𝑥𝑖) and 𝜖(𝑦𝑗) are the compression ratios of the corresponding segments. The

constants, 6.5 and 0.001501, in (7) bound cost𝜖 between 0 and 1 [3]. Combining

equations (6) and (7) results in the final version of the cost function,

cost(𝑥𝑖, 𝑦𝑗) = 𝑐𝜎 · cost𝜎(𝑥𝑖, 𝑦𝑗) + 𝑐𝜖 · cost𝜖(𝑥𝑖, 𝑦𝑗), (8)

where 𝑐𝜎 and 𝑐𝜖 are constants used weight the size and entropy costs appropriately.

Section 4.4.1 defines the values for these constants.

This cost function is then applied to the Levenshtein distance based sequence

alignment algorithm. We use dynamic programming to create a two-dimensional

array similar to Table 2 and retrieve the last element as our final cost calculation

between the two segment sequences. A good reference on dynamic programming can

be found in [9]. In order to utilize equation (5) to calculate the elements of the

21

array, we set 𝜏 = 0.3 and define the following functions,

𝛿𝑌 (𝑗) = 𝜏 log 𝜎(𝑦𝑗−1)

𝛿𝑋(𝑖) = 𝜏 log 𝜎(𝑥𝑖−1)

𝛿𝑋,𝑌 (𝑖, 𝑗) = cost(𝑥𝑖−1, 𝑦𝑗−1) · log
(︂
𝜎(𝑥𝑖−1) + 𝜎(𝑦𝑗−1)

2

)︂, (9)

which were derived in [3].

3.2.3 Similarity calculation

After calculating the edit distance using equation (5) with penalty functions

(9), the similarity between files 𝑋 and 𝑌 is determined by applying the following

equation,

similarity = 100

(︂
1− 𝑑𝑛,𝑚

cost𝑚𝑎𝑥

)︂
, (10)

where cost𝑚𝑎𝑥 is the worst-case penalty. As in [3, 22], this penalty is calculated in a

special way and is defined as,

cost𝑚𝑎𝑥 = 𝑑′0,𝑚 + 𝑑′𝑛,0 (11)

where 𝑑′0,𝑚 and 𝑑′𝑛,0 are determined by using equation (5) with the penalty

functions,

𝛿′𝑌 (𝑗) = 𝛿𝑌 (𝑗)

𝛿′𝑋(𝑖) = 𝛿𝑋(𝑖)

𝛿′𝑋,𝑌 (𝑖, 𝑗) = 2𝜏(log 𝜎(𝑥𝑖−1) + log 𝜎(𝑦𝑗−1)).

(12)

22

CHAPTER 4

Experiments and Results Analysis

To evaluate how well the compression-based detection technique described in

this paper fares against metamorphism, we first establish representative data sets

with which to apply our technique to. We then define a common metric to quantify

the technique’s effectiveness and provide our findings. Finally, we provide the

reasoning used to determine the values for the technique’s critical parameters.

4.1 Test Data

4.1.1 Second Generation Virus Generator

In our first set of data, we utilize 50 virus files, which were retrieved from [31],

that were generated by the Second Generation Virus Generator (G2). G2 viruses

are one of several well-known metamorphic families. The benign files we use to

compare against the G2 viruses are 16 specific Cygwin utility files [11] chosen for

their representation as non-virus files in previous papers such as [3, 21, 30]. The

exact files included in the benign data set are shown in Table 3.

Table 3: Cygwin Utility Files Used For Benign Data Set

1 ascii.exe 9 mkshortcut.exe
2 banner.exe 10 msgtool.exe
3 conv.exe 11 putclip.exe
4 cygdrop.exe 12 readshortcut.exe
5 cygstart.exe 13 realpath.exe
6 dump.exe 14 semstat.exe
7 getclip.exe 15 semtool.exe
8 lpr.exe 16 shmtool.exe

23

4.1.2 MWOR

In our second set of data, we utilize metamorphic worms that were introduced

in [23]. These worms, also known as MWOR, were designed to defeat statistical

based classifiers, particularly techniques that rely on opcode based analysis such as

the Hidden Markov Model detection technique described in Section 2.2.1. One of

the defining features of the MWOR worm generator is its ability to insert arbitrary

amounts of dead code into the generated malicious files. By copying code from

various benign files and placing it within the MWOR worms in a non-executable

manner, MWOR worms completely retain their functionality while being able to

significantly alter their statistical properties. The amount of dead code inserted into

the worm is denoted and quantified as a padding ratio. A padding ratio of 4, for

example, denotes that in the overall file there is 4 times as much dead code as

actual worm code. We choose 700 MWOR files divided evenly among padding ratios

of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 4.0 in our experiments. Each set of 100 worm

variants containing the same padding ratio are grouped together and tested

separately effectively creating 7 distinct data sets.

For our benign data set, we depart from the Cygwin utility files here since the

MWOR generator produces Linux based worms whereas the Cygwin files are

Windows executables. We instead choose 30 representative standard Linux binaries

shown in Table 4 to better compare against the MWOR worms. The benign data

set and MWOR data set we use here contain the exact same files experimented with

in [3].

24

Table 4: Linux Binaries Used For Benign Data Set

1 /bin/date 11 /usr/bin/as 21 /usr/bin/nm
2 /bin/dmesg 12 /usr/bin/at 22 /usr/bin/nm-tool
3 /bin/grep 13 /usr/bin/dig 23 /usr/bin/objdump
4 /bin/kill 14 /usr/bin/file 24 /usr/bin/oclock
5 /bin/mknod 15 /usr/bin/funzip 25 /usr/bin/readelf
6 /bin/mount 16 /usr/bin/killall 26 /usr/bin/rpl8
7 /bin/rm 17 /usr/bin/last 27 /usr/bin/shuf
8 /bin/sleep 18 /usr/bin/ld 28 /usr/bin/size
9 /bin/sync 19 /usr/bin/msgcat 29 /usr/bin/strip
10 /bin/touch 20 /usr/bin/namei 30 /usr/bin/sum

4.1.3 Next Generation Virus Construction Kit

In our final set of data, we utilize 50 virus files generated by the Next

Generation Virus Construction Kit (NGVCK) [31]. NGVCK viruses attempt to

infect Win32 PE-Executables and posses both encryption and anti-debugging

capabilities [32]. Since these viruses target Windows machines, we compare them

against the 16 Cygwin utility files specified in Table 3. NGVCK viruses are

considered highly metamorphic and have been used in previous research such

as [3, 30].

4.2 Receiver Operating Characteristic

To evaluate our results, we choose to use Receiver Operating Characteristic

(ROC) curves. An ROC curve serves as a graphical representation of a binary

classifier system and plots the fraction of true positives against the fraction of false

positives at various thresholds. See Figure 10, which was taken from [27], for an

example plot of superimposed ROC curves. By then calculating the area under the

curve (AUC), we have a single metric by which to compare our results with other

25

Figure 10: Example ROC Curve

experiments. If the AUC is near 0.5, it indicates that the evaluated classifier has

poor performance. If the AUC is near 1.0, the classifier is performing very well. An

AUC of exactly 1.0 represents optimal performance.

4.3 Test Results

For each data set, all unique pairs of malicious files and benign files are

compared. Unique pairs of malicious files within the same data set are also

compared. Ideally, comparing a malicious file against a benign file should produce

low similarity while comparing a malicious file against a variant within the same

metamorphic family should produce high similarity.

In our experiments with the G2 viruses, we obtain the results shown in

Figure 11. Here, we use a window size of 128 bytes and a window slide size of 64

bytes. We can see a clear separation between the similarity scores of virus versus

virus and virus versus benign pairs. This indicates that our technique is able to

clearly distinguish between the G2 generated viruses and the benign files.

26

Figure 11: G2 similarity

We then begin testing against the MWOR generated worms, beginning with

those that contain a 0.5 padding ratio, and obtain the results in Figure 12. We use

a window size of 256 bytes and window slide size of 64 bytes. Looking at the results,

we can again set a clear threshold such that there is ideal separation between the

worm versus worm pairs and worm versus benign pairs. Repeating our experiments

with padding ratios 1.0, 1.5, 2.0, 2.5, 3.0, and 4.0, we find that we are able to obtain

full separation at every level. The results for these padding ratios can be found in

Appendix A.

Finally, we experiment with the NGVCK generated viruses and produce the

results in Figure 13. Using a window size of 128 bytes and window slide size of 2

bytes, we again obtain full separation with virus versus virus pairs producing higher

similarity and virus versus benign pairs producing lower similarity. Although our

technique produced no false positives and no false negatives here, the NGVCK

27

Figure 12: MWOR(0.5 padding) similarity

generated viruses were by far the most difficult malware to clearly detect in our

experiments. This is likely attributed to the fact that the NGVCK generator

contains encryption capabilities [32]. Code that is obfuscated through encryption

would produce byte distributions that are much less compressible, thus directly

inhibiting our ability to extract information during our segmentation step. However,

it appears that despite these challenges, our compression-based analysis is still able

to identify sufficient unique characteristics of the NGVCK files.

Overall, our compression-based analysis technique is able to fully distinguish

between all sets of metamorphic malware tested and their benign file counterparts.

Ideal separation is achieved in all cases and is illustrated in Figure 14 where ROC

curves are drawn for each set.

We obtain an AUC of 1.0 for all curves. Previous research utilizing structural

entropy analysis also achieved an AUC of 1.0 for the G2 and MWOR generated

28

Figure 13: NGVCK similarity

Figure 14: ROC Curve Results

malware [3]. However, they were unable to obtain ideal separation for the NGVCK

case which we have here. Table 5 summarizes our findings.

29

Table 5: Results Summary

Metamorphic Family Window Size Window Slide Size AUC
G2 128 64 1.00

NGVCK 128 2 1.00
MWOR(0.5 padding) 256 64 1.00
MWOR(1.0 padding) 256 64 1.00
MWOR(1.5 padding) 256 64 1.00
MWOR(2.0 padding) 256 64 1.00
MWOR(2.5 padding) 256 64 1.00
MWOR(3.0 padding) 256 64 1.00
MWOR(4.0 padding) 256 64 1.00

4.4 Setting Parameters

Although compression-based analysis can identify unique features across

metamorphic malware variants, there are several critical parameters in the

technique that must be correctly calibrated in order to achieve ideal detection.

4.4.1 Cost Constants

Recall cost function (8) that is used during the sequence comparison step

where 𝑐𝜎 and 𝑐𝜖 are adjustable parameters in order to assign appropriate weights to

our two components. In all our experiments, we chose 𝑐𝜎 = 1.6 and 𝑐𝜖 = 0.4.

Previous research [3] has experimentally found these values to be ideal and so we

use these values here as well. Likewise, we set 𝜏 = 0.3 in (9), which is the same

value used for 𝜏 in [3, 22].

4.4.2 Window Slide Size

Another critical parameter is the window slide size. Recall that the window

slide size is the number of bytes we shift, or slide, before analyzing the next window

30

Figure 15: Window Slide Size vs. Total Execution Time

in that file. Sensibly, the minimum possible window slide size is 1 byte and the

maximum possible window slide size is the size of the window itself. However, there

is a trade-off. If the window slide size is set too large, too much information is

missed during the calculation of compression ratios and the accuracy of detection

falls. On the other hand, if the window slide size is set too small, a performance

penalty is incurred. The number of windows formed, and hence the number of

compression ratio calculations that must be done (the most expensive part of the

technique), should be minimized while still retaining ideal detection accuracy. In

order to illustrate the window slide size’s effect on performance, we vary the window

slide size while keeping all other parameters constant and plot the resulting

execution times. Figure 15 shows the case where, using our technique, similarity is

calculated between two MWOR variants both with padding ratio 0.5. From this

plot, it can be seen that execution time is inversely proportional to the window slide

size.

31

Figure 16: Window Slide Size vs. AUC

In order to illustrate the window slide size’s effect on detection accuracy, we

vary the window slide size used in our technique while keeping all other parameters

constant and plot the resulting AUC. Figure 16 shows the results for the MWOR

case with padding ratio 0.5 where the window slide size is again measured in bytes.

There will always be some oscillation in the AUC due to the structural variation of

the file under analysis. However, we can identify a downward trend in the AUC, and

hence the accuracy of detection, as the window slide size increases. The results have

also been plotted for the NGVCK and can be seen in Figure 17. The decrease in

detection accuracy is more drastic for the NGVCK case. However, for the G2 case,

detection accuracy remains optimal throughout and the results can be seen in

Figure 18. These results are again likely attributed to the fact that G2 is the least

effective metamorphic engine tested in our experiments while NGVCK is the most

effective. We use a window slide size of 2 bytes for the NGVCK malware and a

window slide size of 64 bytes for the G2 and MWOR malware in all other

32

Figure 17: Window Slide Size vs. AUC

Figure 18: Window Slide Size vs. AUC

experiments based on the results found here.

33

4.4.3 Recursive Iterations of the Wavelet Transform

We observe another parameter that must be carefully set in order to obtain

ideal detection and that is the number of recursive iterations of the wavelet

transform. Recall that the purpose of the transform is to mitigate the effect of high

frequency changes on the segment formation process. Refer to Figure 9 to see an

illustration of this effect. If no transform is applied or too few iterations of the

transform are applied, then the high frequency changes could cause an excess of

segments to be formed which may cause metamorphic malware variants to appear

increasingly dissimilar. However, if too many iterations of the transform are applied,

then we lose too much information from the original compression analysis and all

segment sequences, malicious and benign, begin to look the same. For all our tests,

we found success with setting the number of recursive iterations of the transform to

3. However, other metamorphic families will have to be looked at in a case by case

basis. Appendix B shows the effect of varying wavelet transform iterations for

MWOR with padding ratio 0.5, Appendix C shows the results for NGVCK, and

Appendix D shows the results for G2. For MWOR with padding ratio 0.5 and

NGVCK, we tested up to 5 recursive iterations. However, for G2, we can only test

up to 3 recursive iterations due to the G2 malware having smaller file sizes.

4.4.4 Compression Ratio Threshold

Setting an appropriate compression ratio threshold is also important in the

technique. Recall from Section 3.1.4 that the compression ratio threshold

determines what windows we consider to have high entropy and low entropy. In

order to calibrate this threshold, we experiment with the MWOR malware with

padding ratio 0.5 and vary the threshold while keeping all other parameters

34

Table 6: Compression Ratio Threshold Calibration

Compression Ratio Threshold AUC
0.05 or lower N/A

0.10 0.49154
0.15 0.46793
0.20 0.94633
0.25 0.99985
0.30 0.99952
0.35 0.99358
0.40 0.99992
0.45 0.99999
0.50 0.99934
0.55 0.99814
0.60 1.00000
0.65 1.00000
0.70 1.00000
0.75 1.00000
0.80 1.00000

0.85 or greater N/A

constant. The results are shown in Table 6.

No byte window produced a compression ratio of 0.85 or greater meaning the

files could not be segmented and as a result, no similarity score could be determined

for those cases. Similarly, no byte window produced a compression ratio of 0.05 or

lower. The compression ratio thresholds between 0.60 and 0.80 produced the best

results. The large range of ideal thresholds suggests a somewhat sizable leniency.

We chose to use 0.65 in all other experiments based on this calibration.

35

CHAPTER 5

Conclusion and Future Work

We propose the application of compression-based structural analysis to detect

metamorphic malware. We create a binary classification scheme, where we use file

compression ratios to develop representative sequences of each file. These

representative sequences are then compared against each other using the edit

distance algorithm to determine file similarity. After setting a scoring threshold, file

similarity scores can be used to classify files as either benign or malicious.

Despite the many intricate techniques utilized in metamorphic engines, our

experiments indicate that file compression ratios remain a distinguishing feature

across all variants of a given metamorphic malware family. Of all the metamorphic

families we tested, the G2 family were the easiest to detect with all G2 variants

having 99% similarity or higher with each other and low similarity with all tested

benign files. The MWOR metamorphic family displayed higher variability but were

still clearly distinguishable from benign files, even at very high padding ratios. The

NGVCK metamorphic family proved the most difficult to detect, as expected.

Regarded as highly metamorphic and possessing a large array of obfuscation

techniques, the NGVCK malware have been analyzed in a lot of previous research.

However, very few non-emulation based techniques are able to achieve ideal

detection rates.

Overall, we are able to achieve ideal detection, that is, 0% false positives and

0% false negatives, for all metamorphic malware tested. A strength of our technique

is that it is applied directly to binary files without the need for expensive

36

pre-processing steps such as code disassembly. Our technique is primarily based on

previous work that utilized structural entropy analysis to detect metamoprhic

malware [3]. Although there are several adjustments made here, the core difference

is that we propose using compression ratios as an alternative measure of entropy.

A possible limitation of the technique, however, is that it is vulnerable to

obfuscation involving heavy use of compression or packing. Since the segmentation

step relies on compression ratio calculations, code that has already been compressed

or packed may render the technique ineffective. However, previous work has shown

that entropy analysis can effectively identify encrypted and packed malware [19].

Therefore, if metamorphic malware use extensive compression or packing for

obfuscation to escape detection by our compression-based analysis, it would only

make them easier to detect using the aforementioned entropy analysis. For future

work, a combination of the two techniques into a single detection framework might

be considered.

Additionally, further experimentation with various parameter settings for the

technique presented in this paper could prove to be useful. Although we are able to

achieve ideal detection, different parameter settings may allow the same level of

detection but with improved efficiency. A more detailed look at using different

compression methods and sequence comparison algorithms may also prove fruitful.

We experimented using Hidden Markov Models as an alternative to the edit

distance algorithm in comparing file sequences. However, we were unable to achieve

the same level of success using that method.

Another path of future work that may prove interesting would be to apply

compression-based analysis to network anomaly detection. It has been shown that

measuring nonextensive entropy is an effective method to detect anomalies in

37

network traffic within an Autonomous System [37]. Given the success shown here

using compression ratios as an alternative measure to entropy, it would indicate that

compression-based analysis may also prove similarly effective in other domains

where entropy is a distinguishing feature.

Finally, future work aimed at finding ways to defeat this technique may also

prove worthwhile. For example, the MWOR metamorphic malware make strong use

of dead code insertion, but the dead code is taken from parts of legitimate programs

in order to defeat op-code based similarity detection techniques. If a careful

selection of bytes to manipulate compression ratios are used instead, the MWOR

malware may defeat detection by compression-based analysis as well.

38

LIST OF REFERENCES

[1] T. H. Austin, E. Filiol, S. Josse, M. Stamp, “Exploring Hidden Markov Models
for Virus Analysis: A Semantic Approach”, 46th Hawaii International
Conference on System Sciences (HICSS), 2013.

[2] J. Aycock, Computer Viruses and Malware. Springer, 2006.

[3] D. Baysa, R. M. Low, M. Stamp, “Structural Entropy and Metamorphic
Malware”, Journal of Computer Virology and Hacking Techniques,
9(4):179–192, 2013.

[4] P. Beaucamps, “Advanced Metamorphic Techniques in Computer Viruses”,
International Conference on Computer, Electrical, and Systems Science, and
Engineering (CESSE’07), 2007.
http://vxheavens.com/lib/pdf/Advanced%20Metamorphic%20Techniques%
20in%20Computer%20Viruses.pdf

[5] P. Beaucamps, “Advanced Polymorphic Techniques”, International Journal of
Computer Science, 2(3).
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.4560&rep=
rep1&type=pdf

[6] J. Borello, “Code obfuscation techniques for metamorphic viruses”, Journal in
Computer Virology, 4(3):211–220, 2008.

[7] S. Cesare, Survey in Static Detection of Malware, 2011.
http://www.foocodechu.com/?q=node/42

[8] M. Christodorescu, S. Jha, “Testing malware detectors”, In Proceedings of the
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’04), 34–44, 2004.
http://www.eecs.berkeley.edu/~sseshia/pubdir/oakland05.pdf

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, 3rd Edition. The MIT Press, 2009.

[10] G. Cormode, S. Muthukrishnan, “The string edit distance matching problem
with moves”, ACM Trans. Algorithms 3, 1, Article 2, 2007.
http://dimacs.rutgers.edu/~graham/pubs/papers/editmoves.pdf

[11] Cygwin. Cygwin utility files, 2013.
http://www.cygwin.com/

39

[12] W. Deng, et al, “A Malware Detection Framework Based on Kolmogorov
Complexity”, Journal of Computational Information Systems, 7(8):2687–2694,
2011.
http://www.jofcis.com/publishedpapers/2011_7_8_2687_2694.pdf

[13] E. Filiol, “Metamorphism, Formal Grammars and Undecidable Code Mutation”,
International Journal of Electrical and Computer Engineering, 2(1), 2007.
http://www.waset.org/journals/ijece/v2/v2-1-9.pdf

[14] P. Fleet, “The Discrete Haar Wavelet Transformation”, Joint Mathematical
Meetings, 2007.
http://cam.mathlab.stthomas.edu/wavelets/pdffiles/NewOrleans07/
HaarTransform.pdf

[15] gzip, “manpagez: man (manual) pages & more”, 2013.
http://www.manpagez.com/man/1/gzip/

[16] E. Konstantinou, “Metamorphic Virus: Analysis and Detection”, Technical
Report, RHUL-MA-2008-02, 2008.
http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf

[17] F. Leder, B. Steinbock, P. Martini, “Classification and Detection of
Metamorphic Malware using Value Set Analysis”, 2009 4th International
Conference on Malicious and Unwanted Software (MALWARE), 13(14):39–46,
2009.
http://net.cs.uni-bonn.de/fileadmin/user_upload/leder/metamorphvsa.pdf

[18] D. Lin, “Hunting for Undetectable Metamorphic Viruses”, Master’s Projects,
Paper 144, 2009.
http://scholarworks.sjsu.edu/etd_projects/144

[19] R. Lyda, J. Hamrock, “Using Entropy Analysis to Find Encrypted and Packed
Malware”, IEEE Security and Privacy, 5(2):40–45, March 2007.

[20] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications
in speech recognition”, Proceedings of the IEEE, 77(2), 1989.
http://www.cs.ucsb.edu/~cs281b/papers/HMMs\%20-\%20Rabiner.pdf

[21] N. Runwal, R. M. Low, M. Stamp, “Opcode graph similarity and metamoprhic
detection”, Journal in Computer Virology, 8(1-2):37–52, May 2012.

[22] I. Sorokin, “Comparing files using structural entropy”, Journal in Computer
Virology, 7(4):259–265, 2011.

[23] S. Sridhara, M. Stamp, “Metamorphic worm that carries its own morphing
engine”, Journal of Computer Virology and Hacking Techniques, 9(2):49–58,
May 2013.

40

[24] M. Stamp, “A Revealing Introduction to Hidden Markov Models”, 2012.
http://cs.sjsu.edu/~stamp/RUA/HMM.pdf

[25] M. Stamp, Information Security: Principles and Practice, second edition,
Wiley, 2011.

[26] R. A. Wagner, M. J. Fischer, “The String-to-String Correction Problem”,
Journal of the ACM (JACM), 21(1):168–173, 1974.
http://www.inrg.csie.ntu.edu.tw/algorithm2013/homework/Wagner-74.pdf

[27] D. Warnock, C. Peck, “A roadmap for biomarker qualification”, Nature
Biotechnology, 28, 444–445, 2010.

[28] R. Warrior, “Guide to improving Polymorphic Engines”, VX Heavens.
http://vxheaven.org/lib/static/vdat/tumisc17.htm

[29] G. Wicherski, “peHash: A Novel Approach to Fast Malware Clustering”,
Proceedings of the 2nd USENIX conference on Large-scale exploits and
emergent threats: botnets, spyware, worms, and more (LEET’09), 2009.
https://www.usenix.org/legacy/event/leet09/tech/full_papers/wicherski/
wicherski.pdf

[30] W. Wong, M. Stamp, “Hunting for metamorphic engines”, Journal in Computer
Virology, 2(3):211–229, 2006.

[31] Virus files, Department of Computer Science, San Jose State University, 2013.
http://cs.sjsu.edu/~stamp/viruses/

[32] VX Heaven, Next Generation Virus Construction Kit, 2013.
http://vxheaven.org/vx.php?id=tn02

[33] I. You, K. Yim, “Malware obfuscation techniques: A brief survey”, 2010
International Conference on Broadband, Wireless Computing, Communication
and Applications (BWCCA), 297–300, November 2010.

[34] P. Zbitskiy, “Code mutation techniques by means of formal grammars and
automatons”, Journal in Computer Virology, 5(3):199–207, August 2009.

[35] Q. Zhang, D. Reeves, “MetaAware: Identifying Metamorphic Malware”,
ACSAC, 411–420, IEEE Computer Society, 2007.
http://www.acsac.org/2007/papers/81.pdf

[36] Y. Zhou, M. Inge, “Malware Detection Using Adaptive Data Compression”,
AISec ’08 Proceedings of the 1st ACM workshop on Workshop on AISec, 53–60,
2008.

41

[37] A. Ziviani, A. Gomes, M. Monsores, P. Rodrigues, “Network Anomaly
Detection using Nonextensive Entropy”, IEEE Communications Letters,
11(12):1034–1036, December 2007.

42

APPENDIX A

MWOR Results

Figures A.19, A.20, A.21, A.22, A.23, and A.24 show the similarity plots of

the MWOR metamorphic family with varying padding ratios. The set of benign files

used in each experiment shown here can be found in Table 3 of Section 4.1.1.

43

Figure A.19: MWOR(1.0 padding) similarity

Figure A.20: MWOR(1.5 padding) similarity

44

Figure A.21: MWOR(2.0 padding) similarity

Figure A.22: MWOR(2.5 padding) similarity

45

Figure A.23: MWOR(3.0 padding) similarity

Figure A.24: MWOR(4.0 padding) similarity

46

APPENDIX B

Wavelet transforms on MWOR (0.5 padding ratio)

The effect of varying wavelet transform iterations for MWOR with padding

ratio 0.5 is plotted in Figures B.25, B.26, B.27, B.28, B.29, and B.30.

47

Figure B.25: Wavelet Transform → 0 iterations (MWOR 0.5)

Figure B.26: Wavelet Transform → 1 iteration (MWOR 0.5)

48

Figure B.27: Wavelet Transform → 2 iterations (MWOR 0.5)

Figure B.28: Wavelet Transform → 3 iterations (MWOR 0.5)

49

Figure B.29: Wavelet Transform → 4 iterations (MWOR 0.5)

Figure B.30: Wavelet Transform → 5 iterations (MWOR 0.5)

50

APPENDIX C

Wavelet transforms on NGVCK

The effect of varying wavelet transform iterations for NGVCK is plotted in

Figures C.31, C.32, C.33, C.34, C.35, and C.36.

51

Figure C.31: Wavelet Transform → 0 iterations (NGVCK)

Figure C.32: Wavelet Transform → 1 iteration (NGVCK)

52

Figure C.33: Wavelet Transform → 2 iterations (NGVCK)

Figure C.34: Wavelet Transform → 3 iterations (NGVCK)

53

Figure C.35: Wavelet Transform → 4 iterations (NGVCK)

Figure C.36: Wavelet Transform → 5 iterations (NGVCK)

54

APPENDIX D

Wavelet transforms on G2

The effect of varying wavelet transform iterations for G2 is plotted in

Figures D.37, D.38, D.39, and D.40.

55

Figure D.37: Wavelet Transform → 0 iterations (G2)

Figure D.38: Wavelet Transform → 1 iteration (G2)

56

Figure D.39: Wavelet Transform → 2 iterations (G2)

Figure D.40: Wavelet Transform → 3 iterations (G2)

57

	San Jose State University
	SJSU ScholarWorks
	Fall 2013

	COMPRESSION-BASED ANALYSIS OF METAMORPHIC MALWARE
	Jared Lee
	Recommended Citation

	tmp.1387570296.pdf.DfgX8

