731 research outputs found

    Probabilistic XGBoost Threshold Classification with Autoencoder for Credit Card Fraud Detection

    Get PDF
    Due to the imbalanced data of outnumbered legitimate transactions than the fraudulent transaction, the detection of fraud is a challenging task to find an effective solution. In this study, autoencoder with probabilistic threshold shifting of XGBoost (AE-XGB) for credit card fraud detection is designed. Initially, AE-XGB employs autoencoder the prevalent dimensionality reduction technique to extract data features from latent space representation. Then the reconstructed lower dimensional features utilize eXtreame Gradient Boost (XGBoost), an ensemble boosting algorithm with probabilistic threshold to classify the data as fraudulent or legitimate. In addition to AE-XGB, other existing ensemble algorithms such as Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), Random Forest, Categorical Boosting (CatBoost), LightGBM and XGBoost are compared with optimal and default threshold. To validate the methodology, we used IEEE-CIS fraud detection dataset for our experiment. Class imbalance and high dimensionality characteristics of dataset reduce the performance of model hence the data is preprocessed and trained. To evaluate the performance of the model, evaluation indicators such as precision, recall, f1-score, g-mean and Mathews Correlation Coefficient (MCC) are accomplished. The findings revealed that the performance of the proposed AE-XGB model is effective in handling imbalanced data and able to detect fraudulent transactions with 90.4% of recall and 90.5% of f1-score from incoming new transactions

    New hybrid ensemble method for anomaly detection in data science

    Get PDF
    Anomaly detection is a significant research area in data science. Anomaly detection is used to find unusual points or uncommon events in data streams. It is gaining popularity not only in the business world but also in different of other fields, such as cyber security, fraud detection for financial systems, and healthcare. Detecting anomalies could be useful to find new knowledge in the data. This study aims to build an effective model to protect the data from these anomalies. We propose a new hyper ensemble machine learning method that combines the predictions from two methodologies the outcomes of isolation forest-k-means and random forest using a voting majority. Several available datasets, including KDD Cup-99, Credit Card, Wisconsin Prognosis Breast Cancer (WPBC), Forest Cover, and Pima, were used to evaluate the proposed method. The experimental results exhibit that our proposed model gives the highest realization in terms of receiver operating characteristic performance, accuracy, precision, and recall. Our approach is more efficient in detecting anomalies than other approaches. The highest accuracy rate achieved is 99.9%, compared to accuracy without a voting method, which achieves 97%

    An academic review: applications of data mining techniques in finance industry

    Get PDF
    With the development of Internet techniques, data volumes are doubling every two years, faster than predicted by Moore’s Law. Big Data Analytics becomes particularly important for enterprise business. Modern computational technologies will provide effective tools to help understand hugely accumulated data and leverage this information to get insights into the finance industry. In order to get actionable insights into the business, data has become most valuable asset of financial organisations, as there are no physical products in finance industry to manufacture. This is where data mining techniques come to their rescue by allowing access to the right information at the right time. These techniques are used by the finance industry in various areas such as fraud detection, intelligent forecasting, credit rating, loan management, customer profiling, money laundering, marketing and prediction of price movements to name a few. This work aims to survey the research on data mining techniques applied to the finance industry from 2010 to 2015.The review finds that Stock prediction and Credit rating have received most attention of researchers, compared to Loan prediction, Money Laundering and Time Series prediction. Due to the dynamics, uncertainty and variety of data, nonlinear mapping techniques have been deeply studied than linear techniques. Also it has been proved that hybrid methods are more accurate in prediction, closely followed by Neural Network technique. This survey could provide a clue of applications of data mining techniques for finance industry, and a summary of methodologies for researchers in this area. Especially, it could provide a good vision of Data Mining Techniques in computational finance for beginners who want to work in the field of computational finance

    EFN-SMOTE: An effective oversampling technique for credit card fraud detection by utilizing noise filtering and fuzzy c-means clustering

    Get PDF
    Credit card fraud poses a significant challenge for both consumers and organizations worldwide, particularly with the increasing reliance on credit cards for financial transactions. Therefore, it is crucial to establish effective mechanisms to detect credit card fraud. However, the uneven distribution of instances between the two classes in the credit card dataset hinders traditional machine learning techniques, as they tend to prioritize the majority class, leading to inaccurate fraud pre- dictions. To address this issue, this paper focuses on the use of the Elbow Fuzzy Noise Filtering SMOTE (EFN-SMOTE) technique, an oversampling approach, to handle unbalanced data. EFN-SMOTE partitions the dataset into multiple clusters using the Elbow method, applies noise filtering to each cluster, and then employs SMOTE to synthesize new minority instances based on the nearest majority instance to each minority instance, thereby improving the model’s ability to perceive the decision boundary. EFN-SMOTE’s performance was evaluated using an Artificial Neural Network model with four hidden layers, resulting in significant improvements in classification performance, achieving an accuracy of 0.999, precision of 0.998, sensitivity of 0.999, specificity of 0.998, F-measure of 0.999, and G-Mean of 0.999

    Data Mining Techniques for Fraud Detection

    Get PDF
    The paper presents application of data mining techniques to fraud analysis. We present some classification and prediction data mining techniques which we consider important to handle fraud detection. There exist a number of data mining algorithms and we present statistics-based algorithm, decision tree-based algorithm and rule-based algorithm. We present Bayesian classification model to detect fraud in automobile insurance. Naïve Bayesian visualization is selected to analyze and interpret the classifier predictions. We illustrate how ROC curves can be deployed for model assessment in order to provide a more intuitive analysis of the models. Keywords: Data Mining, Decision Tree, Bayesian Network, ROC Curve, Confusion Matri

    Explainable Artificial Intelligence and Causal Inference based ATM Fraud Detection

    Full text link
    Gaining the trust of customers and providing them empathy are very critical in the financial domain. Frequent occurrence of fraudulent activities affects these two factors. Hence, financial organizations and banks must take utmost care to mitigate them. Among them, ATM fraudulent transaction is a common problem faced by banks. There following are the critical challenges involved in fraud datasets: the dataset is highly imbalanced, the fraud pattern is changing, etc. Owing to the rarity of fraudulent activities, Fraud detection can be formulated as either a binary classification problem or One class classification (OCC). In this study, we handled these techniques on an ATM transactions dataset collected from India. In binary classification, we investigated the effectiveness of various over-sampling techniques, such as the Synthetic Minority Oversampling Technique (SMOTE) and its variants, Generative Adversarial Networks (GAN), to achieve oversampling. Further, we employed various machine learning techniques viz., Naive Bayes (NB), Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting Tree (GBT), Multi-layer perceptron (MLP). GBT outperformed the rest of the models by achieving 0.963 AUC, and DT stands second with 0.958 AUC. DT is the winner if the complexity and interpretability aspects are considered. Among all the oversampling approaches, SMOTE and its variants were observed to perform better. In OCC, IForest attained 0.959 CR, and OCSVM secured second place with 0.947 CR. Further, we incorporated explainable artificial intelligence (XAI) and causal inference (CI) in the fraud detection framework and studied it through various analyses.Comment: 34 pages; 21 Figures; 8 Table
    • …
    corecore