1,243 research outputs found

    An efficient and private RFID authentication protocol supporting ownership transfer

    Get PDF
    Radio Frequency IDentification (RFID) systems are getting pervasively deployed in many daily life applications. But this increased usage of RFID systems brings some serious problems together, security and privacy. In some applications, ownership transfer of RFID labels is sine qua non need. Specifically, the owner of RFID tag might be required to change several times during its lifetime. Besides, after ownership transfer, the authentication protocol should also prevent the old owner to trace the tags and disallow the new owner to trace old transactions of the tags. On the other hand, while achieving privacy and security concerns, the computation complexity should be considered. In order to resolve these issues, numerous authentication protocols have been proposed in the literature. Many of them failed and their computation load on the server side is very high. Motivated by this need, we propose an RFID mutual authentication protocol to provide ownership transfer. In our protocol, the server needs only a constant-time complexity for identification when the tag and server are synchronized. In case of ownership transfer, our protocol preserves both old and new owners’ privacy. Our protocol is backward untraceable against a strong adversary who compromise tag, and also forward untraceable under an assumption

    Tag Ownership Transfer in Radio Frequency Identification Systems: A Survey of Existing Protocols and Open Challenges

    Get PDF
    Radio frequency identification (RFID) is a modern approach to identify and track several assets at once in a supply chain environment. In many RFID applications, tagged items are frequently transferred from one owner to another. Thus, there is a need for secure ownership transfer (OT) protocols that can perform the transfer while, at the same time, protect the privacy of owners. Several protocols have been proposed in an attempt to fulfill this requirement. In this paper, we provide a comprehensive and systematic review of the RFID OT protocols that appeared over the years of 2005-2018. In addition, we compare these protocols based on the security goals which involve their support of OT properties and their resistance to attacks. From the presented comparison, we draw attention to the open issues in this field and provide suggestions for the direction that future research should follow. Furthermore, we suggest a set of guidelines to be considered in the design of new protocols. To the best of our knowledge, this is the first comprehensive survey that reviews the available OT protocols from the early start up to the current state of the art

    Efficient Authentication in RFID Devices Using Et Alas Algorithm

    Get PDF
    Security plays a vital role during the transmission of private data from one sender to the other. Although there are many security algorithms implemented but here we are providing the security algorithms on the RFID devices. The authentication techniques implemented in RFID is based on the new algorithm based on smart cards. The data send through the tags can be made secure using the proposed algorithm so that the un-authorised users can2019;t access the data without any further unique numbers

    Ensuring Application Specific Security, Privacy and Performance Goals in RFID Systems

    Get PDF
    Radio Frequency IDentification (RFID) is an automatic identification technology that uses radio frequency to identify objects. Securing RFID systems and providing privacy in RFID applications has been the focus of much academic work lately. To ensure universal acceptance of RFID technology, security and privacy issued must be addressed into the design of any RFID application. Due to the constraints on memory, power, storage capacity, and amount of logic on RFID devices, traditional public key based strong security mechanisms are unsuitable for them. Usually, low cost general authentication protocols are used to secure RFID systems. However, the generic authentication protocols provide relatively low performance for different types of RFID applications. We identified that each RFID application has unique research challenges and different performance bottlenecks based on the characteristics of the system. One strategy is to devise security protocols such that application specific goals are met and system specific performance requirements are maximized. This dissertation aims to address the problem of devising application specific security protocols for current and next generation RFID systems so that in each application area maximum performance can be achieved and system specific goals are met. In this dissertation, we propose four different authentication techniques for RFID technologies, providing solutions to the following research issues: 1) detecting counterfeit as well as ensuring low response time in large scale RFID systems, 2) preserving privacy and maintaining scalability in RFID based healthcare systems, 3) ensuring security and survivability of Computational RFID (CRFID) networks, and 4) detecting missing WISP tags efficiently to ensure reliability of CRFID based system\u27s decision. The techniques presented in this dissertation achieve good levels of privacy, provide security, scale to large systems, and can be implemented on resource-constrained RFID devices

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios

    Lightweight and Practical Anonymous Authentication Protocol for RFID systems using physically unclonable functions

    Get PDF
    Radio frequency identification (RFID) has been considered one of the imperative requirements for implementation of Internet-of-Things applications. It helps to solve the identification issues of the things in a cost-effective manner, but RFID systems often suffer from various security and privacy issues. To solve those issues for RFID systems, many schemes have been recently proposed by using the cryptographic primitive, called physically uncloneable functions (PUFs), which can ensure a tamper-evident feature. However, to the best of our knowledge, none of them has succeeded to address the problem of privacy preservation with the resistance of DoS attacks in a practical way. For instance, existing schemes need to rely on exhaustive search operations to identify a tag, and also suffer from several security and privacy related issues. Furthermore, a tag needs to store some security credentials (e.g., secret shared keys), which may cause several issues such as loss of forward and backward secrecy and large storage costs. Therefore, in this paper, we first propose a lightweight privacy-preserving authentication protocol for the RFID system by considering the ideal PUF environment. Subsequently, we introduce an enhanced protocol which can support the noisy PUF environment. It is argued that both of our protocols can overcome the limitations of existing schemes, and further ensure more security properties. By analyzing the performance, we have shown that the proposed solutions are secure, efficient, practical, and effective for the resource-constraint RFID tag

    Towards Secure and Scalable Tag Search approaches for Current and Next Generation RFID Systems

    Get PDF
    The technology behind Radio Frequency Identification (RFID) has been around for a while, but dropping tag prices and standardization efforts are finally facilitating the expansion of RFID systems. The massive adoption of this technology is taking us closer to the well known ubiquitous computing scenarios. However, the widespread deployment of RFID technology also gives rise to significant user security issues. One possible solution to these challenges is the use of secure authentication protocols to protect RFID communications. A natural extension of RFID authentication is RFID tag searching, where a reader needs to search for a particular RFID tag out of a large collection of tags. As the number of tags of the system increases, the ability to search for the tags is invaluable when the reader requires data from a few tags rather than all the tags of the system. Authenticating each tag one at a time until the desired tag is found is a time consuming process. Surprisingly, RFID search has not been widely addressed in the literature despite the availability of search capabilities in typical RFID tags. In this thesis, we examine the challenges of extending security and scalability issues to RFID tag search and suggest several solutions. This thesis aims to design RFID tag search protocols that ensure security and scalability using lightweight cryptographic primitives. We identify the security and performance requirements for RFID systems. We also point out and explain the major attacks that are typically launched against an RFID system. This thesis makes four main contributions. First, we propose a serverless (without a central server) and untraceable search protocol that is secure against major attacks we identified earlier. The unique feature of this protocol is that it provides security protection and searching capacity same as an RFID system with a central server. In addition, this approach is no more vulnerable to a single point-of-failure. Second, we propose a scalable tag search protocol that provides most of the identified security and performance features. The highly scalable feature of this protocol allows it to be deployed in large scale RFID systems. Third, we propose a hexagonal cell based distributed architecture for efficient RFID tag searching in an emergency evacuation system. Finally, we introduce tag monitoring as a new dimension of tag searching and propose a Slotted Aloha based scalable tag monitoring protocol for next generation WISP (Wireless Identification and Sensing Platform) tags

    Security and Privacy Issues in IoT

    Get PDF
    Internet of Things (IoT) is a global network of physical and virtual ‘things’ connected to the internet. Each object has unique ID which is used for identification. IoT is the emerging technology which will change the way we interact with devices. In future almost every electronic device will be a smart device which can compute and communicate with hand-held and other infrastructure devices. As most of the devices may be battery operated, due to less processing power the security and privacy is a major issue in IoT. Authentication, Identification and device heterogeneity are the major security and privacy concerns in IoT. Major challenges include integration, scalability, ethics communication mechanism, business models and surveillance. In this paper major issues related to security and privacy of IoT are focused

    Privacy-enhanced RFID Tag Search System

    Get PDF
    corecore