32,773 research outputs found

    Adjacency Matrix Based Energy Efficient Scheduling using S-MAC Protocol in Wireless Sensor Networks

    Full text link
    Communication is the main motive in any Networks whether it is Wireless Sensor Network, Ad-Hoc networks, Mobile Networks, Wired Networks, Local Area Network, Metropolitan Area Network, Wireless Area Network etc, hence it must be energy efficient. The main parameters for energy efficient communication are maximizing network lifetime, saving energy at the different nodes, sending the packets in minimum time delay, higher throughput etc. This paper focuses mainly on the energy efficient communication with the help of Adjacency Matrix in the Wireless Sensor Networks. The energy efficient scheduling can be done by putting the idle node in to sleep node so energy at the idle node can be saved. The proposed model in this paper first forms the adjacency matrix and broadcasts the information about the total number of existing nodes with depths to the other nodes in the same cluster from controller node. When every node receives the node information about the other nodes for same cluster they communicate based on the shortest depths and schedules the idle node in to sleep mode for a specific time threshold so energy at the idle nodes can be saved.Comment: 20 pages, 2 figures, 14 tables, 5 equations, International Journal of Computer Networks & Communications (IJCNC),March 2012, Volume 4, No. 2, March 201

    Secure Clustering in DSN with Key Predistribution and WCDS

    Get PDF
    This paper proposes an efficient approach of secure clustering in distributed sensor networks. The clusters or groups in the network are formed based on offline rank assignment and predistribution of secret keys. Our approach uses the concept of weakly connected dominating set (WCDS) to reduce the number of cluster-heads in the network. The formation of clusters in the network is secured as the secret keys are distributed and used in an efficient way to resist the inclusion of any hostile entity in the clusters. Along with the description of our approach, we present an analysis and comparison of our approach with other schemes. We also mention the limitations of our approach considering the practical implementation of the sensor networks.Comment: 6 page

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Movement-Efficient Sensor Deployment in Wireless Sensor Networks With Limited Communication Range.

    Get PDF
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Three key factors in MWSNs, sensing quality, energy consumption, and connectivity, have attracted plenty of attention, but the interaction of these factors is not well studied. To take all the three factors into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment (or relocation) to optimize the sensing quality with a limited communication range and a specific network lifetime constraint. We derive necessary conditions for the optimal sensor deployment in both homogeneous and heterogeneous MWSNs. According to our derivation, some sensors are idle in the optimal deployment of heterogeneous MWSNs. Using these necessary conditions, we design both centralized and distributed algorithms to provide a flexible and explicit trade-off between sensing uncertainty and network lifetime. The proposed algorithms are successfully extended to more applications, such as area coverage and target coverage, via properly selected density functions. Simulation results show that our algorithms outperform the existing relocation algorithms
    • โ€ฆ
    corecore