705 research outputs found

    From M-ary Query to Bit Query: a new strategy for efficient large-scale RFID identification

    Get PDF
    The tag collision avoidance has been viewed as one of the most important research problems in RFID communications and bit tracking technology has been widely embedded in query tree (QT) based algorithms to tackle such challenge. Existing solutions show further opportunity to greatly improve the reading performance because collision queries and empty queries are not fully explored. In this paper, a bit query (BQ) strategy based Mary query tree protocol (BQMT) is presented, which can not only eliminate idle queries but also separate collided tags into many small subsets and make full use of the collided bits. To further optimize the reading performance, a modified dual prefixes matching (MDPM) mechanism is presented to allow multiple tags to respond in the same slot and thus significantly reduce the number of queries. Theoretical analysis and simulations are supplemented to validate the effectiveness of the proposed BQMT and MDPM, which outperform the existing QT-based algorithms. Also, the BQMT and MDPM can be combined to BQMDPM to improve the reading performance in system efficiency, total identification time, communication complexity and average energy cost

    LPDQ: a self-scheduled TDMA MAC protocol for one-hop dynamic lowpower wireless networks

    Get PDF
    Current Medium Access Control (MAC) protocols for data collection scenarios with a large number of nodes that generate bursty traffic are based on Low-Power Listening (LPL) for network synchronization and Frame Slotted ALOHA (FSA) as the channel access mechanism. However, FSA has an efficiency bounded to 36.8% due to contention effects, which reduces packet throughput and increases energy consumption. In this paper, we target such scenarios by presenting Low-Power Distributed Queuing (LPDQ), a highly efficient and low-power MAC protocol. LPDQ is able to self-schedule data transmissions, acting as a FSA MAC under light traffic and seamlessly converging to a Time Division Multiple Access (TDMA) MAC under congestion. The paper presents the design principles and the implementation details of LPDQ using low-power commercial radio transceivers. Experiments demonstrate an efficiency close to 99% that is independent of the number of nodes and is fair in terms of resource allocation.Peer ReviewedPostprint (author’s final draft

    Energy efficient tag identification algorithms for RFID: survey, motivation and new design

    Get PDF
    RFID is widely applied in massive tag based applications, thus effective anti-collision algorithms to reduce communication overhead are of great importance to RFID in achieving energy and time efficiency. Existing MAC algorithms are primarily focusing on improving system throughput or reducing total identification time. However, with the advancement of embedded systems and mobile applications, the energy consumption aspect is increasingly important and should be considered in the new design. In this article, we start with a comprehensive review and analysis of the state-of-the-art anti-collision algorithms. Based on our existing works, we further discuss a novel design of anti-collision algorithm and show its effectiveness in achieving energy efficiency for the RFID system using EPCglobal C1 Gen2 UHF standard

    Optimization of Mobile RFID Platforms: A Cross-Layer Approach.

    Get PDF

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Energy efficiency in short and wide-area IoT technologies—A survey

    Get PDF
    In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions

    Joint design of RFID reader and tag anti-collision algorithms: a cross-layer approach

    Get PDF
    This paper investigates the potential interactions between reader and tag anti-collision algorithms of passive RFID (radio frequency identification) systems. Conventionally, reader and tag anti-collision algorithms are designed by assuming that they are independent from each other. In practice, however, readers and tags usually operate in the same frequency band. Therefore, contention between their transmissions can also potentially arise. Furthermore, reader anti-collision policies directly influence the way in which tags are activated, and thus also the way in which they collide when responding to reader’s requests. In view of this and considering the growing numbers of readers and tags, independence of both schemes can not longer be considered as a realistic assumption. This paper partially fills this gap by proposing a new cross-layer framework for the joint evaluation and optimization of reader and tag anticollision algorithms. Furthermore, the paper proposes a new approach, based on a Markov model, which allows capacity and stability analysis of asymmetrical RFID systems (i.e., when readers and tags experience different channel and queuing states). The model captures the dynamics of tag activation and tag detection processes of RFID. It also represents a first step towards a joint design of physical (PHY) and medium access control layers (MAC) of RFID. The results indicate that the proposed approach provides benefits in terms of stability and capacity over conventional solutions even when readers and tags operate in different channels. The results also provide useful guidelines towards the cross-layer design of future RFID platforms
    • …
    corecore