329 research outputs found

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    A Study of Medium Access Control Protocols for Wireless Body Area Networks

    Get PDF
    The seamless integration of low-power, miniaturised, invasive/non-invasive lightweight sensor nodes have contributed to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN provides long-term health monitoring of a patient without any constraint on his/her normal dailylife activities. This monitoring requires low-power operation of invasive/non-invasive sensor nodes. In other words, a power-efficient Medium Access Control (MAC) protocol is required to satisfy the stringent WBAN requirements including low-power consumption. In this paper, we first outline the WBAN requirements that are important for the design of a low-power MAC protocol. Then we study low-power MAC protocols proposed/investigated for WBAN with emphasis on their strengths and weaknesses. We also review different power-efficient mechanisms for WBAN. In addition, useful suggestions are given to help the MAC designers to develop a low-power MAC protocol that will satisfy the stringent WBAN requirements.Comment: 13 pages, 8 figures, 7 table

    Discharge Curve Backoff Sleep Protocol for Energy Efficient Coverage in Wireless Sensor Networks

    Get PDF
    AbstractIn energy constrained wireless sensor networks, maximizing network coverage lifetime while ensuring optimized coverage is important. The challenge is to determine an appropriate duty cycle for the nodes while maintaining sufficient count of active nodes for optimal network coverage. Most of the existing work, for coverage optimization based on duty cycle, does not consider the residual energy of the active nodes. This can result in suboptimal wake-up of sleeping nodes. RBSP considers the residual energy but ignores the active nodes’ battery discharge rate. In this paper, we propose DCBSP (Discharge Curve Backoff Sleep Protocol), which considers the battery discharge curve of the active nodes to determine the duty cycle of the inactive nodes. Thus in DCBSP, inactive nodes wake-up close to death of the active nodes which leads to lesser energy consumption and increased network lifetime. NS-2 simulations show the energy consumption of DCBSP is lesser than that of PEAS by 39% and lesser by 25% and 15% as compared to RBSP and PECAS respectively. Further, the coverage ratio of DCBSP is higher than PEAS by 32% and higher by 17% and 6% as compared to RBSP, PECAS respectively. Hence, DCBSP is effective in ensuring higher coverage while extending the network lifetime

    ÎĽ\muNap: Practical Micro-Sleeps for 802.11 WLANs

    Get PDF
    In this paper, we revisit the idea of putting interfaces to sleep during 'packet overhearing' (i.e., when there are ongoing transmissions addressed to other stations) from a practical standpoint. To this aim, we perform a robust experimental characterisation of the timing and consumption behaviour of a commercial 802.11 card. We design ÎĽ\muNap, a local standard-compliant energy-saving mechanism that leverages micro-sleep opportunities inherent to the CSMA operation of 802.11 WLANs. This mechanism is backwards compatible and incrementally deployable, and takes into account the timing limitations of existing hardware, as well as practical CSMA-related issues (e.g., capture effect). According to the performance assessment carried out through trace-based simulation, the use of our scheme would result in a 57% reduction in the time spent in overhearing, thus leading to an energy saving of 15.8% of the activity time.Comment: 15 pages, 12 figure

    On the Medium Access Control Protocols Suitable for Wireless Sensor Networks – A Survey

    Get PDF
    A MAC (Medium Access Control) protocol has direct impact on the energy efficiency and traffic characteristics of any Wireless Sensor Network (WSN). Due to the inherent differences in WSN’s requirements and application scenarios, different kinds of MAC protocols have so far been designed especially targeted to WSNs, though the primary mode of communications is wireless like any other wireless network. This is the subject topic of this survey work to analyze various aspects of the MAC protocols proposed for WSNs. To avoid collision and ensure reliability, before any data transmission between neighboring nodes in MAC layer, sensor nodes may need sampling channel and synchronizing. Based on these needs, we categorize the major MAC protocols into three classes, analyze each protocol’s relative advantages and disadvantages, and finally present a comparative summary which could give a snapshot of the state-of-the-art to guide other researchers find appropriate areas to work on. In spite of various existing survey works, we have tried to cover all necessary aspects with the latest advancements considering the major works in this area

    Analysis of a Rumor Routing Protocol with Limited Packet Lifetimes

    Get PDF
    Wireless sensor networks require specialized protocols that conserve power and minimize network traffic. Therefore, it is vitally important to analyze how the parameters of a protocol affect these metrics. In doing so, a more efficient protocol can be developed. This research evaluates how the number of nodes in a network, time between generated agents, lifetime of agents, number of agent transmissions, time between generated queries, lifetime of queries, and node transmission time affect a modified rumor routing protocol for a large-scale, wireless sensor network. Furthermore, it analyzes how the probability distribution of certain protocol parameters affects the network performance. The time between generated queries had the greatest effect upon a network’s energy consumption, accounting for 73.64% of the total variation. An exponential query interarrival distribution with a rate of 0.4 queries/second/node used 25.78% less power than an exponential distribution with a rate of 0.6 queries/second/node. The node transmission time was liable for 73.99% of the total variation in proportion of query failures. Of three distributions, each with a mean of 0.5 seconds, the proportion of query failures using a Rayleigh transmission time distribution was 14.23% less than an exponential distribution and 18.46% less than a uniform distribution. Lastly, 54.85% of the total variation in the mean proportion of time a node is uninformed was a result of the time between generated agents. The mean proportion of time a node is uninformed using an exponential agent interarrival distribution with a rate of 0.005 was 6.59% higher than an exponential distribution with a rate of 0.01
    • …
    corecore