7 research outputs found

    Mobility: a double-edged sword for HSPA networks

    Get PDF
    This paper presents an empirical study on the performance of mobile High Speed Packet Access (HSPA, a 3.5G cellular standard) networks in Hong Kong via extensive field tests. Our study, from the viewpoint of end users, covers virtually all possible mobile scenarios in urban areas, including subways, trains, off-shore ferries and city buses. We have confirmed that mobility has largely negative impacts on the performance of HSPA networks, as fast-changing wireless environment causes serious service deterioration or even interruption. Meanwhile our field experiment results have shown unexpected new findings and thereby exposed new features of the mobile HSPA networks, which contradict commonly held views. We surprisingly find out that mobility can improve fairness of bandwidth sharing among users and traffic flows. Also the triggering and final results of handoffs in mobile HSPA networks are unpredictable and often inappropriate, thus calling for fast reacting fallover mechanisms. We have conducted in-depth research to furnish detailed analysis and explanations to what we have observed. We conclude that mobility is a double-edged sword for HSPA networks. To the best of our knowledge, this is the first public report on a large scale empirical study on the performance of commercial mobile HSPA networks

    Efficient Location Privacy In Mobile Applications

    Full text link
    Location awareness is an essential part of today\u27s mobile devices. It is a well-established technology that offers significant benefits to mobile users. While location awareness has triggered the exponential growth of mobile computing, it has also introduced new privacy threats due to frequent location disclosures. Movement patterns could be used to identify individuals and also leak sensitive information about them, such as health condition, lifestyle, political/religious affiliations, etc. In this dissertation we address location privacy in the context of mobile applications. First we look into location privacy in the context of Dynamic Spectrum Access (DSA) technology. DSA is a promising framework for mitigating the spectrum shortage caused by fixed spectrum allocation policies. In particular, DSA allows license-exempt users to access the licensed spectrum bands when not in use by their respective owners. Here, we focus on the database-driven DSA model, where mobile users issue location-based queries to a white-space database in order to identify idle channels in their area. We present a number of efficient protocols that allow users to retrieve channel availability information from the white-space database while maintaining their location secret. In the second part of the dissertation we look into location privacy in the context of location-aware mobile advertising. Location-aware mobile advertising is expanding very rapidly and is forecast to grow much faster than any other industry in the digital era. Unfortunately, with the rise and expansion of online behavioral advertising, consumers have grown very skeptical of the vast amount of data that is extracted and mined from advertisers today. As a result, the consensus has shifted towards stricter privacy requirements. Clearly, there exists an innate conflict between privacy and advertisement, yet existing advertising practices rely heavily on non-disclosure agreements and policy enforcement rather than computational privacy guarantees. In the second half of this dissertation, we present a novel privacy-preserving location-aware mobile advertisement framework that is built with privacy in mind from the ground up. The framework consists of several methods which ease the tension that exists between privacy and advertising by guaranteeing, through cryptographic constructions, that (i) mobile users receive advertisements relative to their location and interests in a privacy-preserving manner, and (ii) the advertisement network can only compute aggregate statistics of ad impressions and click-through-rates. Through extensive experimentation, we show that our methods are efficient in terms of both computational and communication cost, especially at the client side

    Collaborative streaming of on demand videos for mobile devices

    Get PDF
    The 3G and LTE technologies made video on-demand a popular entertainment for users on the go. However, bandwidth insufficiency is an obstacle in providing high quality and smooth video playout in cellular networks. The objective of the proposed PhD research is to provide a user with high quality video streaming with minimal stalling time by aggregating bandwidth from ubiquitous nearby devices that may be using different radio networks

    Replicated execution of workflows

    Get PDF
    Workflows are the de facto standard for managing and optimizing business processes. Workflows allow businesses to automate interactions between business locations and partners residing anywhere on the planet. This, however, requires the workflows to be executed in a distributed and dynamic environment, where device and communication failures occur quite frequently. In case that a workflow execution becomes unavailable through such failures, the business operations that rely on the workflow might be hindered or even stopped, implying the loss of money. Consequently, availability is a key concern when using workflows in dynamic environments. In this thesis, we propose replication schemes for workflow engines to ensure the availability of the workflows that are executed by these engines. Of course, a workflow that is executed by a replicated workflow engine has to yield the same result as a non-replicated execution of that workflow. To this end, we formally define the equivalence of a replicated and a non-replicated execution called Single-Execution-Equivalence. Subsequently, we present replication schemes for both imperative and declarative workflow languages. Imperative workflow languages, such as the Web Service Business Process Execution Language (WS-BPEL), specify the execution order of activities through an ordering relation and are the predominant way of specifying workflow models. We implement a proof-of-concept for demonstrating the compatibility of our replication schemes with current (imperative) workflow technology. Declarative workflow languages provide greater flexibility by allowing the reordering of the activities within a workflow at run-time. We exploit this by executing differently ordered replicas on several nodes in the network for improving availability further
    corecore