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Abstract

Workflows are the de facto standard for managing and optimizing business
processes. Workflows allow businesses to automate interactions between business
locations and partners residing anywhere on the planet. This, however, requires
the workflows to be executed in a distributed and dynamic environment, where
device and communication failures occur quite frequently. In case that a workflow
execution becomes unavailable through such failures, the business operations
that rely on the workflow might be hindered or even stopped, implying the loss
of money. Consequently, availability is a key concern when using workflows in
dynamic environments.

In this thesis, we propose replication schemes for workflow engines to ensure
the availability of the workflows that are executed by these engines. Of course, a
workflow that is executed by a replicated workflow engine has to yield the same
result as a non-replicated execution of that workflow. To this end, we formally
define the equivalence of a replicated and a non-replicated execution called
Single-Execution-Equivalence. Subsequently, we present replication schemes
for both imperative and declarative workflow languages. Imperative workflow
languages, such as the Web Service Business Process Execution Language (WS-
BPEL), specify the execution order of activities through an ordering relation
and are the predominant way of specifying workflow models. We implement a
proof-of-concept for demonstrating the compatibility of our replication schemes
with current (imperative) workflow technology. Declarative workflow languages
provide greater flexibility by allowing the reordering of the activities within a
workflow at run-time. We exploit this by executing differently ordered replicas
on several nodes in the network for improving availability further.
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Zusammenfassung

Um den Geschäftsbetrieb einheitlich, reibungslos und kostengünstig zu halten,
spezifizieren Unternehmen Geschäftsprozesse, welche die Abläufe innerhalb
des Unternehmens definieren. Workflowsprachen, wie die Web Service Business
Process Execution Language (WS-BPEL), sind hierfür der faktische Standard
in der Unternehmensbrache. Workflows spezifizieren einzelne Aktivitäten und
die Reihenfolge, in welcher die Aktivitäten abgearbeitet werden sollen, durch
eine Ordnungsrelation. Die Workflowtechnologie erlaubt die einfache Verwal-
tung und Optimierung von Geschäftsprozessen durch die intuitive graphbasierte
Repräsentation der Prozesse. Darüber hinaus ermöglichen Workflows die Auto-
matisierung der Prozesse, wodurch Fehler reduziert und Kosten gespart werden
können. Besonders zeitkritische Applikationen, wie die just-in-time Produktion
oder das Management von on-demand Cloudresourcen, können durch die Au-
tomatisierung wesentlich effizienter erledigt werden, beziehungsweise werden
durch die Automatisierung überhaupt erst realisierbar.

Aus diesen Gründen, wird die Workflowtechnologie von Unternehmen genutzt
um die Interaktionen zwischen den unternehmenseigenen Standorten und auch
die Interaktionen mit Geschäftspartnern zu automatisieren. Hierfür definieren die
Standorte und Geschäftspartner Schnittstellen, so genannte Webdienste, welche
durch die Aktivitäten eines Workflows aufgerufen werden können und dadurch
die Automatisierung der Interaktionen vereinfachen.

Als Folge dieses Trends werden die Workflows in einer verteilten, heterogenen
und dynamischen Umgebung ausgeführt, in welcher Fehler regelmäßig auftreten.
Diese Fehler können die Ausführung der Workflows unterbrechen oder sogar
komplett stoppen. Im schlimmsten Fall kann das dazu führen, dass der Geschäfts-
betrieb eines Unternehmens stillsteht. Daher ist es von enormer Wichtigkeit zu
garantieren, dass die Workflows auch in fehleranfälligen Umgebungen eine hohe
Verfügbarkeit aufweisen.
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Diese Dissertation behandelt Mechanismen, welche die Verfügbarkeit von
Workflowausführungen in fehleranfälligen Umgebungen sicherstellt. Zunächst
werden bestehende Techniken für Fehlertoleranz und Verfügbarkeit auf ihre Taug-
lichkeit bezüglich unserer Zielsetzung untersucht. Um auch Fehler zu tolerieren,
welche einen Knoten ausfallen lassen auf welchem der Workflow ausgeführt wird,
muss der Workflow repliziert ausgeführt werden. Wenn also eines der Replikate
ausfällt, kann ein anderes die Workflowausführung fortführen.

Nach unserem Wissen existiert bis jetzt jedoch keine Definition über die
Korrektheit von replizierten Workflowausführungen. Darüber hinaus bauen beste-
hende Workflowreplikationstechniken auf der Annahme auf, dass Fehler perfekt
erkannt werden können. Wenn also ein Knoten im Netzwerk als ausgefallen
erkannt wird, dann ist dieser auch tatsächlich ausgefallen. Allerdings ist es un-
möglich einen perfekten Fehlerdetektor zu realisieren, da die Nachricht eines
funktionierenden Knotens, welche die Funktionalität an die anderen Knoten
signalisieren würde, verloren gehen oder einfach nur zu langsam den Zielknoten
erreichen kann.

Diese Dissertation präsentiert die folgenden Beiträge, welche den derzeitigen
Stand der Wissenschaft erweitern: (1) Um sicherzustellen, dass eine replizierte
Workflowausführung das gleiche Ergebnis liefert, wie es eine nicht-replizierte
Ausführung liefern würde, präsentieren wir eine formale Definition über die Äqui-
valenz von replizierten und nicht-replizierten Ausführungen eines Workflows.
(2) Wir entwerfen Replikationsschemata zur replizierten Ausführung von Work-
flows, welche mit der aktuellen (imperativen) Workflowtechnologie kompatibel
sind und keinen perfekten Fehlerdetektor benötigen um korrekt zu funktionieren.
(3) Wir präsentieren ein Workflowreplikationsschema für Workflows, welche
in einer deklarativen Workflowsprache spezifiziert worden sind. Da deklarative
Workflows es erlauben die Ausführungsreihenfolge der Aktivitäten während
der Laufzeit zu ändern, nutzen wir diese Eigenschaft um die Verfügbarkeit der
replizierten Ausführung weiter zu erhöhen.
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1. Introduction

WORKFLOWS are widely used for managing, organizing, and optimiz-
ing business operations [SBTR14, KLL09]. Workflows are defined
by a process of interrelated activities, where each activity can call a

service. Encapsulating functionality in services modularizes complex business
operations and, thereby, simplifies maintainability. Today, even small businesses
have several locations and partners all over the world. In this global setting,
businesses use services to define interfaces for the interactions between business
partners and locations. Here, workflows automate and, thus, ease the interactions
allowing businesses to stay competitive.

The globalization of businesses, however, requires the workflows to execute in
a heterogeneous environment, where device and communication failures occur
quite frequently. While it is common knowledge that wireless and mobile con-
nections are often unreliable and not always available [CCE03, TLL08, BMV10,
GAP+12, Seg13, PA13], wired networks are typically assumed to be highly re-
liable. In contrast to this widely spread assumption, wired networks and even
the backbone experience frequent failures as well [BK14, BDF+13, TLM+12,
TLSS10, MIB+08, FABK03, LAJ99]. Failures are even common in datacenters,
where, for example, a Microsoft data-center study found that a data-center on
average experience 40.8 failures with end-user impact per day [BDF+13,GJN11].
Thus, contrary to common believe, migrating services into cloud environments
does not solve all availability concerns [SSR+10]. Consequently, network parti-
tioning is an important design consideration for any network related application
and system [BK14, BDF+13, Dea09, DHJ+07].

In conclusion, a lot of work has verified that networks might fail or partition.
But what about failures of the computing nodes? A study has found that a
node with typical consumer hardware has a crash failure probability over 0.5%
when running for an accumulated time of 30 days within eight month [NDO11].
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1. Introduction

Moreover, crash failures are also common on specialized and data-center hard-
ware [Gra85, Bre17], where multi-node failures in datacenters are even more
common than network partitioning failures [Bre17].

As a consequence, irrespective of where we deploy a system, we have to build
and design the system such that it can tolerate crash and network partitioning
failures. Otherwise, our system might become unavailable, where unavailability
and even small outages translate to the loss of customers and, thus, money
[Sol08, CTX09, Bru09, Loh12, SCGM14].

In the context of workflow technology, these availability requirements mean
that a workflow system must be build such that all running workflow executions
tolerate crash failures and network partitioning. For example, consider an online
platform is using a workflow for managing its cloud resources. The unavailability
of this workflow prevents the provisioning of cloud resources, which can render
the online platform unresponsive. It is obvious that ensuring availability is
essential for staying competitive.

1.1. Contributions

This thesis proposes new replication schemes for ensuring the availability of
workflows that are executed in failure prone environments. The concepts and
findings presented in this thesis combine and extend our previous publications
[SBTR14, SSB+15, SWT+16, STR16b, SRT17, SRT18]. These publications have
been a collaborative effort, where we will lay out the contributions of the author
of this thesis in the following.

In Part A of this thesis, we describe concepts and replication schemes for
workflow engines in order to ensure the availability of workflows specified in
imperative workflow languages. The contributions of the thesis towards providing
availability for imperative workflows are the following:

1. We formally define the equivalence of a replicated and a non-replicated
workflow execution, called Single-Execution-Equivalence, and prove that
a replicated workflow execution that is Single-Execution-Equivalent is

14



1.1. Contributions

correct. Defining Single-Execution-Equivalence has been collaborative
work [STR16b, SRT18], where the author of this thesis contributed 60% of
the definition.

2. We present a basic majority-based replication scheme that fulfills the de-
fined correctness and that ensures availability in the presence of failures,
where the goal of the replication scheme is to minimize the compensation
cost that arises through the replication. In specific, we use a primary-backup
replication scheme, where multiple workflow engine replicas participate in
a workflow execution. The primary workflow engine executes the workflow.
The execution state produced by the primary is synchronously replicated on
a majority of workflow engine replicas after each activity execution. Upon
a primary failure, a new primary is elected from the currently available
workflow engine replicas. Because only the current, i.e., latest, primary is
able to replicate its state on a majority, old primaries maximally execute
one activity before noticing that they are not primary anymore. As a conse-
quence, maximally one activity needs to be compensated per old primary.
This work is collaborative effort [STR16b, SRT18], where the author of
this thesis contributed 70% of the concepts.

3. The synchronous replication after each activity basically pauses the exe-
cution until a majority of replicas has received the execution state. For
reducing the impact of replication on execution time, we present a relaxed
majority-based replication scheme. We develop the mechanism of synchro-

nization groups, which allows to asynchronously replicate execution state
for all activities within the group but requires a synchronous replication
after the whole group has been executed. This work is collaborative ef-
fort [STR16b, SRT18], where the author of this thesis contributed 90% of
the concepts.

4. The proposed majority-based replication schemes limits the compensation
cost by always having only one valid primary, elected via majority consen-
sus, in the system. However, this also limits the availability since a majority
needs to be available for electing a new primary. Our flexible failover
replication scheme drops this requirement allowing to elect one primary per

15



1. Introduction

partition – even if this partition only contains a single replica. This scheme
trades increased availability for increased compensation cost because any
partitioned replica will become primary and execute the workflow. In the
end, all but one workflow execution have to be compensated. The flexible
failover replication scheme is original work of the author [SRT17].

5. We develop a generic architecture for realizing our replication schemes in
existing workflow technology. Andreas Weiß, Vasilios Andrikopoulos, and
Santiago Gómez Sáez provided the necessary background knowledge on
the existing workflow technology and feedback throughout the development
of the architecture [SWT+16].

6. The author of this thesis implemented a prototype of the proposed repli-
cation schemes and performed extensive evaluations in a geo-distributed
setting as well as in a datacenter setup, which show the benefits of the
proposed schemes. Lukas Krawczyk ported the replication schemes to the
open source workflow engine Apache ODE and, additionally, implemented
the proposed architecture in this engine in a study thesis [Kra16] supervised
by the author of this thesis and Santiago Gómez Sáez. Andreas Weiß and
Santiago Gómez Sáez consulted and provided help in questions on the
implementation in the Apache ODE [SWT+16].

In Part B of this thesis, we aim to provide availability for workflows that are
specified in a declarative workflow language. In declarative workflow languages,
the workflow is defined by a set of activities and a set of constraints, where each
constraint restricts the order in which the activities may be executed [PSvdA07].
In other words, the activities may be executed in any order that is not prohibited
by the defined constraints. If all constraints are fulfilled, the workflow execution
is successfully finished. This way of specifying workflows allows more flexibility
in terms of the execution. It, however, also raises the need for checking whether
a specific activity execution order is allowed by the constraints.

We propose to use replication for declarative workflows such that each work-
flow engine replica executes a different activity order, where any executed activity
order is allowed by the workflow specification. This decouples the workflow

16



1.1. Contributions

from transient service failures because the different replicas access the required
services at different points in time. Moreover, the results of the activity execution
of a replica can be published to the other replicas such that these can reuse the
provided result instead of re-executing the activity, speeding up the execution.
This work [SBTR14] was inspired by the project proposal of ALLOW Ensembles
(Seventh Framework Programme, grant no: 600792) [ALL] and previous work
published within the scope of the project [Sch13, Bac13]. In specific, the main
contributions are:

7. We provide a metric that allows for evaluating which are the best activity
execution orders in terms of availability. This allows to select the activity
execution orders that are executed by the workflow engine replicas.

8. As the generation of all allowed activity execution orders is a PSPACE-
complete problem [SC85], we provide a heuristic for generating a subset
of allowed activity execution orders that provide high availability.

9. We designed a coordination protocol that allows the re-using of results
produced by the executions of the other replicas, which speeds up the overall
workflow execution. This coordination protocol is inspired by Thomas
Bach’s coordination protocol [Bac13], which, however, was lacking the
support for tolerating crash failures.

10. We implemented a prototype for generating the activity execution orders by
extending the SPOT library1. The prototype also includes the coordination
protocol. The prototype implementation as well as the evaluations has been
joined effort with Thomas Bach, where the author of this thesis contributed
50% [SBTR14].

Unless otherwise mentioned above, the availability concepts for declarative
workflow languages are original work of the author [SBTR14].

Note that the concepts of this thesis have partly been developed during the
ALLOW Ensembles project and, thus, are also part of the ALLOW Ensembles
Deliverables 6.1, 6.2, and 6.3 [TSB+13, SBT15, STR16a].

1https://spot.lrde.epita.fr/
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1. Introduction

1.2. Structure

In the following Chapter 2, we review existing techniques for ensuring fault
tolerance, reliability, and availability. The remainder of the thesis is divided into
three parts. In Part A, we present replication schemes for workflows specified
in imperative workflow languages. In Chapter 3, we define the used workflow
and execution model. Subsequently, in Chapter 4, we define the equivalence of
a replicated and non-replicated workflow execution, called Single-Execution-
Equivalence. In Chapter 5, we present our replication schemes for ensuring the
availability of workflow executions in the presence of failures. For realizing the
presented schemes with existing workflow technology, we present the require-
ments for such a replication system as well as a system architecture fulfilling the
requirements in Chapter 6. In Chapter 7, we evaluate the presented schemes as
well as the presented system with regard to availability, overhead, and scalability.
In Chapter 8, we discuss the differences of our workflow replication schemes to
related work that has not already been covered by Chapter 2.

In Part B, we present techniques for generating activity sequences from declar-
ative workflow specifications and a coordination protocol for the replicated
execution of the generated activity sequences. In Chapter 9, we define the declar-
ative workflow model and present a motivational scenario. In Chapter 10, we
present an approach overview. In Chapter 11, we present how to generate and
select the activity sequences that conform to a declarative workflow specification
such that the availability during the replicated execution is high. In Chapter 12,
we present a coordination protocol for the replicated execution of the generated
activity sequences. In the following Chapter 13, we evaluate the generation and
selection with respect to availability and run-time as well as the execution time
of the replicated execution in the presence of failures. In Chapter 14, we discuss
the differences of the concepts presented in Part B, to related work that has not
already been covered by Chapter 2.

In Part C, we conclude the thesis with a summary of the presented work and a
short outlook on future work.

18



2. Related Work

IN this chapter, we will discuss the existing techniques for dealing with
failures. In specific, we differentiate between techniques that provide fault
tolerance, reliability, and availability. A fault tolerant system can resume to

provide its functionality after recovering from a failure in a consistent manner. In
contrast, a highly reliable system minimizes the possibility that a failure might
occur but might not implement any means of fault tolerance. Finally, a highly
available system continues to provide its functionality even when a failure occurs.
This requires redundancy such that the redundant component can take over in
case the first component fails. Of course, even a highly available system can only
continue to provide the functionality up to a specific number of failures.

Because of the high relevance of networked applications in today’s always
connected world, fault tolerance, reliability, and availability have been extensively
researched in the context of distributed systems [AD76, Tho79, Rus80, BT83,
Avi85, CL85, SWG92, KM97, EAWJ02, BLKC03, BCH+05, AFB+06, BHK+06].

In the context of workflow technology, handling and tolerating failures has
also been studied, where the goal is to ensure that a workflow gracefully finishes
when failures occur [AAA+96, LR00, DDGJ01, Gre02, KHC+05, SJP06, SPJ07,
TLHL09, LLdSFV08, SPJ11, SS12, SS13]. In the following, we will focus on the
techniques that are related to or designed for workflow technology. As our goal
is to design a highly available system, we especially discuss the techniques with
regard to their advantages and shortcomings regarding availability.

2.1. Crash Recovery

Crash recovery techniques solely provide fault tolerance and do not target pro-
viding availability. However, crash recovery techniques [CL85, EAWJ02] are
probably the most common method for ensuring fault tolerance and workflow
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2. Related Work

engines typically implement the techniques in order to guarantee that workflow
executions can be continued after a crash failure [BDH+12]. Thus, we will
describe them briefly even though it is clear that the techniques do not ensure
availability.

Crash recovery techniques solve the following problem: all data kept in volatile
memory may be lost through a crash failure. With respect to workflow executions
this means that the execution state of all running workflow executions might be
lost through crash failures since the execution state is usually kept in volatile
memory. Losing the execution state makes it impossible to finish a workflow
execution gracefully after recovering from the failure. To avoid losing the data
through crash failures, crash recovery techniques store the data in stable storage
or in volatile memory of other nodes in the network. Common techniques for
crash recovery are checkpointing and logging.

Checkpointing [CL85, EAWJ02, BLKC03, LL06, BHK+06] creates a snap-
shot, called checkpoint, of a – possibly distributed – application such that the
application can restart from the last checkpoint after recovering from a failure.
However, this means that all progress that the application made after the last
checkpoint is lost. With respect to workflow executions, this means that activities
might be re-executed after the recovery – without the workflow system being
aware that it re-executes a part of the workflow. For example, a payment activity
might be executed again, which alters the semantics of the workflow since the
payment should have been performed only once. Hence, checkpointing alone
cannot guarantee that a workflow execution finishes gracefully in the presence of
failures.

Logging [EAWJ02, BLKC03, BCH+05, BHK+06] writes all messages, events,
or changes (depending on the use case) of the application to a log. After a crash
failure, the application reproduces a consistent state from the log entries. Depend-
ing on the length of the log, this recovery procedure might be time consuming.
Thus, it is common to combine checkpointing and logging [EAWJ02], which
keeps the log small and ensures that no execution progress is lost through crash
failures.

20



2.2. Workflow Failure Handling

2.2. Workflow Failure Handling

As discussed above, crash recovery allows to tolerate the crash failure of a
workflow engine. Additionally, workflows usually provide fault tolerance by
integrating fault handlers and recovery mechanisms into the workflow model
[RvdAtH06, LR00]. This allows to detect and resolve faults that can be detected
by the worklfow engine. In this respect, compensation handlers [RvdAtH06,
LR00] are often specified for each activity of the workflow, where the execution
of this compensation handler semantically reverses the effects that the execution
of that activity had – even if this activity was only partially executed. If a failure
occurs during the activity execution, the compensation handler can be executed,
which performs a semantic rollback to the state before the activity was executed.
In other words, compensation enables backward recovery for resolving faults.

However, a compensation is not equal to a rollback or an undo. Workflow
activities can access stateful web services that, for example, might write to a
database – like a payment service reduces your account balance in the bank’s
database. As the workflow has no access to that database, it cannot rollback the
database’s state. Thus, once the change committed in the database, it cannot be
undone. For example, consider an activity that booked a flight. Compensation
would cancel the flight ticket, which returns the money payed for the ticket but
might incur a cancellation fee. In contrast, a rollback would require to return to a
state before the ticket was booked incurring no fee.

The compensation concept was enhanced by compensation spheres, which
allow to encapsulate multiple activities in one sphere such that if one of the
activities requires compensation, all activities in the sphere are compensated
[LR00]. The idea of compensation originates from Sagas [GMS87, GMGK+91],
which we will discuss further below in the context of transactional workflows.

The described compensation concepts allow the semantic rollback of one or
several activities of a workflow execution. After the compensation, the workflow
can restart from an earlier state, which allows to retry parts of the workflow in
case of failures [SK11, SK12, SK13]. Model-as-you-go [SK13] even allows to
change the workflow model at run-time, such that the re-execution will use the
adapted workflow model. Thereby, model-as-you-go also allows to replace or
remove an activity that would prevent the continuation of the execution (e.g.,
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because of a failure of the called service). As a consequence, model-as-you-go
does not only provide fault tolerance but even improves availability.

However, model-as-you-go – like compensation handlers and other fault han-
dling techniques that are specified in the workflow model– can still only treat
failures that can be caught by the workflow engine. However, these techniques
cannot ensure availability in case that the workflow engine fails or the device on
which the workflow engine resides crashes.

2.3. Transaction Management & Transactional
Workflows

There exist techniques to ensure the availability of transaction management
system [PCD91, Ady99, PGS03, CRCR09, LFKA11, CL12, WKK12, BDF+13,
KKW13,BFF+14]. Workflow technology assumes that there is a workflow client
application that sends execution requests to the workflow engine triggering the
execution of a workflow [Hol95]. Similar to workflow technology, transaction
management techniques also consider clients sending execution requests to
a system [WPS+00, PGS03, CRCR09, LFKA11, WKK12, KKW13, BFF+14].
Here, instead of a workflow, the request triggers the execution of a transaction.
The changes that a transaction performs on the system’s state are only made
permanent once the transaction commits. Upon the commit, a reply is send to the
requestor. Instead of committing, the transaction might also be aborted, which
discards all changes that the transaction issued on the system’s state.

In contrast to transactions, the activities of a workflow directly perform changes
on variables and other state, e.g., to the account balance when executing a
payment activity. Additionally, systems like transaction management systems
consider any committed change to be irreversable, i.e., the change cannot be
undone [PCD91, Ady99, PGS03, CRCR09, LFKA11, CL12, WKK12, BDF+13,
KKW13, BFF+14]. Moreover, these concepts do not support compensation.
However, for workflows, where compensation handlers are usually available, this
model is too restrictive.

With regard to compensation, Sagas [GMS87,GMGK+91] share more similar-
ities with workflows since the compensation mechanism of workflows originates
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from Sagas. In specific, Sagas split long-running transactions into several sub-
transactions, where subtransactions commit their changes directly, i.e., before the
higher level transaction commits. This prevents that the long-running transaction
locks accessed variables for a large amount of time, where other transactions
cannot proceed as they also require access to these variables. However, this
also means that the higher-level transaction of Sagas cannot be aborted because
the subtransactions already applied their changes. Thus, when a failure oc-
curs, the subtransactions are semantically reversed by executing a compensation
transaction for each executed subtransaction. This is also the basis for transac-
tional workflows, where each workflow activity is equal to a subtransaction of
Sagas [RS95, KAGM96, SABS02, Gre02].

There also exist mechanisms for porting transaction semantics to workflows
[AAA+96, LR00, DDGJ01]. For example, an atomic sphere [LR00] contains
one or multiple activities, where the effects of the activity executions are only
made permanent once the sphere is committed. If a failure occurs, the sphere
is aborted. However, workflows strive to avoid the overhead that is incurred by
requiring transactional properties. Instead a workflow and even the activities of a
workflow might be partially executed, where compensation handlers are assumed
to semantically reverse the (partially) executed activities. As a consequence,
concepts that ensure the availability of transactional workflows or transaction
management systems cannot be easily transferred to workflows.

2.4. Fault Tolerant and Highly Available
Service Invocation

During the workflow execution, the activities of the workflow may call web
services offered by third parties. Actually, workflow languages like the widely
used Web Service Business Process Execution Language (WS-BPEL), which
is standardized by OASIS1, specifically target the usage of web services. Such
languages allow to compose complex orchestrations of web services. Reusing
services simplifies the specification of new functionality through workflows,

1http://docs.oasis-open.org/wsbpel/2.0/
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especially since thousands of web services are already available and their number
is still growing [PLM+10, ZZL14].

Traditionally, the services used by a workflow are ‘hardwired’, meaning that an
activity has to call one specific service during its execution. In case this service is
not available, the workflow execution cannot proceed or fails. This is especially
problematic because the reliability and availability of existing services hugely
varies [SF07, ZL08a, AMM08, ZZL10, ZZL14]. To this end, several techniques
have been proposed to overcome this problem.

A common technique for masking a service failure is to compensate the
service call and, afterwards, to call the same service again [Dob06,ZL08a,ZL08c,
ZL08b, ZL09, JDF09, EKEF16]. However, if that service is still not available,
retrying the same service will not solve the problem. Thus, dynamic service
binding, service adapters, and other abstraction mechanisms [GHJV95,KHC+05,
SF07, LV07, MSB08] have been proposed to allow calling alternate services
in case of a service failure [KHC+05, Dob06, DPEV+06, ES06, SF07, LV07,
ES07, MSB08, ZL08a, ZL08c, ZL08b, ZL09, JDF09, EKEF16]. For adhering to
execution deadlines and keeping workflow execution times low, some approaches
even propose to call multiple alternate services at once or staggered over time,
using the result of the service that replies first and compensate all other called
services [Dob06, SJP06, SF07, LV07, GHL+07, SPJ07, ZL08a, ZL08c, ZL08b,
ZL09, TLHL09, SPJ11, MSM15, BTKR15].

As the dynamic binding of web services allows to select a compatible web
services for the required functionality at run-time, some approaches select the
service(s) based on measured QoS values [DPEV+06, ES07, ZL08a, ZL08c,
ZL08b, ZL09, KIH10]. There even exist techniques for automatically composing
a service orchestration with a desired functionality from existing web services
using QoS values [LPC+11, LHG+16, EKEF16], where some re-compose the
orchestration when a failure occurs [LPC+11, EKEF16].

In conclusion, we can observe that making service invocations highly available
has been extensively researched. Even though this decouples the workflow
execution’s availability from the availability of a specific service, these techniques
cannot cope with failures of the workflow engine or crashes of the device on
which the workflow engine resides.
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2.5. Distributed Workflow Execution

Many solutions for executing a workflow in a distributed manner in a network
of workflow engines have been proposed [AMG+95, BD97, MWW+98, MM05,
BMM06, CGH+06, TF07, FYG09, HCTS09, LMJ10, EMSU11]. Even though
most of these have the goal of providing scalability, some incorporate reliability
and availability considerations.

For enabling a workflow to be exectued in a distributed manner, the workflow
is split into fragments, which are assigned to different engines. When a fragment
finishes its execution, it provides the necessary execution state to the next frag-
ment. Without additional failure handling mechanisms, this increases the failure
proneness of a system as the workflow execution requires all involved engines –
and, thus, the hardware on which the engines are running – to stay available. One
approach for countering this problem is to decide the engine for executing the
next fragment at run-time [MM05]. Even though this removes the dependence on
one specific engine, the engine which is currently running still might fail causing
outages.

Here, fragment mapping techniques strive for improving the reliability of a
distributed execution by mapping the fragments to the engines such that the
overall failure probability is minimized [SWG92, KM97]. The strategies often
have multiple criteria that are considered for deciding a mapping [DO02,AGK04,
HB07, BRSR08, BHR08, BHR09a, BHR09b, GEST09, WHP09, PW10, ZRXS10,
GWLY11]. When reliability is the optimization goal, these techniques minimize
the failure probability of the workflow execution. When reliability is a constraint,
the failure probability is at least kept below the given constraint. In both cases,
the workflow execution is highly reliable but still unable to mask or tolerate
failures. Thus, the workflow execution cannot proceed as soon as a single failure
occurs.

Some mapping approaches overcome this limitation by incorporating active
replication [AGK04, BHR08, BHR09a, BHR09b, GEST09, ZRXS10, CB14]. We
will discuss these techniques in the following when exploring replication tech-
niques.
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2.6. Replication

Replication is a widely used concept for ensuring availability [CBPS10]. When
replicating the functionality that a system shall provide on multiple devices, the
advantage is that the remaining devices can continue to provide the functionality
even if some of the devices fail or are partitioned.

For example, data availability is achieved by replication, where multiple lev-
els of consistency were defined that each ensure availability in different failure
scenarios [LGG+91, LLSG92, FB99, Bre00, SS05, ZP08, LM10, LFKA11, Bre12,
BFHD12, TBV15]. For example, with eventual consistency [SS05] reading
a variable might return outdated values but – in turn – the variable is always
available for reading as long as at least one copy is available. Of course, there-
fore the replicas have to be placed accordingly, which has also been studied
extensively [DW01, HCP03, TX05, KL05, LCZ05, TLX+06]. However, these
data replication techniques strive for data availability targeting one level below
workflow executions, which operate on that data. Hence, we need extra concepts
for ensuring the availability of workflow executions.

The replication techniques that may be applicable to workflows are passive

and active replication techniques. Passive replication [AD76,BMST93,CBPS10]
techniques elect a primary replica that is responsible for handling and executing
client requests while all other replicas – called backups – receive state updates
from the primary. In case of a primary failure, the backups can continue to
provide the functionality by using the previously received state updates and
electing one of the backups to be the new primary.

The concept of passive replication has been applied to workflows on different
levels. Some approaches only replicate the workflow client requests and replies
[LR00, LFCL03, FLLL07, LLdSFV08]. This allows a backup that becomes the
new primary to simply repeat replies to workflow client applications that were lost
earlier without requiring the new primary to re-execute the workflow. However,
these techniques do not save any intermediate state of the workflow executions.
Thus, the progress of a started workflow execution will be lost through failures.
The new primary has to re-execute the workflow because it only has saved the
workflow client request. The re-execution might introduce high failover times –
especially for long-running workflows. Moreover, these re-executed workflow

26



2.6. Replication

must not interact with services that might change external state. Otherwise, the
state might be altered a second time through the re-execution. For example,
when the workflow includes a payment activity, the payment is performed a
second time, which is obviously undesirable and alters the semantics of the
workflow. Additionally, these techniques assume a fail-stop model, which allows
to implement a perfect failure detector. However, perfect failure detection is
impossible in practice since an unresponsive primary might simply be slow
to respond or partitioned [FLP85, CBPS10]. Thus, the possibility that the old
primary still might continue to respond to client request or might finish the
already started workflow executions is not considered.

Other approaches actually replicate intermediate execution states of the work-
flow execution [KAGM96, PCD91, FWM03, SWSS04, SS12, SS13]. This has the
advantage that already started workflow executions can be continued by the new
primary. However, these techniques still require a perfect failure detector and,
thus, cannot be used in practice. Moreover, the fail-stop model does not assume a
failed node to recover [CBPS10]. Thus, in case that this node partially performed
an activity before failing, this partial activity execution cannot be compensated
because only the failed node knows about the partially performed activity. Hence,
semantic equivalence of the replicated execution to a non-replicated execution of
that workflow cannot be guaranteed.

Some approaches rely on transactional workflow properties, where each activ-
ity is a subtransaction such that when this activity commits, the execution state is
replicated [KAGM96]. Thus, the activity execution is never lost. However, as
already discussed, workflows in general do not ensure transactional properties
for activity executions avoiding the undesirable coordination overhead. Without
transactional properties activities might be partially executed and, then, the ques-
tion arises when a replicated workflow execution is correct and how to ensure
this correctness. To our knowledge, there exists no formal definition on when a
replicated workflow execution is correct, so far.

Active replication actively executes each activity on all replicas eliminating the
need for transferring execution state updates. A well-known technique of active
replication is state machine replication [OL88, Oki88, Lam98, Lam01, CBPS10,
LC12, OO14, Ong14, VRA15]. Here, a service is replicated on 2 f +1 replicas,
where f crash failures can be tolerated. However, state machine replication
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assumes that activities can never be rolled back. Moreover, state machine replica-
tion does not support compensation – making each activity execution irreversible.
Thus, the activity execution must never be lost through failures and, hence, the
replicas have to agree on each activity before executing it. The activities of a
workflow typically can be compensated, which allows to save the overhead of an
agreement before each activity execution. Additionally, state machine replication
assumes an activity only affects the state of the replica’s state machine on which
the activity is being executed. In contrast, workflows typically interact with other
workflows and stateful services [Wes07]. Moreover, the services and, thus, the
outcome of an activity execution might be non-deterministic in the following
sense: Even though sending multiple identical requests to a service, the service
might send different replies. Hence, when an activity calls such a service, the
outcome cannot be deterministically deduced from the input. State machine
replication approaches, however, require each activity to be deterministic such
that after agreeing on the activity that is executed next, all replicas execute the
activity resulting in the same state on all replicas.

Some workflow fragement mapping approaches (cf. Section 2.5) also in-
corporate active replication by executing an activity (or fragment) in multiple
workflow engines concurrently [AGK04, SLM05, BHR08, BHR09a, BHR09b,
GEST09, ZRXS10, CB14]. However, they assume that the activities are solely
computational tasks not altering state except for the execution state of the
workflow – similar to state machine replication techniques. Especially in the
context of scientific workflows, all activities of a workflow are typically as-
sumed to be solely computational tasks, which only alter the execution state
of the workflow. Thus, workflow fragments are repeated in case of a failure or
even actively replicated for increasing availability [HK03, DSS+05, YB05, dSd-
SeSL07, Qua07, KMR08, BWDL08, PPF09, ZMKC09, GdM11, GCB+14]. The
result of one of the executions is used for continuing the workflow execution
while all other executions are simply discarded. Remember, however, that the
assumption of solely computational tasks does not hold for workflows in gen-
eral. Workflows frequently interact with services and other workflows, which
keep their own state [Wes07]. Thus, repeating and actively replicating work-
flow fragments as used by fragment mapping techniques and scientific workflow
approaches cannot be applied to workflows in general.

28



2.7. Summary

There are also approaches that combine active and passive replication [PCD91,
WPS+00, BDH+12]. Some approaches even support non-deterministic activ-
ities [PCD91, WPS+00]. Here, the idea is to use active replication only for
deterministic activities, while all non-deterministic activities are replicated using
passive replication. However, the techniques also require that the activities do
not interact with stateful services.

Another approach targets the usage of non-deterministic services [BDH+12].
Here, all activities are executed by all engines but the service calls are routed
through a middleware. The middleware calls multiple services in parallel and
selects one of the service replies. The selected service reply is then send to all
replicas. For tolerating lost service reply messages, each service call is assigned
a unique service call identifier. Each used service has to implement a middleware
component that filters duplicate calls based on the unique service call identifier
and only repeats the reply message for duplicates (instead of re-executing the
service). Even though not explicitly mentioned by the authors, this mechanism
actually would also allow to call services that change external state – assuming
that for those services only one service is invoked instead of multiple in parallel.
However, the described approach requires that each service used by the system
needs to be altered, i.e., implement the duplication filtering of the proposed
middleware. Thus, existing services cannot be used.

2.7. Summary

Workflow technology provides the means for fault tolerance through fault han-
dlers in the workflow model [RvdAtH06, LR00] and crash recovery mechanisms
[BDH+12]. Moreover, the workflow execution’s availability has been decoupled
from the availability of specific services by using alternate services through
adapters and dynamic service binding [KHC+05, Dob06, DPEV+06, ES06, SF07,
LV07, ES07, MSB08, ZL08a, ZL08c, ZL08b, ZL09, JDF09, EKEF16] as well as
through dynamic scheduling mechanisms [Dob06, SJP06, SF07, LV07, GHL+07,
SPJ07, ZL08a, ZL08c, ZL08b, ZL09, TLHL09, SPJ11, MSM15, BTKR15].

However, ensuring the availability of workflow executions in the presence of
workflow engine and device failures remains an open problem. Even though there
exist solutions that replicate the workflow executions for ensuring availability
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[KAGM96, PCD91, FWM03, SWSS04, SS12, SS13], they assume the fail-stop
model [CBPS10]. Assuming the fail-stop model, it is possible to implement a
perfect failure detector. In practice, however, it is impossible to implement such a
failure detector because a workflow engine that is detected as failed might simply
be slow to respond [FLP85, CBPS10].

This thesis fills the gap by considering the crash-recovery model [CBPS10],
which does not rely on the assumption that each failure can be detected perfectly.
We define the correctness of a replicated workflow execution and present replica-
tion schemes that enable the highly available execution of workflows in failure
prone environments.
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3. System and Imperative
Workflow Model

THE underlying system consists of a collection of nodes, which are inter-
connected by a communication network. The nodes and communication
links can experience crash failures at any time. In accordance with the

crash-recovery model [CBPS10], we assume that both nodes and links eventually
recover from failures.

Nodes are running workflow engines and/or services. Workflow engines
execute workflows, which call the available services. We assume that services
provide replication transparency to their clients, i.e., to the workflow engines.
Because of this transparency, the replication schemes presented in this thesis are
totally decoupled from whether or not the called services are replicated.

In the presence of failures, we ensure availability by replicating the workflow
engine and, thereby, the workflows executed in the engines. A group of 2 f +1
workflow engines, called replicas for short, participate in the replicated execution
of the workflow, where f is the number of failures that can be tolerated. In other
words, as long as at least f +1 replicas are available, the progress of a workflow
execution is guaranteed. Each replica r ∈ R has a unique identifier, where R

denotes the set of all replicas.
A workflow is defined by a directed, acyclic graph G = (mID,A,L,Σ), where

mID is the unique identifier of the workflow model, A is the set of activities, L

is the set of links defining the control flow, and Σ is the set of variables needed
for the execution, called the internal state. The activities a ∈ A are performed
during the workflow execution in the order defined by the links. In specific, a
link l ∈ L is defined as follows: L : A×A×T , where T is the set of transition
conditions. A link l = (a1,a2, t) indicates that a2 is executed after the execution
of a1 completed and the transition condition t is fulfilled. For convenience, we
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Figure 3.1.: Exemplary execution of a write activity and a read-only activity

define the function succ(a,G) that returns the set of all activities that directly
succeed a in the workflow model G.

E(G,Ao,<) (or E(G) for short) denotes the execution of a workflow G, where
Ao is the set of executed activities. Because of branches in the workflow model,
activities might execute concurrently and, thus, can only be partially ordered.
The ordering relation < defines the causal relationship [Lam78] of the activities
in Ao. A causally preceding activity of ao ∈ Ao is basically any activity that
changed the internal state that the activity ao is using as input. Hence, the causal
relationships of the activities are defined through the data flow of a workflow
model. We assume that any branches in G that might execute concurrently use
disjoint subsets of the internal state. This common assumption [Wes07] prevents
race conditions.

Activities may also manipulate or read the external state by sending write or
read requests to services, where the external state denotes any state that is not in
direct control of the workflow engine, e.g., the state of a stateful service. Requests
that might modify the external state are called write requests. Accordingly, the
activities sending write requests are called write activities. All other requests
are called read requests and the corresponding activities read-only activities. In
the example of Figure 3.1, activity a1 is a write activity while activity a2 is a
read-only activity. We assume that any activity can send at most one request. This
triggers the execution of the service, after which the service returns one reply
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message to the activity that sent the request. Later we will relax this interaction
model (cf. Section 5.3).

We assume that all activities a ∈ A are deterministic in the following sense:
1) given the same input internal state, every execution of activity a will always
produce the same request (if any) and 2) for a given input internal state and
reply message from the service (if any), each execution of activity a will always
produce the same output internal state. Any desired non-determinism has to be
realized by services, which we do not require to be deterministic.

An activity execution can be compensated by executing its compensation
handler, where we assume that every activity has such a compensation handler.
In specific, the execution of this compensation handler (semantically) reverses
all effects that the execution had on the external state and rolls back the internal
state to the state before the execution of the activity started. The compensation
handler can be a workflow itself and, thus, we assume that its execution is
decoupled from E(G,Ao,<) meaning that we assume Ao does not include any
compensation activities. The execution of the compensation handler might induce
cost (e.g., monetary cost) to which we refer to as the compensation cost. An
execution of an activity can, however, only be compensated after all executions of
causally succeeding activities have been compensated. This compensation model
originates from Sagas [GMS87] and conforms to business processes [LR00].

A workflow execution can only be completed if each of its activities is either
completed successfully or compensated. Once a workflow execution has been
completed, none of its activities can be compensated anymore. For the purpose
of this work, we assume that there is a Compensation Unit running in each
workflow engine, which is responsible for executing the compensation handlers.
A workflow execution can schedule the execution of a compensation handler on
the Compensation Unit, where the Compensation Unit guarantees to execute the
scheduled compensations eventually even in the presence of failures. Moreover,
we assume that there exists a workflow repository, which contains all workflow
models. Using the unique workflow model identifier mID, a computing node can
load the respective model G = (mID,A,L,Σ) from this repository. For executing
G, the workflow engine instantiates G, which initializes the internal state. Any
instance of G has the same initial internal state. The described workflow and
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execution model generally complies with any graph-based workflow language,
such as the Web Service Business Process Execution Language (WS-BPEL).
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4. Correctness of Replicated
Workflow Executions

IN this chapter, we introduce a property called Single-Execution-Equivalence
that defines the correctness of replicated workflow executions. This prop-
erty is independent of the type of consistency achieved by the underlying

workflow model. It ensures that the replicated execution of a workflow has
the same effects on the external state as some non-replicated execution of that
workflow.

Axiom 1. The non-replicated execution of a workflow G is correct.

That is, we assume that any non-replicated execution maintains the consistency
of the external state, which it accesses and changes through using services.
There are many techniques for ensuring that non-replicated workflow executions
will produce a correct result, e.g., [Wes07, vdA97, BGS07]. Some techniques
ensure the semantic correctness by checking every possible execution of the
workflow model against properties that are specified by the workflow designer
[BGS07, vdA97]. Other techniques check the model for generally undesired
properties, such as deadlocks [Wes07]. Consequently, there exist a multitude of
methods supporting the workflow designer that justify Axiom 1.

The effects of a workflow execution on the external state are caused by the
interactions with the services. For each read or write request that an activity sends
to a service, the service returns a reply. The received replies typically influence
the future behavior of a workflow and, thus, are considered as input. Write
requests change the external state and, thus, are considered as output. Informally,
a replicated execution of a workflow G is considered Single-Execution-Equivalent
if there is a non-replicated execution of G that produces the same output given
the same input. In the following, we formally define this property.
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Figure 4.1.: Execution of an exemplary workflow

Definition 1. Effective Activity Execution: Let E(G,Ao,<) be the execution of

a workflow G. An execution of an activity ao ∈ Ao is called effective iff it is not

compensated before E(G) completes. Let Ae ⊆ Ao be the set of effective activities

in Ao, then e(E(G)) = (Ae,<) denotes the set of effective activities of E(G) and

their causal ordering relationship <.

The interactions of an activity execution can only be considered input and
output if the activity execution is not compensated. Thus, we only consider
effective activity executions.

Definition 2. Effective Write Activity: Let E(G,Ao,<) be the execution of a

workflow G. Then, ew(E(G)) = (Aw,<) denotes the effective write activity

executions of E(G) and their causal order, i.e., Aw = {ae ∈ Ae : ae is a write

activity}, where e(E(G)) = (Ae,<).

Compared to a non-replicated execution, the replicated execution has to ex-
ecute the same effective write activities in the same partial order. The output
produced by these activities, i.e., the write requests, should also be same. A
write activity aw ∈ Aw produces the write request from the internal state and this
internal state, in turn, is produced by the causally preceding activities.

Definition 3. Effective Causal History: Let ax ∈ Ae be an effective activity

in e(E(G)) = (Ae,<). Then, the effective causal history of ax is denoted as

H(ax) = (AH ,<), where AH = {ae ∈ Ae : ae < ax) and < defines the causal

order of the activities in AH .

That is, H(ax) defines all causally preceding activities of ax and their partial
order. In other words, H(ax) contains all activities that might impact the input
internal state of ax. Figure 4.1 shows the execution of a workflow consisting of
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activities a1 to a5. The dashed arrows indicate the control flow and the dotted
arrows indicate the data flow. The set AH of H(a5) is {a1,a2,a3,a4} with the
partial ordering a1 < a2 and a1 < a3 < a4. For instance, a2 and a3 are concurrent
and, thus, the execution order does not affect a5. Likewise, a4 is not affected by
a2 because the activities are concurrent.

Definition 4. Single-Execution-Equivalence: Let ER(G) be the replicated exe-

cution of a workflow G. ER(G) is Single-Execution-Equivalent iff there exists

some non-replicated execution EN(G) for which the following conditions hold:

1. ew(ER(G)) = ew(EN(G))

2. ∀aR
w ∈ AR

w,a
N
w ∈ AN

w : aR
w = aN

w ⇒ H(aR
w) = H(aN

w),

where ew(ER(G)) = (AR
w,<

R) and ew(EN(G)) = (AN
w,<

N)

The first condition states that the replicated execution executes the same write
activities in the same order as the non-replicated execution. The second condition
states that the replicated and the non-replicated execution have the same Effective
Causal History for each of these effective write activities.

Theorem 1. A replicated execution of a workflow G that is Single-Execution-

Equivalent is correct.

Proof sketch. We show that a replicated execution ER(G) and a non-replicated
execution EN(G) produce the same output, i.e., the same write requests, given
that Def. 4 is fulfilled and given that both the replicated and the non-replicated
executions are provided with the same input, i.e., the same reply messages. Any
instance of workflow G starts with the same initial internal state. The determinism
of each activity ensures that given an internal state and a reply, an activity always
produces the same internal state. Because the Effective Causal Histories H(aw)

of a write activity aw are same in ER(G) and EN(G) (cf. Definition 4.2), the
internal state that is the input for aw is same in ER(G) and EN(G). Because every
activity produces the write request deterministically based on the internal state,
the content of the write requests is also same in ER(G) and EN(G). Moreover,
the effective write activities are executed in the same partial order in ER(G) and
EN(G) (cf. Definition 4.1). As a consequence, any replicated execution ER(G)

has to produce the same write requests from the same input as a non-replicated
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execution EN(G). From Axiom 1 follows that a replicated execution that is
Single-Execution-Equivalent is correct.
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IN order to ensure availability, we propose to replicate the workflow engine
and, thereby, the workflows that are executed by the engines. In case of a
failure of one workflow engine replica, the remaining replicas can continue

the workflow executions of the failed engine. In this chapter, we propose two
replication schemes: majority-based replication and flexible failover replication.

Majority-based replication is based on a primary-backup replication scheme
[AD76], where the primary replica executes the workflow and replicates the
produced state on the other replicas – called backups. For electing a primary, we
use a majority election [vEVS02]. Consequently, the workflow execution can
always continue – even if the primary fails – as long as a majority of replicas
is available for electing a new primary. Hence, we call the replication scheme
majority-based replication.

Flexible failover replication relaxes the requirement for electing a new primary.
In specific, the threshold of votes that is is required for being elected as primary
can be set flexibly when using the flexible failover replication scheme. This
allows the workflow execution to continue even if a majority of replicas has
failed, increasing the workflow execution’s availability. However, when the vote
threshold is set to a low value, there may be many primaries (in different network
partitions) that compete for finishing the execution increasing the overhead
induced by the replication scheme.

In the following two sections, both schemes will be discussed in detail. This
includes a discussion of the advantages and shortcomings of the schemes. For
simplifying the presentation and increasing understandably, the schemes will
only address workflows consisting of a sequence of activities. In the final section
of this chapter, we will extend the schemes for supporting XOR- and AND-
branching, loops, non-compensable activities, and complex interactions.
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5.1. Majority-based Replication

In the following, we present our majority-based replication scheme. We will first
describe a basic version of the scheme, where we strictly rely on synchronous
updates when replicating the state, which the primary produces through each
activity execution, on the backups. Afterwards, we will relax the basic version
by also supporting asynchronous updates, which leads to greater flexibility
on controlling the overhead that the state replication implies. Additionally,
we extend the scheme to support active replication, such that the scheme can
switch between passive replication, i.e., primary-backup replication, and active
replication, where all replicas concurrently execute the activities of the workflow.
Finally, we describe the compensation mode, where the user can initiate the
compensation of a part or even the complete replicated workflow execution by
coordinating the required compensations on the different replicas.

5.1.1. Basic Majority-based Replication Scheme

An workflow client application [Hol95] can initiate the replicated execution of a
workflow by sending a message to the workflow engine replicas of our system (cf.
Figure 5.1). The primary replica is responsible for executing the workflow while
the backup replicas store the execution state (or eS for short), which is sent by the
primary, in volatile memory. The primary processes the activities of the workflow,
where each activity execution produces an output internal state, which serves
as input for the next activity, if any. Whenever an activity execution has been
finished, the primary sends an execution state update to the backup replicas (cf.
Figure 5.1). Each transferred execution state includes a pointer to the activity that
is to be performed next plus this activity’s input internal state. Additionally, each
execution state is associated with a so-called state number (or s for short), which
is incremented with each activity execution. Backups only accept an execution
state update if it has a higher state number than their currently stored execution
state. An accepted execution state replaces the currently stored execution state.

When the primary fails or partitions from the network, the available backup
replicas elect a new primary. We use a majority election [vEVS02] requiring
at least f +1 replicas to participate in a successful election. The new primary

42



5.1. Majority-based Replication

𝑟1

𝑟2

𝑟3

𝑒𝑆𝑟1
′

S
tab

ilize 𝑒𝑆
𝑟
1 ′

𝑣 = 0 𝑣 = 1

E
lectio

n
 𝑣
=
1

𝑐𝑜𝑚𝑝(𝑎2)

new primary
take-over
state: 𝑒𝑆𝑟1

′

𝑒𝑆𝑟2
′

𝑒𝑆𝑟2
′

𝒆𝑺𝒓𝟏 exec(𝑎1) 𝒆𝑺𝒓𝟏
′ exec(𝑎2)

𝑒𝑆𝑟1
′′

𝒆𝑺𝒓𝟏
′′

exec(𝑎2) 𝒆𝑺𝒓𝟐
′ exec(𝑎3)

Initiate execution

Workflow Client Application

𝐴𝐶𝐾

𝐴𝐶𝐾

𝐴𝐶𝐾

Figure 5.1.: Overview of the functionality of the basic majority-based replication
scheme.

collects the execution states of the replicas that participate in the election and
selects one of these execution states as the take-over state. The selected take-over
state tells the primary where to continue the workflow execution, i.e., the activity
to be performed next as well the input internal state for this activity. In Figure 5.1,
replica r2 becomes the new primary and selects eS′r1 as the take-over state after
the primary r1 has partitioned.

Similar to other replication schemes [LC12, OO14], we use the concept of
views for indicating different phases of the execution. A new view starts whenever
a new primary has been elected and, hence, a single primary exists in each
view. Every view has a unique view number and view numbers are strictly
monotonically increasing over time. We call the view with the highest view
number the current view, and the primary of this view is the current primary.

The take-over state mentioned above is determined during the election proce-
dure. Within the context of a workflow execution, an execution state has a unique
identifier sID. The identifier consists of a view number sID.v and a state number
sID.s. The former identifies the view in which this execution state was produced.
The latter uniquely identifies the state within this view. Through their identifiers,
execution states can be totally ordered: an execution state sID is more recent
than a state sID′ iff (sID.v > sID′.v) or ((sID.v = sID′.v)∧ (sID.s > sID′.s)).
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To determine the take-over state, the new primary collects the execution states
from a majority of replicas and selects the most recent state out of these. Note
that the replicas which do not provide their execution state (e.g., because of
slow messages or network partitioning) to the new primary might store a more
recent state. In other words, the take-over state might not be the most recent
execution state in the system. With respect to Single-Execution-Equivalence, if
the old primary processed activities following the take-over state, these activities
are invalid because the new primary continues the execution starting from the
take-over state. Clearly, all invalid activities need to be compensated, where each
compensation may incur compensation cost.

A similar problem arises if there exist multiple primaries at the same time.
Due to arbitrary slow messages or partitioning, the backup replicas might start an
election although the old primary is still operational, leading to multiple primaries.
Now, the problem is that the old primary continues executing the workflow, which
increases the compensation cost. In order to stop the old primary, we require a
primary to validate whether it is still current primary after each activity execution.
Here, we exploit the execution state update that the primary sends after each
activity execution. The primary only starts to execute the next activity after a
majority of replicas (including itself) have acknowledged the reception of the
update (cf. Figure 5.1). Since the election of a new primary also requires a
majority, out of a majority always at least one replica knows about the current
primary preventing old primaries from receiving enough acknowledgement for
continuing the execution. Thus, an old primary at most executes one activity
before stopping its execution. Consequently, an old primary might incur the
compensation cost of one activity at most.

However, an old primary does not know from which execution state the new
primary took over. To ensure Single-Execution-Equivalence, the new primary
needs to inform the old primary about the state that it chose as take-over state.
Then, the old primary can determine whether or not to compensate the last
activity execution. In Figure 5.1, replicas r2 and r3 change to a new view after
the primary r1 has partitioned. The new primary r2 determines eS′r1 as the
take-over state. Hence, r1 has to compensate the execution of activity a2.

As pointed out above, the new primary determines the take-over state during
the election. After that, the new primary stabilizes this state, i.e., it makes
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sure that at least f + 1 replicas store that state in volatile memory. Only after
a successful stabilization, it continues executing the workflow. Since at most
f replicas may fail, the selected take-over state will never be lost due to failures.
Future elections will never select a take-over state preceding this state because
the election protocol collects the execution state from at least f +1 replicas and
selects the most recent out of these. Consequently, the take-over state is stable
in the sense that the activity execution of the old primary that produced this
state will never be compensated. The activity executions following the take-over
state on the old primary, however, have to be compensated. In other words, for
deciding which activities to compensate, an old primary only needs to know
from which of its execution states the new primary took over. Even if the replica
was primary several times, the replica only needs to learn the last state from
which a new primary took over because we require an old primary to schedule
the necessary compensations before becoming primary again.

How does an old primary learn about the state from which the new primary
took over? Because the take-over state is selected by the new primary during
election, the old primary must be informed about this state from the new primary
– or other replicas that already learned about the take-over state from the new
primary. For this purpose, we introduce the stable-states vector, which includes
one component per replica. The component of a replica r identifies the last
execution state produced by r that was used as a take-over state by a new primary.
If r has not been primary yet, r’s component is undefined. The stable-states vector
is updated during each election: The state number sID.s of the selected take-over
state is written into the vector component of the producer of that state. Here, it is
not necessary to save the view number sID.v of the take-over state’s identifier
sID because our replication scheme ensures that a replica compensates all invalid
activities before becoming primary in a higher view again. Consequently, a
replica’s component in the stable-states vector always identifies the last view
where the replica acted as primary. For example, assume the execution state eS′r1

in Figure 5.1 has the identifier (v = 0,s = 1). Thus, r2 updates the stable-states
vector component of r1 to s = 1 during the election.

The updated stable-states vector is stabilized as part of the election and, thus,
cannot be lost through failures. The current stable-states vector is included in each
execution state update sent from a primary to the backup replicas. Consequently,
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each old primary will eventually be informed about its last produced take-over
state and, hence, will eventually compensate its invalid activities. In Figure 5.1,
the old primary r1 receives the execution state eS′r2 after reconnecting to the
network. The stable-states vector of eS′r2 specifies that the new primary selected
r1’s execution state with the state number s = 1 as the take-over state. Thus, the
activity executions a2 is invalid and, hence, compensated.

After the current primary has performed the last activity of the workflow, it
starts the termination protocol, which consists of two phases. The first phase
ensures agreement on the final outcome of the workflow, and requires at least
f + 1 replicas to be available. After this phase, the workflow execution is
complete and the workflow client application is informed about the outcome of
the workflow execution. However, at this point the replicas cannot forget the
workflow execution. In particular, they would have to store the stable-states
vector forever because they never could be sure that each replica has received
the final stable-states vector and compensated its invalid activities. The second
phase enables the replicas to forget the workflow execution after all replicas have
compensated their invalid activities. While the first phase of termination only
needs a majority of replicas to be available, each replica needs to participate in
the second phase. However, this is not critical as the second phase of termination
is completely decoupled from the workflow client application. In other word, if
the termination protocol is blocked in the second phase, this has no effect at all
on the workflow client application.

5.1.1.1. Data Structures

Each replica r holds a compensation log (or cLogr for short) on stable storage.
The log contains a compensation record for each activity executed by r. This
record comprises the compensation handler of the executed activity – including
all information required for the compensation (e.g., variable values of the internal
state) – as well as the state identifier of the produced execution state. The record
is synchronously written to the cLog before the activity is executed. We assume
the compensation handler’s logic to be able to identify if the corresponding
activity was only partly executed (or not at all) in case the replica fails during (or
before starting) the activity execution. To trigger the compensation, the record is
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Stable Storage

cLogr compensation log

Volatile Memory

eIDr workflow execution’s identifier
Gr workflow model that is executed
vr current view of replica r
eSr execution state currently stored by r

eSr.next next activity to execute
eSr.σ internal state that is input for the next activity execution
eSr.prod ID of the replica that produced eS
eSr.sSVec stable states vector associated with eSr
eSr.sID identifier of the execution state

eSr.sID.v view in which eSr was produced
eSr.sID.s state number that the producer assigned to eSr

Table 5.1.: Data structures kept by replica r for a replicated workflow execution

sent to the Compensation Unit. Through the included unique state identifier, the
Compensation Unit can filter duplicated compensation requests.

All other information used by the replication scheme is stored in a workflow

record in volatile memory. For each ongoing workflow execution, each involved
replica r maintains the following information in the workflow record:

• eIDr: execution identifier uniquely identifying the workflow execution.

• Gr: workflow model executed by eIDr.

• vr: current view number from r’s perspective. As in [LC12], we assume a
well-known function mapping each view number to the primary replica of
this view: function Primary(v) returns the identifier of the replica that is
the primary of view v.

• eSr: eIDr’s most recent execution state known to the replica. In the case of
a primary, this is the execution state of the last completed activity execution,
while for a backup replica this is the most recent execution state received
in an update.
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For one replicated execution, eID and G are identical on all replicas. In contrast,
the current view number and the execution state might deviate between replicas.
In particular, the stored execution state eSr comprises the following information:

• eSr.next: pointer to the activity that is to be performed next.

• eSr.σ : input internal state for the execution of eSr.next. Note that eSr.σ is
the output state of the last executed activity (or the initial internal state).

• eSr.prod: identifier of the replica that produced eSr.

• eSr.sSVec: stable-states vector associated with eSr. The stable-states vector
includes all information needed by the old primaries to decide which
activities to compensate. The vector is implemented as a list of pairs
(rx,sx), where the former identifies a particular replica rx, and the latter is
the state number sx of the latest take-over state produced by rx. An entry
only exists for replicas that were primary in the past.

• eSr.sID: unique identifier of the execution state eSr.

The state identifier sID of an execution state is unique across all execution states
of a replicated workflow execution. In specific, the state identifier consists of the
following variables:

• eSr.sID.v: view number in which eSr was produced.

• eSr.sID.s: state number assigned by the producer eSr.prod.

We summarized all data structures that are kept in volatile memory and on stable
storage for one replicated workflow execution in Table 5.1.

5.1.1.2. Normal Operation

An application initiates the replicated execution of a workflow by sending an
INIT message to each involved replica. The INIT(eID, mID) message contains
two fields: the identifier eID that uniquely identifies the replicated execution and
the identifier mID of the workflow model that shall be executed.

A replica, say r, receiving an INIT message generates a workflow record
for eID, loads the workflow model of mID from the workflow repository, and
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initializes vr to 0. In case r is the initial primary (i.e., r = Primary(0)), r

instantiates the loaded workflow model. The instantiation of the workflow
model generates an initial internal state, which is saved in eSr.σ . Moreover, the
stable-states vector stored in eSr includes an entry (r,0) for the initial primary
r = Primary(0), while no other replica has an entry yet. The execution state
identifier eSr.sID has both eSr.sID.v and eSr.sID.s set to 0, which reflects that
the initial execution state is produced in view 0 and before any activity was
executed (since the state number is incremented with every activity execution).

A primary executes the workflow as follows (cf. Algorithm 1 line 1-11):

1. The primary writes a begin record to the compensation log if it has not
been primary before.

2. The primary updates its execution state and writes the compensation record
for the activity execution to the compensation log.

3. The primary executes the activity.

4. To replicate the produced state on the backups, the primary sends an
UPDATE message to each backup, which contains the produced execution
state. The UPDATE messages are sent synchronously, where the primary
waits for a majority to acknowledge the reception of the update before it
continues the execution by returning to step 2.

Upon receiving an UPDATE message (cf. Algorithm 1 line 12-19), a backup
replica, say r, checks whether the UPDATE is valid. An UPDATE is valid if it is
(1) sent by the replica that r considers to be the current primary and (2) comprises
an execution state, which is more recent than r’s current execution state. The first
condition is fulfilled if the view number of the UPDATE is higher or equal to r’s
view number. In specific, the view number can only be higher if a failure caused
an election during which the view number is incremented. Thus, we discuss
the handling of a higher view number in an UPDATE message (cf. Algorithm 1
line 13-16) when describing the election procedure in the following section. For
checking the second condition, r compares the state identifier of its execution
state eSr.sID with the received execution state eSx.sID. All invalid UPDATE
messages are discarded. In contrast, a valid UPDATE is applied, where applied
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Algorithm 1: Basic majority-based replication scheme on replica r (Part I)
// normal operation

1 if r = Primary(vr) then
2 if vr = 0 OR eSr.sSVec has no entry for r then
3 write (begin, eID) to cLog;

4 while eSr.next 6= null AND r = Primary(vr) do
5 eSr.sID.s := eSr.sID.s+1;
6 eSr.prod := r;
7 write (eID, eSr.sID, comp(eSr.next)) to cLogr;
8 eSr.σ := execute(eSr.next,eSr.σ );
9 eSr.next := succ(eSr.next,G);

10 send UPDATE(eID, eSr) to all backups;
11 WAIT UNTIL(received ACK(eID, eSr.sID) from f replicas);

12 upon Receive UPDATE(eID, eSx) from replica x do
13 if eSx.sID.v > vr then // r has an old view number
14 if r = Primary(vr) then // r is an old primary
15 scheduleCompensations(eSr.sSVec);

16 vr := eSx.sID.v;

17 if eSx.sID.v = vr AND eSx.sID > eSr.sID then // *
18 eSr := eSx;
19 reply ACK(eID, eSx.sID) to x;

// * = checking the validity of a message

means that r overwrites its execution state with the received one. After applying
the execution state, r replies to the primary with an ACK message, which contains
the execution state’s unique state identifier sID. Since the primary is waiting
for a majority of ACK message for its currently produced state, it uses the state
identifier sID to filter delayed ACK messages from old UPDATES.

5.1.1.3. Election

The backups monitor the availability of the current primary by means of a
heartbeat mechanism. If the current primary crashes or partitions, the backups
elect a new primary. In specific, the election consists of three phases. In the first
phase, the view number is incremented and, then, stabilized by replicating it on at
least f +1 replicas. This ensures that a replica will never return to a smaller view
number even after a crash failure. In the second phase, the new primary collects
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Figure 5.2.: Exemplary election after the crash failure of primary r1.

the execution state from a majority of replicas and selects the most recent state
as the take-over state. In the third phase, the new primary stabilizes the take-over
state before continuing the workflow execution. The stabilization ensures that
future elections will never select a take-over state preceding this state. In the
following, we will describe these three phases in further detail.

In the first phase, any replica that detects the failure of the current primary
increments its view number. Then, the replica sends an ELECTION message to
all other replicas, where the message includes the incremented view number (cf.
Algorithm 2 line 1-3). In our example depicted in Figure 5.2, replica r2 starts an
election for view 1 after the primary of view 0 (i.e., replica r1) has crashed.

Upon receiving a valid ELECTION(eID, vx) message (cf. Algorithm 2 line 4-
9), a replica r updates its view number vr and sends the ELECTION message to
all replicas as well. Once r has received the ELECTION message from f replicas,
the new view number vx is stabilized (i.e., vx is saved by f replicas and r itself)
and the second phase starts. Now, r sends a VOTE message to Primary(vx),
where the VOTE includes the view number and execution state of the voter.

When Primary(vx) has received f valid VOTE messages (cf. Algorithm 2
line 10-18), it selects the most recent execution state from the available f + 1
states (i.e., from the f VOTE messages plus its own state) as the take-over state.
Here, a VOTE is valid iff the VOTE’s view number is equal to the view number
of the ongoing election.
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Algorithm 2: Basic majority-based replication scheme on replica r (Part II)
// election

1 upon detect that Primary(vr) is failed do
2 vr := vr +1;
3 send ELECTION(eID, vr) to all replicas;

4 upon Receive ELECTION(eID, vx) from replica x do
5 if vx ≥ vr AND vx > eSr.sID.v then // *
6 vr := vx;
7 send ELECTION(eID, vr) to all replicas;
8 if received ELECTION of view vx from f replicas then
9 send VOTE(eID, vr, eSr) to Primary(vr);

10 upon Receive VOTE(eID, vx, eSx) from replica x do
11 if vx = vr AND received VOTE from f replicas then // *
12 eSr :=mostRecentStateOf(received VOTE messages);
13 scheduleCompensations(eSr.sSVec);
14 remove the entry of eSr.prod from eSr.sSVec (if any);
15 add (eSr.prod,eSr.sID.s) to eSr.sSVec;
16 eSr.sID.v := vr;
17 eSr.prod := r;
18 send STABILIZE(eID, eSr) to all backups;

19 upon Receive STABILIZE(eID, eSx) from replica x do
20 if eSx.sID.v≥ vr AND eSx.sID > eSr.sID then // *
21 vr := eSx.v;
22 eSr := eSx;
23 send STAB_ACK(eID, eSx.sID.v) to x;

24 upon Receive STAB_ACK(eID, vx) from replica x do
25 if vx = vr AND received STAB_ACK of vr from f replicas then // *
26 return to normal operation;

// * = checking the validity of a message
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Now, the final phase of the election begins. Because the new primary might
have been primary before, it compensates all its invalid activities based on the
stable-states vector of the selected take-over state. Then, the new primary updates
the stable-states vector for informing the execution state producer, i.e., the old
primary from which the new primary takes over, about the selected take-over state
eSTO as follows: It sets the entry of the take-over state’s producer eSTO.prod in
the stable-states vector to eSTO.s (cf. Algorithm 2 line 14-15). Afterwards, the
new primary changes the view number of the take-over state to the current view
number. Thereby, this updated take-over state becomes the most-recent execution
state of the system. Any later primary will continue at least from this updated
take-over state as soon as the state has been replicated on a majority of nodes, i.e.,
as soon as the state has been stabilized. Before starting the stabilization, the new
primary sets itself as the producer of this updated take-over state. For example,
assume that the state eS′r1 in Figure 5.2, which r2 selects as its take-over state,
has the identifier (sID.v = 0,sID.s = 1). Then, the updated take-over state eS′TO

r1

has the identifier (sID.v = 1,sID.s = 1) and the producer eS′TO
r1 .prod = r2.

To stabilize the updated take-over state, the new primary sends a STABILIZE
message that contains the state to each backup. Upon receiving a valid STABI-
LIZE message (cf. Algorithm 2 line 19-23), a backup saves the new view number
(because the replica might not have participated in the election so far) and the
included execution state. Afterwards, the backup acknowledges the reception of
the STABILIZE message with an STAB_ACK message.

When the primary has received an STAB_ACK message for the current view
number from at least f replicas (cf. Algorithm 2 line 24-26), a majority of
replicas has saved the take-over state and, thus, the state is stabilized. Now, the
election is finished and the new primary returns to normal operation.

When an old primary, say r, reconnects after being partitioned from the
network, it will eventually receive an UPDATE from the new primary, which
contains the stable-states vector produced during the election. This stable-states
vector allows the old primary to identify if any of its activity executions are
invalid, i.e., have to be compensated (cf. Algorithm 1 line 13-16). In specific, r’s
entry in the stable-states vector (r,s) specifies that the execution state from which
a new primary took over from r has the state number s. If r has a compensation
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Figure 5.3.: Termination of the execution shown in Figure 5.1.

record in cLogr with a higher state number s′ > s, this marks an invalid activity
execution. Hence, the compensation record is sent to the Compensation Unit.

If the primary of the ongoing election fails, the backups again time out and
restart the election for the next view number.

5.1.1.4. Termination

After the last activity has been executed, the workflow execution terminates in
two phases. In the first phase, the replicas agree on the final outcome of the
execution, which then is reported to the workflow client application. The second
phase is only needed to allow the replicas to forget about the workflow execution,
i.e., to drop the workflow execution’s data that is stored in volatile memory.

In practice, there might exist multiple primaries, i.e., several old primaries and
the current primary. For preventing that these compete for reporting their result
to the workflow client application, we only allow the current primary to report its
result. In particular, at least f +1 replicas have to agree that the current primary’s
produced state is the final execution state before the primary sends its result.

For this purpose, any replica that assumes to be the current primary and that
has executed the last activity, sends a PRECOMMIT message, which includes the
current execution state of that primary, to all replicas (cf. Algorithm 3 line 1-2).
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Algorithm 3: Basic majority-based replication scheme on replica r (Part III)
// termination

1 upon eSr.next = null AND r = Primary(vr) do
2 send PRECOMMIT(eID, eSr);

3 upon Receive PRECOMMIT(eID, eSx) from replica x do
4 if eSx.sID.v≥ vr AND eSx.sID > eSr.sID then // *
5 vr := eSx.sID.v;
6 eSr := eSx;
7 scheduleCompensations(eSr.sSVec);
8 send PRE_ACK(eID, eSx.sID.v) to x;

9 upon Receive PRE_ACK(eID, vx) from replica x do
10 if received PRE_ACK of vx from f replicas then // *
11 remove the entry of eSr.prod from eSr.sSVec (if any);
12 add (eSr.prod, eSr.sID.s) to eSr.sSVec;
13 send result to workflow client application;
14 send COMMIT(eID, eSr.sSVec) to all backups;

15 upon Receive COMMIT(eID, sSVecx) from replica x do
16 scheduleCompensations(sSVecx);
17 send COMMIT_ACK(eID) to x;

18 upon Receive COMMIT_ACK(eID) from replica x do
19 if received COMMIT_ACK from all replicas then
20 write (end, eID) to cLog;
21 send END(eID) to all backups;
22 forget eID;

// * = checking the validity of a message

A replica that receives a valid PRECOMMIT message (cf. Algorithm 3 line 3-8),
stores the included view number and execution state. Then, the replica schedules
the compensation of all invalid activities (if any) based on the execution state’s
stable-states vector. Afterwards, the replica replies to the PRECOMMIT sender
with a PRE_ACK message.

When the primary, say r, receives a PRE_ACK message from f backups for
the current view number vr, the state has been saved by a majority and, thus, is
stabilized (cf. Algorithm 3 line 9-14). Hence, the primary updates the stable-
states vector accordingly. Now, the primary can report the final outcome to the
workflow client application. At the same time, the primary sends a COMMIT
message including the final stable-states vector to all backups informing them
that the first phase of termination has ended (cf. Figure 5.3).
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Crashed or partitioned replicas might not have received the final stable-states
vector yet. For example, replica r1 in Figure 5.3 did not receive the COMMIT
message yet and, thus, has not compensated a2 so far. Nevertheless, even without
the second phase of termination, all replicas will eventually receive the final
vector upon recovering from a crash failure (as discussed below) or through
starting an election when reconnecting after a network partition. However, no
replica knows which replicas have received the final stable-states vector already
and which replicas have not. Thus, the replicas have to keep the stabilized
stable-states vector in volatile memory.

To be able to delete the workflow execution’s data (including the stable-states
vector) from volatile memory, the termination has a second phase. Before
forgetting the execution, the primary has to know that not only the majority but
all replicas have compensated their invalid activities. The desired functionality is
similar to the two phase-commit protocol [LS79, ML83], where the nodes only
perform an action after all nodes agreed to be ready to perform the action. In our
case, this desired action is to forget the execution. Here, the primary repeatedly
sends the COMMIT message until all replicas have compensated their invalid
activities and have acknowledged this by sending a COMMIT_ACK message (cf.
Algorithm 3 line 15-17). Through sending a COMMIT_ACK, the replica agrees
to be ready to forget.

After all replicas sent the COMMIT_ACK (cf. Algorithm 3 line 18-22), the
system is ready to forget the workflow execution. Hence, the primary writes
an end record to the compensation log. Before deleting all data of the work-
flow execution from the volatile memory, the primary sends an END message
to all backups informing them that they also can write an end record to the
compensation log and forget the execution. Here, the primary also repeatedly
sends the END message until all replicas acknowledge the reception through
an END_ACK message. For saving space on stable storage, we can now prune
the compensation log by deleting all workflow executions which already have
written an end record.
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Figure 5.4.: Exemplary recovery of r1 after experiencing the crash failure de-
picted in Figure 5.2.

5.1.1.5. Recovery

Remember that all data of a workflow execution eID except the compensation
log is stored in volatile memory. Through crash failures the data in the volatile
memory is lost. To regain knowledge about the executions in which the replica
participated before crashing, the replica reads its compensation log during re-
covery. Note, however, that a replica that has not been primary during the
replicated execution of eID has no record on eID in its compensation log. Thus,
we differentiate the following recovery states:

UNKNOWN: A replica that has either no record of eID or both a begin and an
end record of eID in its compensation log.

ACTIVE: A replica has a begin record but no end record of eID in its compen-
sation log.

Obviously, if a replica recovers in the UNKNOWN state, it cannot perform
any recovery operation because it does not know any ongoing execution with the
execution identifier eID. In contrast, a replica that recovers in the ACTIVE state
has written a begin record for eID and, hence, has been primary before. Thus,
it also logged every activity that it executed. Now, the replica has to receive
the stable-states vector to determine if any of the logged activity executions are
invalid and, thus, need to be compensated. Additionally, the recovering replica
needs to receive the current view number and an according execution state for
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being able to return to normal operation. In the following, we describe the
recovery process by means of an example.

Algorithm 4: Basic majority-based replication scheme on replica r (Part IV)
// recovery

1 upon Recovery from crash failure do
2 broadcast RECOVERY(eID, nonce);

3 upon Receive RECOVERY(eID, nonce) from replica x do
4 send RECOV_REPLY(eID, nonce, Gr.mID, vr, eSr) to x;

5 upon Receive RECOV_RPLY(eID, nonce, mIDx, vx, eSx) from replica x do
6 if received RECOV_RPLY for nonce from f +1 then // *
7 load workflow model of mIDx from workflow repository;
8 vr := highestViewOf(RECOV_RPLYs);
9 eSr := mostRecentStateOf(RECOV_RPLY messages);

10 scheduleCompensations(eSr.sSVec);
11 return to normal operation;

// * = checking the validity of a message

Replica r1 in Figure 5.2 recovers in the ACTIVE state after its crash failure.
The recovering replica requests the required information by sending a RECOV-
ERY message, which includes a nonce, to all replicas (cf. Algorithm 4 line 1-2).
A replica that receives a RECOVERY message replies with a RECOV_RPLY
(cf. Algorithm 4 line 3-4) also including the nonce, which enables the recovering
replica to filter replies of previous recoveries. Moreover, the reply comprises the
workflow model ID mID as well as the replying replica’s current view number
and execution state.

After the recovering replica has received a valid RECOV_RPLY from a ma-
jority of replicas (cf. Algorithm 4 line 5-11), it loads the workflow model with
the identifier mID from the workflow repository. Then, it determines the reply
with the highest view number that contains the most recent execution state. It
saves both the view number and the execution state of this reply. The recovering
replica uses the stable-states vector of the saved execution state to determine its
invalid activity executions and schedules the according compensations, if any (cf.
Figure 5.2). Afterwards, the replica returns to normal operation.
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Figure 5.5.: Exemplary execution of a workflow with three activities using the
asynchronous update mechanism.

5.1.2. Relaxed Majority-based Replication Scheme

Above we have defined a basic majority-based replication scheme that enables
workflow engines to ensure available in the presence of failures. The basic
majority-based replication scheme, however, requires a primary workflow engine
to wait after each activity execution until a majority of replicas acknowledged
the reception (and validity) of the UPDATE message. Thereby, the execution
is basically paused after every activity implying a significant execution time
overhead. This execution time overhead reduces the performance of executed
workflow, which is of course undesirable.

The above problem can be solved by making the updates asynchronous. In
specific, a primary sends a ASYNC_UPDATE(eID, eS) message to all backups
after each activity execution. The backups treat ASYNC_UPDATE messages
exactly like regular UPDATE messages except that the backups do not acknowl-
edge the reception. Also, the primary does not wait for any acknowledgements.
Instead, the primary directly continues the workflow execution by executing the
next activity (cf. Figure 5.5).

Unfortunately, using asynchronous updates for the replicated execution of the
workflow also imposes problems. When a primary does not check whether its
updates are received and accepted by a majority, also old primaries will continue
their execution. Instead of producing at most one invalid activity execution,
the number of invalid activities are only limited by the remaining activities of
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the workflow that still need to be executed. Since all invalid activities need
to be compensated, the compensation cost might be tremendous when using
asynchronous updates. Moreover, asynchronous updates may even impose a
high failover time in the case of a primary failure: The asynchronous updates
sent by the failed primary might be lost and, hence, a new primary might not
receive the latest execution state (or even miss multiple execution state) leading
to re-execution of some or all activities already executed by the old primary.

Since both extremes – synchronous and asynchronous updates – have short-
comings, we introduce synchronization groups, which contain a number of
consecutive activities of the workflow. All activities of the group are executed us-
ing asynchronous updates. However, after the primary has executed the complete
group, the primary uses the synchronous update mechanism that was introduced
with the basic majority-based replication scheme. Consequently, the synchroniza-
tion groups allow to flexibly decide between limiting the compensation overhead
induced by old primaries – by having synchronization groups contain only few
activities – and keeping the execution time overhead of synchronous updates low
– by comprising many activities within one synchronization group. For realizing
the synchronization groups within our majority-based replication scheme, we
discuss only the parts that have to be adapted. In specific, we only need to adapt
the normal operation by adding an asynchronous update mechanism. Afterwards,
we further relax the synchronization grouping mechanism by allowing some
synchronization groups to use active replication in our relaxed majority-based

replication scheme.

5.1.2.1. Adapting Normal Operation

For enabling the primary to decide between using an asynchronous update or
a synchronous update, the primary has to consider the grouping, which – for
now – we assume to be given. All activities of the group are executed using
asynchronous update messages (cf. Algorithm 5 line 6-13), which also means
that there is no need for acknowledging the reception of the asynchronous updates
(cf. Algorithm 5 line 16-22). The primary directly continues to execute the next
activity of that synchronization group.
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Algorithm 5: Relaxed majority-based replication scheme on replica r
// normal operation

1 if r = Primary(vr) then
2 if vr = 0 OR eSr.sSVec has no entry for r then
3 write (begin, eID) to cLog;

4 while eSr.next 6= null AND r = Primary(vr) do
5 currGroup := SyncGroup(eSr.next);
6 while eSr.next ∈ currGroup AND r = Primary(vr) do
7 eSr.sID.s := eSr.sID.s+1;
8 eSr.prod := r;
9 write (eID, eSr.sID, comp(eSr.next)) to cLogr;

10 eSr.σ := execute(eSr.next,eSr.σ );
11 eSr.next := succ(eSr.next,G);
12 if eSr.next ∈ currGroup then
13 send ASYNC_UPDATE(eID, eSr) to all backups;

14 send UPDATE(eID, eSr) to all backups;
15 WAIT UNTIL(received ACK(eSr.sID) from f replicas);

16 upon Receive ASYNC_UPDATE(eID, eSx) from replica x do
17 if eSx.sID.v > vr then // r has an old view number
18 if r = Primary(vr) then // r is an old primary
19 scheduleCompensations(eSr.sSVec);

20 vr := eSx.sID.v;

21 if eSx.sID.v = vr AND eSx.sID > eSr.sID then // *
22 eSr := eSx;

// * = checking the validity of a message

After the primary has executed the complete group, it uses the synchronous
update mechanism that was introduced with the basic majority-based replication
scheme (cf. Algorithm 5 line 4-15). In the example depicted in Figure 5.6, the
activities a1 and a2 are contained in the same synchronization group removing
the execution time overhead of waiting for acknowledgements after the execution
of a1. However, the primary has to wait for f ACK messages after executing a2.
This stops the execution of the old primary r1, reducing the compensation cost
compared to purely using asynchronous updates as depicted in Figure 5.5.

In conclusion, the synchronization groups allow to limit the compensation cost
and the failover time imposed by a failure. On the other hand, each synchroniza-
tion group imposes an execution time overhead for using the synchronous update
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Figure 5.6.: Exemplary execution of a workflow using synchronization groups.

after the last activity of the group. In the following, we will discuss grouping
guidelines that strive for an optimal trade-off in terms of compensation cost,
failover time, and execution time overhead.

5.1.2.2. Enabling Hybrid Replication

The synchronous update after each synchronization group introduces execution
time overhead for replicating the execution state on the backups. In the following,
we exploit active replication to mitigate this time overhead.

Using active replication, each workflow is executed on all 2 f +1 replicas in-
dependently. Consequently, also each activity of the workflow is executed 2 f +1
times and no state information needs to be transferred between replicas. However,
if the workflow contains a write activity, 2 f executions of that activity need to
be compensated to fulfill Single-Execution-Equivalence (cf. Definition 4). In
practice, the replicas finish the complete workflow execution and, then, perform a
majority consensus to reach an agreement on the execution of one of the replicas.
All other replicas compensate their entire workflow execution (cf. Figure 5.7). Of
course, compensating all activities of the workflow 2 f times causes substantial
compensation cost.

Now, consider that the entire workflow consists only of read-only activities.
Then, compensation is not required because executing read-only activities mul-
tiple times does not violate Single-Execution-Equivalence (cf. Definition 4).
However, the replicas might produce different results because the called services
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Figure 5.7.: Exemplary execution of a workflow using active replication, where
the replicas agree on replica r1’s execution meaning that r2 and r3
have to compensate their executions.

might return different replies to each replica. For example, when calling a random
number generator, each replica will receive a different number. Thus, the replicas
still would need to perform a consensus to agree on one replica that reports its
result to the workflow client application.

Consider now that all activities of the workflow are also deterministic, meaning
that the activity execution will always produce the same output internal state
given the same input internal state. For example, an activity that calls a service
offering a function, where the request includes all parameters, is deterministic
(such as a calculator service). Consequently, all replicas will produce the same
result when all activities of a workflow are deterministic. When the activities
are read-only as well, neither consensus for agreeing on one execution nor
compensation is required.

Of course, only few workflows are composed solely of deterministic, read-only
activities. Hence, we propose a hybrid replication scheme that allows to switch
between passive and active replication. The hybrid replication scheme uses active
replication for synchronization groups that only comprise deterministic, read-
only activities. For any group that comprises a non-deterministic or write activity,
the hybrid scheme will use the passive replication scheme that we defined above.
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Figure 5.8.: Exemplary execution with our relaxed majority-based replication
scheme, which allows combining active and passive replication. The
execution states eS′′′r1, eS′′′r2, and eS′′′r3 are identical because a2 and a3
are deterministic, read-only activities.

In specific, an actively replicated group is executed as follows. After the
primary has sent a synchronous update of the previous synchronization group,
it sends an UPDATE_OK(eID, eS) message to each backup. Upon receiving a
valid UPDATE_OK, the backup saves the execution state and starts to execute
the actively replicated synchronization group (cf. Figure 5.8). An UPDATE_OK
is valid if it was send by the current primary and includes the same or a more
recent state than the one the backup currently stores. After the actively replicated
group has been executed, the primary and the backups have produced identical
execution states. Thus, the primary directly continues by executing the next
group. For example, the primary r1 in Figure 5.8 directly executes the passively
replicated activity a4 after finishing the actively replicated group of a2 and a3.

Now, we can exploit the benefits of both replication mechanisms when ap-
propriately dividing the workflow into synchronization groups. The workflow
designer, as a domain expert, has to specify the grouping at design time. In the
following, we present guidelines for helping the designer specify this grouping.

As already stated above, each part of the workflow that solely consists of
deterministic, read-only activities should be executed using active replication.
Thus, all deterministic, read-only activities are included in actively replicated
synchronization groups. But how should a workflow designer specify the pas-
sively replicated groups for the remaining activities? The general goal is to
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keep the time overhead induced by the synchronous updates after each passively
replicated groups low, while restricting the failover time and compensation cost
induced by a single failure. For this purpose, the designer specifies a compen-
sation cost threshold ct ∈ N and a failover time threshold tt ∈ N in ms, which
define the maximum compensation cost and failover time that a single failure
induces. Let c : A→ N be the function specifying the compensation cost of an
activity and t : A→ N specifying the execution time in ms, where these values
are either provided by the workflow designer or monitored and learned from past
executions.

A passively replicated synchronization group P has to fulfill the following
conditions: (1) te +∑a∈P t(a) ≤ tt and (2) ∑a∈P c(a) ≤ ct , where te is the time
needed for an election. The first condition ensures that the failover time, i.e.,
time needed for an election and re-executing of the whole synchronization group
– which might be necessary in the worst case – is below tt . The second condition
ensures that in the case that all activities are executed by both the new and the
old primary, the compensation cost stays below ct .

5.1.3. User Initiated Compensations

A user might need to initiate the compensation of parts of the workflow, e.g.,
to rerun a specific part [SK11, SK12], or even trigger the compensation of
the complete workflow, realizing a functionality that is akin to an abort of a
transaction. However, our majority-based replication schemes do not support
user initiated compensations so far. Actually, every execution state that has been
stabilized, i.e., that has been replicated on a majority of replicas, has the purpose
of preventing that the workflow execution returns to an activity that has been
executed previous to this execution state. Hence, we need to introduce additional
mechanisms to allow a replicated workflow execution to return to any activity of
the workflow through compensation.

For enabling support for user initiated compensations, we introduce a com-

pensation mode for our majority-based replication schemes. Basically, the com-
pensation mode is working like a reverse execution of the workflow. Previously,
we only used compensation to (semantically) reverse the effects that an invalid
activity execution had on the external state. Now, the workflow execution shall
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return to an activity that already has been executed – or even to the beginning of
the workflow where no activity has been executed.

Remember that a compensation (semantically) reverses the effects that an
activity execution had on the external state and rolls back the internal state of the
workflow to the state that the internal state had before the activity execution was
started (cf. Chapter 3). So far, we did not explicitly mention the rollback of the
internal state in our replication schemes because any compensated activity was
an invalid activity. Hence, there was a valid activity execution of that activity
for which the respective primary sent an UPDATE message containing a new
internal state. As a consequence, the rolled back internal state produced by the
compensation was anyway overwritten by the state contained in the UPDATE
message.

Now, we compensate a part of the workflow and strive to continue the execution
from this point to which we returned. Hence, it is important that the rolled back
internal state is available for continuing the workflow execution. Moreover, we
have to provide this rolled back internal state to the other replicas – like an
execution state update.

The user initiates the switch to the compensation mode by sending a COM-
PENSATE message to all replicas, where the message includes the activity to
which the workflow execution shall return. When the replicas receive a COM-
PENSATE message, all the ongoing workflow execution(s) must be stopped
before entering the compensation mode.

For being able to return to a specific activity, the compensation records that
are written to the compensation log have to include the activity that was executed.
Now, a compensation record (eID,sID,a,comp(a)) ∈ cLog specifies the execu-
tion identifier of the replicated execution, the state identifier of the execution
state that is produced by the activity execution, the executed activity, and the
compensation handler of the executed activity. Basically, we have to compensate
activities in the reverse order of execution until we have compensated the activity
to which the execution shall return.

In specific, upon receiving a COMPENSATE message (cf. Algorithm 6),
a primary is prevented from starting activity executions. Then, the primary
switches to the compensation mode by sending an UPDATE message to all
backups, where the UPDATE contains an execution state that indicates the
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Algorithm 6: Compensation in the basic and relaxed majority-based replica-
tion scheme on replica r (Part I)

1 upon Receive COMPENSATE(eID,a) do
2 if r = Primary(vr) then
3 stop execution;

// Create compensation descriptor
4 eSr.cD.cTarget := a;
5 eSr.cD.cNextsID = eSr.sID;
6 eSr.sID.s := eSr.sID.s+1;
7 send UPDATE(eID,vr,eSr) to all backups;
8 WAIT UNTIL(received ACK(eID,eSr.sID) from f replicas);
9 start Compensation(eID);

switch to the compensation mode. In specific, the execution state stores an
additional field called the compensation descriptor (or cD for short). During
normal operation, the field is empty indicating the execution mode. When the
compensation descriptor contains data, it indicates that the workflow execution
has been switched to the compensation mode. In other words, when a primary’s
compensation descriptor contains data, it will not start any activity executions.
In specific, the compensation descriptor comprises the following data:

• cTarget: target activity of the compensation, i.e., the activity to which the
workflow execution will return.

• cNextsID: state descriptor of the compensation record that shall be com-
pensated next.

Now that the compensation records include the executed activity, why do we
identify the next activity to compensate based on the state identifier of the
produced execution state rather than the activity itself? The answer is that an
activity might be executed multiple times by different replicas. Consider our
example in Figure 5.9, where the activity a2 has been executed by replica r1
and replica r2. Then, the execution switches to the compensation mode, where
the target activity of the compensation is activity a1, i.e., cTarget = a1. In this
example, this means that the whole workflow execution shall be compensated.

If the compensation descriptor specifies the next compensation based on the
activity, this will possibly start compensations on multiple primaries. However,
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Figure 5.9.: Depicting an election caused by network partitioning, where all
execution states are annotated with their state identifiers (i.e., their
view and state numbers). Since there are two executions of activity
a2, the compensation descriptor has to use the state identifier to
uniquely identify the next activity to compensate.

the rollback must, of course, start from the most recent execution state. To ensure
this, only the current primary shall start the compensation. In our example of
Figure 5.9, we only want the current primary r2 to start its compensation. When
the primary r2 has finished its compensation, it will notify the previous primary
r1 that it can start its compensations. Thereby, it is ensured that the activities are
compensated in the reverse order of their execution, i.e., that r1 will only start to
compensate its execution of a1 after r2 has finished its compensations.1

Hence, we use the unique state identifiers to identify the next compensation.
Directly after switching to the compensation mode in our example of Figure 5.9,
the next compensation record that shall be performed is cNextsID = (v = 1,s =
2). The primary uses a synchronous update to replicate the execution state
that includes the compensation descriptor, which indicates the switch to the
compensation mode. The synchronous update mechanism ensures that only the
current primary will receive an acknowledgement from a majority of replicas.
Moreover, this ensures that the intention to compensate, saved in that execution
state, is stabilized.

1Note, however, that based on the stable-states vector, replica r1 might still already compensate
the invalid activity a2.
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Algorithm 7: Compensation in the basic and relaxed majority-based replica-
tion scheme on replica r (Part II)

1 upon Compensation(eID) do
2 if eSr.cD.cNextsID.s = ∞ then
3 eSr.cD.cNextsID.s := (max(sID.s)|∀(eID,sID,a,comp(a)) ∈ cLog,

where sID.v = eSr.cD.cNextsID.v);

4 while eSr.next 6= eSr.cD.cTarget
AND (eID,sID,a,comp(a)) ∈ cLog, where sID = eSr.cD.cNextsID do
// compensation: execute compensation handler...

5 execute comp(a);
// .. and rollback internal state

6 eSr.σ := rollback(eSr.σ);
7 write (comp,eID,sID) to cLog;
8 eSr.sID.s := eSr.sID.s+1;
9 eSr.next := a;

10 eSr.cD.cNextsID.s := eSr.cD.cNextsID.s−1;
11 send ASYNC_UPDATE(eID,vr,eS) to all replicas;

12 if eSr.next 6= eSr.cD.cTarget then // switch to previous view
13 eSr.sID.s := eSr.sID.s+1;
14 eSr.cD.cNextsID.s := ∞;
15 eSr.cD.cNextsID.v := eSr.cD.sID.v−1;
16 send COMP_UPDATE(eID,vr,eSr) to Primary(eSr.cD.cNextsID.v);
17 resend COMP_UPDATE until Primary(eSr.cD.sID.v) acknowledged

reception;
18 else // Compensation finished, notify current primary
19 send COMP_UPDATE(eID,vr.eSr) to Primary(vr);

20 upon Received COMP_UPDATE(eID,vx,eSx) from x do
21 if vx ≥ vr then // *
22 vr := vx;
23 eSr := eSx;
24 send COMP_UPDATE_ACK(eID,eSx.sID) to x;
25 if eSr.next 6= eSr.cD.cTarget then
26 scheduleCompensations(eSr.sSVec);
27 Start Compensation(eID);
28 else // Compensation finished, switch to execution mode
29 eSr.sID.s := eSr.sID.s+1;
30 eSr.cD := null;
31 send UPDATE(eID,vr,eSr) to all backups;
32 WAIT UNTIL(received ACK(eID,eSr.sID) from f replicas);
33 return to normal operation;

// * = checking the validity of a message
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Afterwards, the primary starts the compensation (cf. Algorithm 7 line 1-19).
The primary has to check whether it has executed the next activity to compensate,
i.e., whether its compensation log includes a compensation record for the state
identifier cD.cNextsID. If the primary’s compensation log contains such a record,
it compensates the activity as follows (cf. Algorithm 7 line 4-10):

1. Like during the execution, the primary increments the execution state’s
state number indicating that the execution progressed.

2. The primary executes the compensation handler and rolls back the internal
state.

3. The primary updates the execution state. In specific, the activity that has
been compensated has to be executed again when continuing the workflow
execution. Thus, the next activity to execute in the execution state is set to
the activity that has been compensated. Accordingly, the next activity to
compensate, which is indicated by the state identifier cNextsID is updated.

4. The primary sends an ASYNC_UPDATE message, containing the new
execution state, to all other replicas.

In case that the log does not contain the compensation record of the activity
to compensate next (cf. Algorithm 7 line 12-17), the primary of the previous
view has to take over. Consequently, we update the compensation descriptor of
the execution state accordingly and send a COMP_UPDATE message, which
contains the new execution state, to the previous primary. Consider that the
replica r2 in Figure 5.9 has finished the compensation of activity a2 which had
the state identifier (v = 1,s = 2). Then, the next activity to compensate would
be (v = 1,s = 1). However, since r2 did not execute any activity prior to a2, it
has no such compensation record in the log. At this point, the previous primary,
i.e., the primary of view 0 has to take over. Hence, r2 sets the next activity to
compensate to be cNextsID = (v = 0,s = ∞). Here, we set the state number to
infinity because the old primary might have multiple invalid activity execution
that have higher state numbers than s = 1 that still need to be compensated.

When the previous primary receives the COMP_UPDATE message (cf. Algo-
rithm 7 line 20-32), it starts to compensate its activity executions starting from
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the activity that produced the execution state with the highest state number (cf.
Algorithm 7 line 1-3). As described above, this is ensured through setting s = ∞
when handing over the compensation to the previous primary.

The compensation is finished when the activity to which the execution shall
return and the next activity to execute match, i.e., eS.cD.cTarget = eS.next. In
specific, a replica that reaches this state informs the current primary through a
COMP_UPDATE message (cf. Algorithm 7 line 18-19).

When the current primary receives this COMP_UPDATE, it initiates the
switch back to the execution mode (cf. Algorithm 7 line 28-33). The primary
empties the compensation descriptor and then sends the new execution state to
all backups using the synchronous update mechanism. As soon as a majority has
acknowledged the reception of the execution state, the current primary switches
to the execution mode continuing the workflow execution.

Note that the election and recovery work as described previously because the
execution state’s state number is incremented as during normal execution. Hence,
a newly elected primary will get to know of the ongoing compensation through
the compensation descriptor in the execution state. Even if after a failure the new
primary might not use the newest execution state, each replica is responsible to
compensate its own activity execution and will simply skip the compensations
that it already performed based on the log entries.

However, since every replica is responsible for compensating the activities
that it has executed, the compensation mode requires each primary that has
executed activities that need to be compensated to be available. Thus, the
compensation mode provides no availability advantage over a non-replicated
execution. When the respective primary is failed, the execution (or compensation,
rather) is blocked. We, however, assume that the necessity for using user initiated
compensations should be rare – especially for highly automated processes where
availability is most crucial. Hence, we provide the means for using user initiated
compensations with our replication scheme for cases where it is required, even
though the compensation mode provides no availability advantage over a non-
replicated execution.
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5.2. Flexible Failover Replication

In the following, we present a workflow replication scheme that increases avail-
ability further but, in turn, causes higher compensation cost than the majority-
based replication schemes. For understanding the idea of this new replication
scheme, we will lay out the limitations of the majority-based replication schemes
presented above.

Assume that a majority of replicas fails. Then, the workflow execution can-
not continue when performing a synchronous update. However, when striving
purely for availability, this can be cured by encapsulating all activities in one
passively replicated synchronization group requiring no synchronous updates at
all. However, what severely limits the availability is the fact that the majority-
based replication schemes are unable to elect a new primary when a majority of
replicas failed. In Figure 5.10, we evaluate a replicated workflow execution with
5 replicas, where we partitioning the network and additionally inject one crash
failure such that none of the partitions contain a majority. The failure lasts for
30s. We measured the downtime, i.e., the time the workflow execution does not
make progress, and the compensation cost, where 100% refers to compensating
the complete workflow once. We observe that the majority-based replication,
where all activities are contained in a single passively replicated synchronization
group, experiences an outage for the complete failure time because it cannot elect
a new primary that continues the workflow execution.

The active replication scheme overcomes this problem by executing the work-
flow on all replicas independently. Note that this active replication is different
to our relaxed majority-based replication scheme, where we only use active
replication for synchronization groups that imply no compensation cost. Since
our goal is to increase availability further by allowing a higher compensation cost,
we will here consider a pure active replication scheme meaning that the complete
workflow is actively executed by all replicas. Upon finishing the execution, the
replicas agree on one of the workflow executions via majority consensus and
compensate all other executions (cf. Figure 5.7). Consequently, all but one
replica might fail during the execution without impacting availability. Only the
consensus during the termination requires a majority to be available.
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Figure 5.10.: Comparison of our majority-based and an active replication scheme
with 5 replicas in the failure scenario of having no majority within
a partition. [Lower is better]

The problem of active replication is that it incurs high compensation cost
because all but one of the executions have to be compensated. In our scenario of
Figure 5.10, the failures do not cause downtime when using active replication and,
hence, the execution always stays available. However, the compensation cost is
above 300%. In a failure free execution, active replication with 5 replicas would
even cause 400% of compensation cost. Here, it is lower because one replica
experiences a crash failure and, thus, cannot continue the workflow execution.

In conclusion, Figure 5.10 shows that majority-based and active replication
constitute two opposing extremes leaving a huge search space in between. In the
following, we address this search space by proposing a new replication scheme
for obtaining the best of both worlds.

5.2.1. Flexible Failover Replication Scheme

Without any failures, one primary executes the workflow exactly as when using
our majority-based replication scheme. However, in the case of a failure, we
allow the replicas to elect a new primary without requiring a majority. In other
words, each partition elects a primary. Assume, for example, that all replicas are
partitioned from each other. Then, all replicas will elect themselves as primary
and execute the workflow independently – similar to active replication.
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Of course, this increases the compensation cost. For controlling the compensa-
tion cost, we introduce the vote threshold tv. A replica needs tv votes for being
elected as primary, where 1≤ tv ≤ b |R|2 c+1. We call this replication mechanism
flexible failover replication because the vote threshold determines the failover
behavior. A workflow designer, as the domain expert, can decide the vote thresh-
old depending on the desired availability. When setting tv to 1, each replica
can vote for itself and become primary. Here, the availability of the workflow
execution is ensured even if all but one replica fail. However, if all replicas are
partitioned from each other, setting tv = 1 will incur very high compensation cost.
Setting tv = b |R|2 c+1 leads to majority-based replication, where all activities of
the workflow are contained in a single synchronization group. Hence, there will
be fewer primaries in case of network partitioning but – in turn – the availability
is lower since it is impossible to elect a new primary when there is no network
partition containing a majority of replicas. Setting the vote threshold between 1
and f +1 realizes a tradeoff.

Even though allowing primaries to be elected without majorities seems straight-
forward, it poses multiple problems with respect to our existing majority-based
replication schemes. First of all, every partition should only elect a single primary
even when tv = 1. Otherwise, we again would induce unnecessary compensation
cost. On the other hand, when a replica is in a partition on its own, it should
quickly become primary.

Secondly, we might have multiple competing primaries when the network
partitions. Here, it is not predetermined which of these primaries will send its
result back to the workflow client application. In terms of performance, the
primary that finishes first should send back its result, while the other primaries
should compensate their execution. In comparison, our majority-based replication
scheme always has only one valid primary and only this primary can send back
its result to the workflow client application. The valid primary is decided by
the view number, where the view number is incremented during each majority
election and then replicated on a majority of replicas again. Hence, out of a
majority, at least one replica knows the highest view number and, thus, the
currently valid primary (because there is exists a function mapping the view
number to the primary replica of this view). However, with the flexible failover
replication scheme, we do not require majorities during elections. Hence, we also
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cannot use the view mechanisms because it is based on this majority replication.
As a consequence, the stable-states vector cannot be used anymore because it is
based on the principle that there is only one valid primary that can make progress
on the workflow execution.

Finally, when two partitions reconnect, how do we detect and resolve conflicts
without stopping or delaying the workflow execution? Any delay would forfeit
availability, where availability is our main goal.

In conclusion, our existing majority-based replication schemes need significant
changes for enabling flexible failover replication. In order to ensure understand-
ability with all the required changes, we will describe the adapted scheme as a
whole. In specific, we will first give an overview about the scheme and the new
mechanisms needed for enabling flexible failover replication before defining the
replication scheme in detail.

5.2.1.1. Overview

A replicated workflow execution is started when the workflow client application
sends an execution request to all replicas. However, since there is no view
number or function to determine the primary from the view number, we need a
new mechanism for deciding on a primary: we always elect the replica with the
highest identifier as primary. Initially, we can save the overhead of an election.
The replica with the highest identifier is automatically the initial primary. The
primary executes the activities of the workflow and sends asynchronous updates
to the backups after each activity execution.

In case that the primary crashes or the network is partitioned, the backups elect
a new primary. For the being elected as primary, a replica only has to receive
votes from tv replicas (including itself). The new primary collects the state from
all voters to determine one of the states as the take-over state.

In case of network partitioning, multiple partitions might elect a new pri-
mary – depending on tv. With tv = 1, for example, each partition will elect a
primary. The primaries of the different partitions are not aware of each other.
Upon re-connecting, the primaries will get to know of the competing executions
through the reception of updates from the other primaries. Obviously, all but
one execution have eventually to be compensated for ensuring that the overall
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workflow execution is Single-Execution-Equivalent (cf. Chapter 4). For example
in Figure 5.11, activity a1 was executed both by r1 and r2. Thus, either r1 or r2
has to compensate its execution of a1 to resolve the conflict.

When the primaries detect a conflict, all but one execution need to be stopped
to minimize the compensation cost. For achieving the best performance in terms
of execution time, we stop the executions that lag behind while letting the most
progressed execution continue. For ensuring that exactly one execution continues
we would need to perform an election, where each election, of course, incurs
synchronization overhead. Hence, we opted for a more lightweight solution,
where the conflict resolution relies on the already integrated asynchronous update
mechanism. When a primary receives an update from a further progressed
execution (which the primary can decide from the received update message), it
directly stops its execution. For example, in Figure 5.11, r2 becomes primary
after partitioning from r1. After reconnecting, r2 stops its execution because it
receives an update from r1, which is already progressed further.

Since we avoid to perform an election, we trade the guarantee given by the
election protocol – that there will be at most one primary after the election –
against the saved election overhead. In specific, when there are two primaries that
execute a workflow at the same speed and started at the same point in time, both
might never receive an update from the other primary, which contains a further
progressed execution state. Then, both will execute the complete workflow
increasing the compensation cost. However, in practice it is unlikely that two (or
more) primaries start an execution from the same state at the same point in time
and execute the workflow at the same speed over a long period of time.

For completely resolving the conflict of Figure 5.11, replica r2 has to com-
pensate its execution of a1 after stopping its workflow execution. However, r2
does not know whether the execution state produced by a1 was used by another
primary as a take-over state – as is the case in Figure 5.11.

In general, a primary can only compensate an activity ax after all activity
executions that depend on ax (i.e., that used the state produced by ax as input)
have been compensated (if any). This has not been a problem with our previous
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Figure 5.11.: Example of the flexible failover replication scheme with 3 replicas
and tv = 1

replication schemes because a majority was informed of a take-over state by
a primary. Then, the old primary only produced invalid activity executions
afterwards that were never used by another replica. Thus, a replica always
could compensate its invalid activity executions in the reverse order of execution
without interacting with the other replicas.

However, with flexible failover replication, there might be multiple primaries
which execute the same activities concurrently. Which of the activity executions
are compensated is decided at a later point in time. Moreover, any of the execution
states produced by the activities might be used by other primaries as take-over
state. Thus, even if an activity needs to be compensated, other replicas might
have to compensate their causally dependent activity executions first. In the
example depicted in Figure 5.11, replica r3 has to compensate a2 and a3 before
the replica r2 can compensate a1.

For tracking these causal dependencies, each replica keeps a history of its
activity executions, where each history entry includes the information which
execution state was used as input and which execution state was produced through
the activity execution. This, however, requires each execution state to have a
unique identifier, where we cannot use the previous execution state identifier
based on views as we already discussed above.
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Now, an execution state identifier consists of three parts: a replica identifier,
a failover counter, and a state number. The replica identifier specifies which
replica was the primary that produced the state. However, a replica might become
primary multiple times during the execution. The failover counter indicates how
many times a replica tried to become primary through an election, i.e., how many
times the replica started a failover. Finally, the state number is incremented with
every activity execution – indicating the progress of the workflow execution.

As stated above, a replica can only compensate an activity ax if all activity
executions that used the execution state produced by ax were compensated.
Actually, an execution that used ax’s execution state as a take-over state might
be the execution on which the replicas agree in the end. Then, ax is part of the
decided workflow execution and will not be compensated. In our example of
Figure 5.11, the replicas might eventually agree on the execution of replica r3
meaning that r2’s activity execution of a1 must not be compensated. Instead, r1
would need to compensate its execution of a1 – and, of course, all the following
activity executions as well. As a consequence, we only compensate activities
after the replicas have agreed on one workflow execution.

This agreement is part of the termination of the workflow execution. In specific,
the termination consists of three phases. In the first phase, the replicas perform a
majority consensus to agree on one finished workflow execution. The consensus
requires a majority of replicas to be available. The replicas send the result of
the decided execution to the workflow client application. In the second phase,
all replicas learn about the decision, allowing the replicas to compensate the
activity executions that are not part of the decided workflow execution. In the
final phase, the replicas forget the workflow execution after all replicas have
finished all necessary compensations.

During the workflow execution, we can ensure progress as long as tv replicas
are available while the agreement during the first termination phase requires a
majority of replicas. The last two termination phases require all replicas to be
available. However, this is not critical as the last two phases are completely
decoupled from the workflow client application.
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5.2.1.2. Data Structures

The flexible failover replication scheme has to maintain data in volatile memory
as well as on stable storage for the workflow execution (cf. Table 5.2). In specific,
the volatile memory of a replica r contains the following information:

• eID: unique identifier of the replicated execution.

• G: workflow model that is executed by eID.

• tv: vote threshold required for becoming primary.

• primr: indicator on whether r is currently primary.

• eSr: last execution state that r is aware of. In other words, if r is primary,
this is the last produced execution state. If r is a backup, eSr is the last
execution state received from a primary.

The execution identifier eID, the workflow G, and the vote threshold tv are same
on all replicas that participate in the execution. All other data, i.e., the primary
indicator and the execution state, might be different on each replica. In specific,
the execution state consists of the following variables:

• next: next activity to execute.

• σ : internal state that is input for the next activity execution.

• sID: execution state’s unique identifier.

The identifier of an execution state sID consists of the following variables:

• rID: identifier of the replica that produced the execution state.

• f : value that the failover counter had when the state was produced.

• s: state number that the producer assigned to the execution state.
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Volatile Memory

eID workflow execution’s identifier
G workflow model that is executed
tv vote threshold for being elected as a primary
prim boolean indicating whether the replica is primary
eS execution state

eS.next next activity to execute
eS.σ internal state
eS.sID identifier of the execution state

eS.sID.rID ID of the replica that produced eS
eS.sID. f value the failover counter had when eS was produced
eS.sID.s state number that the producer assigned to eS

Stable Storage

f local failover counter
H execution history

Table 5.2.: Data structures kept for each workflow that is executed using our
flexible failover replication scheme

All the above described variables are saved in volatile memory, which is wiped
through crash failures. The following variables are saved in stable storage to
survive crash failures:

• fr: current failover counter of r. Each time r starts a failover, the counter is
incremented. Initially, fr is 0.

• Hr: execution history of r, where each activity execution is logged.

The failover counter fr is saved on stable storage to prevent crash failures from
resetting fr. The execution history Hr is stored on stable storage for ensuring that
a replica never forgets an activity execution (which it might need to compensate
later). In specific, a replica r writes an execution record for every executed
activity ax to Hr. The execution record (eID,eSinput .sID,eSprod.sID,comp(ax))

contains the execution identifier eID, the identifier of the execution state eSinput

that is used as input for the activity execution, the identifier of the produced
execution state eSprod , and the compensation handler comp(ax) of the executed
activity ax. For triggering the execution of a compensation handler, a replica
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sends the execution record to the Compensation Unit. The Compensation Unit
filters duplicate compensation requests based on the eSprod.ID.

5.2.1.3. Normal Operation

The workflow client application sends an execution request message
EXEC(eID,mID) to all replicas, where the message contains the unique ex-
ecution identifier and the identifier of the workflow model that shall be executed.
Upon receiving the message, a replica stores the execution identifier and loads
the workflow model from the workflow repository. If the replica is the initial
primary, i.e., the replica with the highest ID, it instantiates the loaded workflow
model and sets its primary indicator primr to true.

A primary executes the workflow as follows (cf. Algorithm 8 line 1-10):

1. The primary writes an execution record for the activity that is going to be
executed into the execution history.

2. The primary executes the activity and updates the variable that indicates
the next activity to execute, i.e., eS.next.

3. The primary sends an update containing the produced execution state to all
replicas. The primary sends the update asynchronously, i.e., the primary
continues the workflow execution while sending the update.

Upon receiving an update from the primary, a backup applies the included
execution state if the state number of the received state is higher than the one that
the backup currently stores (cf. Algorithm 8 line 11-14).

5.2.1.4. Failover

All backups monitor the primary by means of a heartbeat mechanism. If the
primary becomes unavailable through crashing or partitioning, the backups elect
a new primary. Any partition with at least tv replicas elects the replica with the
highest ID in that partition as primary.

Upon detecting a primary failure (cf. Algorithm 9 line 1-3), a backup incre-
ments its failover counter indicating it now starts a failover. Then, it requests
VOTE messages from all replicas. All replicas with lower identifiers reply with a
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Algorithm 8: Flexible failover replication scheme on replica r (Part I)
// normal operation

1 while eSr.next 6= null do
2 if primr = true then

// Save input execution state’s ID
3 eSInputIDr := eS.sID;

// Produce next execution state
4 eSr.sID.rID := r;
5 eSr.sID. f := fr;
6 eSr.sID.s := eSr.sID.s+1;
7 write (eID,eSInputIDr,eSr.sID,comp(eSr.next)) to Hr;
8 eSr.σ := execute(eSr.next,eSr.σ );
9 next := succ(G,eS.next);

10 send ASYNC_UPDATE(eID,eSr);

11 upon receive ASYNC_UPDATE(eID,eSx) do
12 if eSx.s > eSr.s then
13 primr := f alse;
14 eSr := eSx;

VOTE that includes the execution state of the voter (cf. Algorithm 9 line 4-12).
Any replica with a higher identifier sends a REJECT message.

A replica requires tv votes for becoming primary. If a replica receives a single
REJECT message, it will not become primary since this means there is a replica
with a higher identifier in the same partition. It, however, might be the case
that a replica receives enough VOTE messages before receiving a REJECT. For
handling this case, every replica that requested VOTE messages waits for the
time threshold tt ∈ N, specifying a threshold in ms, even if the replica already
received enough VOTE messages.

If a replica has received tv VOTE messages and no REJECT after waiting for
tt , it becomes primary (cf. Algorithm 9 line 13-17). The replica uses the state
with the highest state number from the received VOTE messages as the take-over
state. Now, the new primary returns to normal operation.

When there are multiple partitions each hosting a primary, the primaries will
receive UPDATE messages from each other after the partitions reconnect. When
a primary receives an UPDATE that contains an execution state with a higher
state number than its own state, the primary stops its execution (cf. Algorithm 8
line 13). Thereby, competing executions are stopped without introducing addi-
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Algorithm 9: Flexible failover replication scheme on replica r (Part II)
// failover

1 upon detected primary failure do
2 fr := fr +1;
3 send REQ_VOTE(eID,r, fr) to all replicas;

4 upon receive REQ_VOTE(eID,x, fx) from x do
5 if primr = true then // r is primary
6 send REJECT(eID,x, fx) to x;
7 else if x < r then// r has a higher ID
8 if r is not waiting for votes then
9 trigger event detected primary failure;

10 send REJECT(eID,x, fx) to x;
11 else
12 send VOTE(eID,x, fx,eSr) to x;

13 upon receive VOTE(eID,x, fx,eSx) from x do
14 if received VOTE from ≥ tv replicas for (x, fx)
15 AND waited ≥ tt then
16 eSr := execStateWithHighestStateNumber(VOTEs);
17 primr := true;

tional coordination overhead. As already described above, there remains a chance
that there are two or more competing executions that start from the same state at
the same point in time and execute the workflow at the same speed. Hence, the
primaries never receive an update, which indicates a further progressed execution,
from another primary. In the worst case, the competing executions will execute
the complete workflow. However, in practice, this scenario is rather unlikely.

5.2.1.5. Termination

When a primary has executed the last activity of the workflow, it initiates the
termination (cf. Algorithm 10 line 1-2). The termination consists of three phases.
In the first phase, the replicas agree on one workflow execution via majority
consensus. This also decides the result of the workflow execution, which is then
sent to the workflow client application. In the second phase, all replicas learn of
the decided workflow execution and compensate the activities that do not belong
to this workflow execution. In the final phase, the replicas forget the workflow
execution after all replicas finished the necessary compensations.
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Algorithm 10: Flexible failover replication scheme on replica r (Part III)
// termination

1 upon eSr.next = null do
2 start Agreement;

3 upon Successful Agreement(eSx) do
4 forall (eID,eSInputID,eSProdID,comp(a)) ∈ Hr do
5 send COMP_REQ(eSProdID) to all replicas;

6 upon Receive COMP_REQ(sID) from x do
7 if (eID,eSInputID,eSProdID,comp(a)) ∈ Hr, where eSInputID = sID then
8 if (comp,eID,eSProdID) ∈ Hr then
9 send COMP(eID,sID);

10 else if (keep,eID,eSProdID) ∈ Hr then
11 send KEEP(eID,sID);
12 else
13 do nothing; // not yet decidable

14 else
15 send COMP(eID,sID) to x;

16 upon Receive COMP(sID) do
17 if received COMP for sID from all replicas then
18 send (eID,eSInputIDr,sID,comp(a)) to Compensation Unit;
19 write (comp,eID,sID) to Hr;

20 upon Receive KEEP(sID) do
21 write (keep,eID,sID) to Hr;

The first phase can be realized by any consensus protocol, such as the Paxos
protocol [Lam98]. Using Paxos, a majority of replicas elect a leader which
proposes an execution state of a finished workflow execution as the final execution
state. If a majority of replicas accept the proposal, it is guaranteed that all
replicas will eventually accept the proposal. Thus, a majority can decide on a
final execution state and, thereby, on the respective workflow execution which
produced this state. Moreover, the final execution state also determines the result
that is then sent to the workflow client application.

In the second phase, the proposer repeatedly sends the decided final execution
state to all replicas until all replicas have acknowledged the reception. Now, the
replicas need to identify which of their activity executions belong to the decided
workflow execution and compensate all others. For each executed activity, a
replica sends a COMP_REQ message to all replicas (cf. Algorithm 10 line 3-5),
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where the message contains the identifier of the execution state produced through
the respective activity execution.

Upon receiving a COMP_REQ message (cf. Algorithm 10 line 6-13), a replica,
say r, uses the included execution state identifier for checking whether r used
the state as input for any of its activity executions. If not, then r can allow
the compensation by replying with a COMP message. However, if r used the
execution state as input, it can only allow the compensation after compensating
the activity execution for which the state was used. Moreover, in case this activity
execution belongs to the decided execution, it has to be kept. In this case, r

replies with a KEEP message.

A replica can only compensate the activity after all replicas replied with a
COMP message (cf. Algorithm 10 line 16-19). For triggering the compensation,
a replica sends the execution record of the activity execution to the Compensation
Unit. Afterwards, the replicas writes a compensation record (comp,eS.sID) to
the execution history. If one replica replies with a KEEP message (cf. Algo-
rithm 10 line 20-21), the activity execution belongs to the decided workflow
execution and the activity is not compensated. In this case, the replica writes a
keep record (keep,eS.sID).

The replica regularly repeats the COMP_REQ messages until it has written
a keep or compensation record for each activity that it has executed. After all
records have been written, the second phase is finished. Like in the majority-
based replication scheme the workflow execution has now completed. However,
the replica has to keep the execution’s data in volatile memory because the other
replicas still might be in the second phase.

For forgetting the replicated workflow execution, we use the mechanism
from the the majority-based replication scheme, i.e., the two phase-commit
[LS79, ML83]. The action carried out by two phase-commit is the forgetting of
the execution. When all replicas agree to be ready to forget, i.e., when the replicas
have finished the second phase, the forgetting is committed. Upon receiving
such a commit, the replicas write an (end,eS.sID) record to the execution history
and remove all data from volatile memory. For saving space on stable storage
any workflow execution with a begin and end record may be pruned from the
execution history.
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Algorithm 11: Flexible failover replication scheme on replica r (Part IV)
// recovery

1 upon Recover in ACTIVE state do
2 send RECOV_REQ(eID) to all replicas;

3 upon Receive RECOV_REQ(eID) from x do
4 if Terminated and already reached agreement then
5 send DECISION(eID,eSr) to x;
6 else
7 send RECOV_RPLY(eID,mID, tv,eSr) to x;

5.2.1.6. Recovery

Through crash failures, a replica loses the data kept in its volatile memory. Upon
recovery, a replica reads its execution history. Here, we again differentiate
between the UNKNOWN and the ACTIVE state (cf. Section 5.1.1.5).

Obviously, a replica that recovers in the UNKNOWN state cannot initiate any
recovery steps for eID. When recovering in the ACTIVE state (cf. Algorithm 11
line 1-2), the replica has to retrieve values for the variables in its volatile memory
before it can participate in the replicated execution again. Thus, it requests the
data from all replicas by sending a RECOV_REQ message.

Upon receiving a RECOV_REQ (cf. Algorithm 11 line 3-7), a replica reacts
differently depending on whether or not the workflow execution is already ter-
minating. In specific, if the execution has already finished the first phase of
termination, the replica sends a DECISION message to the recovering replica,
where the DECISION message contains the decided execution state. Otherwise,
the replica sends a RECOV_RPLY, which contains the workflow model identifier,
the vote threshold, and execution state that the replica currently stores.

When the recovering replica receives an RECOV_RPLY, it loads the workflow
model of the received workflow model identifier from the workflow repository.
Additionally, it saves the received vote threshold and executions state. Afterwards,
the replica returns to normal operation acting as a backup. In case that the
recovering replica receives a DECISION message, the replica also saves the
included execution state and returns to normal operation, where it directly starts
the second phase of termination.
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5.2.2. User Initiated Compensations

As described in Section 5.1.3, a user might initiate the compensation of a part or
the complete workflow during the execution. So far, the flexible failover replica-
tion scheme does not support compensation during the execution. Compensation
is only supported as part of the termination after having agreed on the result of
one execution that is sent back to the workflow client application. In the follow-
ing, we will present mechanisms for supporting user initiated compensations
with our flexible failover replication scheme. Similar to the the majority-based
replication scheme, we introduce a compensation mode. The compensation mode
of flexible failover replication differs from the one of majority-based replication
since flexible failover replication does not rely on majorities (except from the
consensus during termination).

The logging is extended to include the executed activity. In specific, each exe-
cution record (eID,eSInputID,eSProdID,a,comp(a)) in the execution history
Hr includes the execution identifier of the replicated execution, the identifier of
the execution state that was input to the activity execution, the identifier of the
execution state that was produced by the activity execution, the executed activity,
and the compensation handler of that activity.

Before switching to the compensation mode, every primary needs to stop
its execution. With our flexible failover replication, any replica might possibly
be a primary when the vote threshold tv is set to 1. Thus, each replica has to
acknowledge that it stopped its execution (if any) before staring the compensation.

Remember that compensation not only strives to semantically reverse the
changes of the activity on the external state but also rolls back the internal state.
Thus, we also need to roll back to the execution state identifier that was associated
with the internal state. Unfortunately, that means that the state number in the
identifier will get smaller through the compensations – not reflecting the progress.

Thus, we need an explicit progress indicator for the compensation mode, called
the epoch counter (or e for short), which the replica stores in volatile memory.
Moreover, each execution state identifier stores in which epoch it was executed.
Now, the epoch counter serves together with the state number to identify the
execution state’s progress, where a state sID is more recent than a state sID′ if
(sID.e > sID′.e) or ((sID.e = sID′.e)∧ (sID.s > sID′.s)). Note, however, that
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Algorithm 12: Compensation in the flexible failover replication scheme on
replica r (Part I)

1 upon Receive COMPENSATE(eID,a) do
2 primr = f alse; // stops the execution

// Create compensation descriptor
3 er := er +1;
4 eSr.cTarget := a;
5 send COMP_MODE(eID,er,eSr.cTarget) to all backups;
6 WAIT UNTIL(received COMP_MODE_ACK(eID,er) from all replicas);
7 send START_COMP(eID,er) to all replicas;
8 start Compensation(eID);

9 upon Receive COMP_MODE(eID,ex,cTargetx) from x do
10 if ex ≥ er then // *
11 primr = f alse; // stops the execution
12 er := ex;
13 eSr.cTarget := cTargetx;
14 reply with COMP_MODE_ACK(eID,ex) to x;

15 upon Receive START_COMP(eID,ex) from x do
16 if ex = er then // *
17 Start Compensation(eID);

the other fields of the state identifier (i.e., the producer rID and the failover
counter f ) are needed as well for uniquely identifying the state even though these
fields do not indicate progress.

Similar to the concept of views, the replicas will not accept messages sent
from older epochs. Thus, during an election a new primary will use the most
recent state as just defined. Moreover, a backup only accepts updates from the
current or a newer epoch.

Upon receiving a COMPENSATE message from the user (cf. Algorithm 12
line 1-8), a replica stops any ongoing execution and saves the activity to which
the execution shall return (or cTarget for short). However, in contrast to the
majority-based replication scheme, the cTarget is directly stored in the execution
state and not part of a compensation descriptor.2 Afterwards, the replica increases
the epoch counter and broadcasts the new epoch and the compensation target
with a COMP_MODE message to all other replicas.

2We do not need an indicator for the activity to be compensated next because the replicas decide
when an activity can be compensated based on coordination and their execution histories.
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Algorithm 13: Compensation in the flexible failover replication scheme on
replica r (Part II)

1 upon Compensation(eID) do
2 while Hr contains uncompensated activities a≥ eSr.cTarget do
3 (eID,eSInputID,eSProdID,a,comp(a)) := nextToComp(eSr.cTarget);
4 send COMP_REQ(eID,eSProdID) to all replicas;
5 WAIT UNTIL received COMP for eSProdID from all replicas;

// compensation: reverse changes on external state and...
6 execute comp(a);

// ...roll back internal state if this state is available
7 if eSr.sID = eSProdID then
8 eSr.σ := rollback(eSr.σ );

// Revert sID to match rolled back state
9 eSr.next := a;

10 eSr.sID := eSInputID;

11 write (comp,eID,sID) to Hr;
12 if eSInputID.prod 6= r then // input state produced by other

replica
13 WAIT UNTIL COMP_REQ(eID,eSInputID) is received;

14 Start LeaveCompMode(eID);

15 Function nextToComp(a)
16 return (eID,eSInputID,eSProdID,a,comp(a)) ∈ Hr,

where max(esProdID.e)|max(esProdID. f )|max(esProdID.s)
AND (comp,eID,eSProdID) 6∈ Hr;

// * = checking the validity of a message

Upon receiving a COMP_MODE message (cf. Algorithm 12 line 9-14), the
replica checks the validity of the message by checking whether the received
epoch is greater or equal to the locally stored epoch. If the message is valid, the
replica stores the received epoch and the compensation target. Afterwards, it
acknowledges the reception of the message.

After all replicas have stored the compensation target and switched to the new
epoch, it is ensured that all primaries have stopped their execution. Thus, the
compensation may now start (cf. Algorithm 12 line 6-8 & line 15-17).

Now, the replica may start its compensations (if any). Here, all the activities
have to be compensated in the reverse order of execution (cf. Algorithm 13
line 15-16). However, any execution state produced by a primary might be used
by another primary as take-over state. Hence, the replica has to request all other
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replicas for whether it can compensate an activity execution similar to the second
phase of termination (cf. Algorithm 13 line 3-5). Thus, the replica sends a
COMP_REQ message, which includes the state identifier of the execution state
produced by the activity execution that shall be compensated, to all replicas.

Upon receiving such an compensation request (cf. Algorithm 14 line 1-11), a
replica validates whether it needs to compensate any of its own executions before
allowing the compensation. If the replica used the state that shall be compensated
as input for an execution, the replica waits until it has compensated the respective
activity execution.

In contrast to the termination phase, we have to ensure that after the com-
pensation a rolled back internal state is available from which we can continue
the execution. Thus, the output internal state of an activity execution, which
will be rolled back during the compensation, has to be available before starting
the compensation. As a consequence, a replica provides the execution state to
the compensation requestor if the state identifier for which the compensation
permission is requested matches the replica’s current execution state.3

After receiving the compensation allowance from all replicas, the compen-
sation and rollback can be started (cf. Algorithm 13 line 5-13). Then, the
compensation is written to the log.

Before starting the next compensation, the replica has to check whether another
replica might need this state as input to start its compensation (cf. Algorithm 13
line 12-13). In specific, if another replica produced the execution state – which is
determined from the logged execution state identifier – then this execution state
has to be provided to the producer before the execution state can be overwritten
through another compensation.

After a replica has compensated all activities that it executed following the
activity to which the workflow execution shall return, the compensation has
finished (cf. Algorithm 13 line 14). However, before switching back to the
execution mode, the replicas have to receive an execution state update that
includes the rolled back execution state. In specific, the replica that compensated
the compensation target has produced the execution state that has to be replicated

3Of course, some of the execution state might not be available anymore since they were
dismissed because there was a more progressed execution. However, this is not severe since it
is ensured that there are some execution states from which the execution can be rolled back.
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Algorithm 14: Compensation in the flexible failover replication scheme on
replica r (Part III)

1 upon Receive COMP_REQ(eID,sIDx) from x do
2 if (eID,eSInputID,eSProdID,a,comp(a)) ∈ Hr, where eSInputID = sIDx then
3 if (comp,eID,eSProdID) ∈ Hr then
4 if sIDx = eSr.sID then
5 send COMP(eID,sIDx,eSr);
6 else
7 send COMP(eID,sIDx,null);

8 else
9 do nothing; // not compensated own execution yet

10 else
11 send COMP(eID,sIDx,null) to x;

12 upon Receive COMP(eID,sIDx,eSx) from x do
13 if eSx 6= null AND (comp,eID,sIDx) 6∈ Hr then

// Received output internal state of activity that is
compensated next

14 eSr := eSx;

on all replicas for continuing the workflow execution. There actually might be
multiple replicas that executed the activity that is the compensation target. Any
of the execution states might be used for continuing the execution. However, it
needs to be ensured that after a failure a recovering replica will always choose
one of these states to continue the execution from.

Thus, the execution state is made the most recent execution state by increment-
ing the epoch counter of the replica and setting the epoch counter in the state
identifier to the new epoch counter value (cf. Algorithm 15 line 1-9). As this
creates a new execution state, this has to be logged in the execution history to
keep the execution history intact. Afterwards, the replica sends this new exe-
cution state to all replicas, which save the received state, and returns to normal
operation for continuing the execution (cf. Algorithm 15 line 10-17).

In comparison to the compensation mode of majority-based replication, flexi-
ble failover replication requires all replicas to be available for every activity that
needs to be compensated. Thus, the compensation mode of flexible failover repli-
cation actually has a lower availability than a non-replicated execution. Again,
we assume the necessity of user initiated compensations to be rare – especially
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Algorithm 15: Compensation in the flexible failover replication scheme on
replica r (Part IV)

1 upon LeaveCompMode(eID) do
2 if eSr.next = eSr.cD.cTarget then

// reverted to the execution state that has been input for
the activity execution to which we reverted

3 er := er +1;
// log phantom execution

4 eSInputID := eSr.sID;
5 eSr.sID.e := e;
6 eSr.sID.prod := r;
7 eSr.sID. f := f ;
8 eSr.cTarget := null;
9 write (eID,eSInputID,eSr.sID,null,null) to Hr;

10 send COMP_FINISHED(eID,eSr) to all replicas;
11 return to normal operation as primary;

12 upon Receive COMP_FINISHED(eID,eSx) from x do
13 if finished all compensations then
14 if eSx.e≥ er then // *
15 er := ex;
16 eSr := eSx;

17 return to normal operation as backup;

// * = checking the validity of a message

for highly automated processes, where even fractions of seconds count. How-
ever, there are cases in which it might be necessary to compensate a part of the
workflow or even the complete workflow [SK11, SK12]. For workflows, which
require a user to supervise the execution and frequently initiate compensations,
majority-based replication is the better choice.

5.3. Extensions

The above described basic and relaxed majority-based replication schemes as
well as the flexible failover replication scheme can only handle a sequence
of compensable activities. In the following, we extend the schemes to support
branching, activities which cannot be compensated, and more complex interaction
patterns than request-reply such as choreographies.
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5.3.1. Branching

In our workflow model, AND- and XOR-branches are created through having
multiple outgoing edges from one activity with according transition conditions.
In the following, we describe the mechanisms for supporting AND- and XOR-
branching. This implies that we also support any branching that can be expressed
as a combination of AND- and XOR-gateways.

AND-branching: Through AND-branching, the workflow can concurrently
execute branches of the workflow. So far, our presented replication schemes
maintain a varialbe that indicates the activity that shall be executed next. Obvi-
ously, when only maintaining a single activity which is up for execution, this
works only for sequences. We overcome this limitation by executing each branch
as it would be a separate workflow because then each branch again is simply
an activity sequence. This is possible because all concurrent AND-branches
use disjoint subsets of the internal state (cf. Chapter 3). Since this means that
the branches do not share data, the independent execution of the branches is
straightforward [KL12].

We realize the AND-branching support as follows: the primary creates a
branch execution state for each branch, which only contains the respective subset
of the internal state. Basically, the primary executes each branch as it would be
an separate workflow using the respective branch execution state. For identifying
the branch execution, we associate the eID with a branch identifier bID, i.e.,
(eID,bID) uniquely identifies one branch. Each branch sends independent UP-
DATES using the new identifier, where the UPDATE includes only the respective
subset of the internal state.

For joining the branches back together, each branch execution has to be
finished. Then, the primary joins the subsets of the internal state by copying the
new variable values of the subsets into its regular execution state. Afterwards,
the primary continues the workflow execution.

XOR-branching: Actually, XOR-branching is naturally supported by our
schemes because the execution state includes a pointer to the activity that shall
be executed next. So, after the activity execution is finished, the transition
conditions of the outgoing edges are evaluated deciding the branch that is going
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to be executed. Thus, the UPDATE sent after the activity execution indicates
which branch was chosen.

5.3.2. Loops

For realizing loops within a workflow, it is common to define loop activities that
contain as sequence of activities (and possibly also AND- and XOR-branches),
which are repeated until the loop’s condition is fulfilled.4 Thus, the activities that
are contained in the loop activity might be executed multiple times. With respect
to our replication schemes, this means that some activities will be executed again
but the state number of the produced execution states will continuously increase.
Since the states are still uniquely identifiable, our schemes support loop activities
without any extension.

Note, however, that usually the iterations of a loop activity are assigned a
unique identifier [SK12] such that the user can refer to an activity execution of a
specific iteration of the loop, e.g., for monitoring purposes. In principle, we can
add such a unique identifier when logging the activity execution for allowing a
user to invoke the compensation to a specific point in one iteration.

5.3.3. Non-compensable Activities

So far, we assumed that each write activity has a compensation handler that
semantically reverses the changes that the activity performed on the external
state. However, there also exist activities which cannot be compensated [LR00].
For example, some discounted airplane tickets do not allow to cancel the ticket
after booking. A replica might only start this activity execution if it is ensured
that no other replica restarts (or already started) the execution of that activity.
Moreover, when the activity is contained in an XOR-branch, it must be ensured
that the activity execution is only started if the replicas agree on that branch.

As a consequence, calling a service of a non-compensable activity is similar
to informing the workflow client application about the result of the workflow
execution. Once the message (i.e., the request message to the service or the
result message to the workflow client application) is sent, the effects on the

4http://docs.oasis-open.org/wsbpel/2.0/
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external state are irreversible. Because of the similarities, we reuse the first phase
of termination of the respective replication scheme for reaching consensus on
one workflow execution. When having decided on the workflow execution, the
primary of the decided workflow execution becomes the exclusive primary until
the UPDATE of the non-compensable activity was distributed. While there exists
an exclusive primary, no elections may start. Thus, if the primary or the called
service fails, the workflow execution cannot progress, i.e., the execution has to
wait for the recovery of the primary or service. For this reason, this approach of
enabling the support of non-compensable activities is not optimal.

Similar to Behl et al. [BDH+12], we propose to increase the fault tolerance by
introducing a unique interaction identifier (UIID) that identifies the interaction
with that service. The service can filter duplicate calls based on the UIID, which
allows a new primary to repeat the request to the service. As described above,
the replicated execution still performs the consensus on one workflow execution.

The consensus – reused from the first phase of termination – requires a majority
of replicas to be available both for the majority-based replication schemes as
well as for the flexible failover replication scheme. As part of this consensus, the
coordinator proposes one workflow execution to decide upon. Furthermore, this
proposal includes the service to be called by the non-compensable activity as
well as a UIID. Thus, once the replicas have decided on one workflow execution,
they also have decided on the service to call as well as the UIID.

When calling that service, the primary includes the UIID in the request mes-
sage. Now, assume that the primary fails and a new primary is elected. The
majority-based replication schemes will automatically get to know of the UIID
and called service since the election is based on a majority. The flexible failover
replication scheme might elect a primary that does not know of the agreed work-
flow execution, called service, and UIID. However, this simply means it will start
the consensus again through which the primary will learn of the decision.

Consequently, any newly elected primary will call the same service again
using the same UIID. The service will filter the duplicate message based on the
UIID and simply repeat the reply. Hence, the service, for which no compensation
handler is available, will not be executed again. Of course, this requires each
service of a non-compensable activity to implement such a filtering mechanism.
Alternatively, a middleware for filtering might be inserted. Then, existing services
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Figure 5.12.: Using a middleware and a UIID for filtering duplicated service calls
of a non-compensable activity a5.

without such a filtering mechanism may be used. We have depicted how a
middleware can be used for filtering in Figure 5.12.

5.3.4. Complex Interactions and Choreographies

Until now, we assumed that each service call is realized by a request-response
pattern, where the request and the response are sent and received by the same
activity. If, however, the request-reply interaction spans multiple activities, the
service interaction is called asynchronous [BCPR04]. In other words, with an
asynchronous service call one activity, called request activity, sends the request
to the service while another activity, called reply activity, is responsible for the
reception of the reply. When a replica sends a request to a service, the service
will send the reply to the requesting replica. In case of a primary failure, the new
primary will not re-execute the request activity if the old primary replicated an
execution state following the request activity. Figure 5.13 depicts such a scenario
where the primary r3 fails after sending the request to the service. The new
primary r2 continues the execution from an execution state following the request
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Figure 5.13.: Example of an asynchronous service call, were activity a1 is the
request activity and activity a3 is the reply activity. The new primary
r2 does not receive the service reply because the service is sending
the reply to the request sender, i.e., the failed old primary r3.

activity. Hence, the new primary does not re-execute the request activity a1 and,
for this reason, also does not receive a reply from the service because the service
sends the reply to the old primary r3 that has sent the request.

A similar problem arises for choreographies, where multiple workflows interact
– in a possibly complex manner – by sending or receiving messages according
to a specified interaction pattern [Wes07]. In Figure 5.14, for example, two
workflows are interacting according to a (rather simple) choreography, where
workflow 1 is sending a message to workflow 2 and, later, receives two messages
from workflow 2 in return. Workflow 1 is executed in a replicated manner, where
the replica r3 is primary and, thus, the interaction partner for workflow 2. If the
replica r3 would fail, workflow 2 will still send its messages to the failed replica.

Workflow engines typically correlate messages to workflow instances by means
of the sender’s endpoint address, e.g., the IP address and port number of the
message sender. With respect to our example in Figure 5.14 this means only
messages sent from replica r3 are correlated with workflow 2. Even if replica r2
would try to continue the interaction, the workflow engine of workflow 2 would
not deliver the messages to workflow 2 since the correlation would fail.

For overcoming the limitation, we extend the middleware that we already
proposed for supporting non-compensable activities (cf. Figure 5.12). In specific,
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Figure 5.14.: Example of choreography between two workflow executions, where
workflow 1 is executed in a replicated manner.

we propose to route all asynchronous service calls and choreography messages
through a middleware making the workflow replication transparent.

Like with non-compensable service calls, the replicas have to decide on one
workflow execution and on a unique interaction identifier (UIID). Then, the
middleware uses the UIID for correlating the messages of the conversation with
a workflow execution instead of using endpoint references of the replicas for
the correlation. Any replica might send messages for the conversation to the
middleware. The middleware forwards the message to the service or workflow.
The service or workflow observes the middleware as one endpoint making the
replication transparent. Consequently, any replica might continue a conversation.
Moreover, the reply of the service or workflow will be routed to any available
replica when letting the middleware monitor the availability of the replicas. In
the Chapter 6, we will present how such a middleware is realized in detail.
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FOR realizing the replication schemes with existing workflow engines, we
will provide a software architecture in this chapter. The architecture is
kept generic and, thus, can be used for adding the replication schemes to

any existing workflow engine that manages imperative workflows. However, be-
fore we describe the architecture, we extract the requirements that the architecture
needs to fulfill.

6.1. System Requirements

The system should fulfill several requirements regarding the generality of its
applicability. It especially should be easily usable and, thus, work with as few
manual interventions by users as possible. In specific, we identified the following
requirements:

Automated deployment: The system must be able to automatically distribute
a workflow model to several workflow engines. The number of workflow
engines receiving the model has to be identical to the specified replication
degree.1 In other words, not all workflow engines have to serve as a
replica during a replicated workflow execution enabling the possibility for
balancing the workload between the registered workflow engines.

Automatic execution: It must be possible to trigger the replicated execution of a
workflow by sending a message to one endpoint of the system. Linking and

1We assume that the desired replication degree is specified in the execution request. The
replication degree might be specified by the workflow designer or calculated by a probabilistic
model taking QoS properties into account. We can support any arbitrary method.
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synchronizing the workflow engines for the exchange of synchronization
messages must be done automatically.

Scalability: The system has to be scalable. Thus, it must be possible to easily
add and remove workflow engines, which can participate in the replicated
execution of workflows.

Transparency: The replication must be transparent to any interaction partner of
the workflow instance. Other workflows participating in the choreography
can use different replication degrees, or might not be replicated at all.

We realize these requirements in our Highly Available WorKflow executionS
(HAWKS) system, which we present in the following.

6.2. Architecture of the HAWKS System

As depicted in Figure 6.1, the HAWKS system is a middleware solution consisting
of the Synchronization Units, which are attached to each Execution Engine, and
the HAWKS Controller. The Synchronization Unit is responsible for controlling
the workflow executions in the engines according to the used replication scheme.
The HAWKS Controller is responsible for starting replicated executions and
routing messages between the engines. In the following, we describe each
component in detail.

6.2.1. Synchronization Unit

The Synchronization Unit runs the used replication scheme and controls the
workflow execution in the Execution Engine accordingly. More specifically,
the Synchronization Unit i) maintains the execution state, ii) suspends and
resumes the workflow execution, iii) tracks changes of the internal state during
the execution, iv) sends the changes to the other replicas (by sending them to the
Message Broker), v) applies state changes it receives and skips the corresponding
activities, and vi) manages elections after failures. Thus, any existing workflow
engine can be extended by a Synchronization Unit, which enables the usage of
our replication schemes. In conclusion, the Synchronization Unit fulfills the
automatic execution requirement.
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Figure 6.1.: Architecture of the HAWKS system

6.2.2. Message Broker

The Message Broker routes the messages between the Execution Engines such
that the replicas of a workflow can interact. This is necessary because the
Execution Engines do not know the other Execution Engines that participate in
the replicated execution. The Message Broker also correlates the messages to the
corresponding workflow instance (i.e., replica) of the Execution Engine (since
the Execution Engine can execute multiple workflow instances in parallel).

Additionally, the Message Broker makes it transparent to an interaction partner
of a workflow execution with which replica they are interacting. This trans-
parency is required for enabling the tolerance of replica crashes – especially for
asynchronous service calls, non-compensable services, and choreographies as we
already discussed in Section 5.3. Thus, the replicas send the according messages
to the Message Broker, which then sends the messages to the interaction partner.
Through this routing mechanism, the interaction partner perceives the replicated
execution as a single endpoint satisfying the transparency requirement. Moreover,
the Message Broker filters duplicate messages based on the unique interaction
identifier as described in Section 5.3.
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6.2.3. EE Manager and EE Registry

The Execution Engine Manager (EE Manager) and the Execution Engine Registry
(EE Registry) are responsible for managing the Execution Engines that can
currently participate in a replicated workflow execution. On start-up, each
Execution Engine registers itself at the HAWKS Controller. Therefore, the
Synchronization Unit sends a registration message to the Message Broker. The
Message Broker routes the message to the EE Manager. Then, the EE Manager
stores the Execution Engine together with its endpoint reference in the EE
Registry. The EE Manager is also responsible for checking if Execution Engines
become unavailable. If an Execution Engine is unreachable, the EE Manager
will (eventually) remove the Execution Engine from the EE Registry.

6.2.4. Deployment Manager

When a workflow, which was modeled in a Workflow Designer, is to be executed,
an execution request containing the workflow model is sent to the Message
Broker. Then, the Deployment Manager determines the Execution Engines that
participate in the replicated execution based on the workload of the engines.
More specifically, it selects the engines which have the lowest workload ensuring
workload balancing (e.g., by monitoring the engines [WKK+10]). The Deploy-
ment Manager sends the workflow model to these engines and sets up the routing
paths between the replicas in the Message Broker. The Deployment Manager sat-
isfies the automated deployment requirement. Because the Deployment Manager
selects the Execution Engines using workload balancing and the EE Manager
and EE Registry allow to easily add more Execution Engines, the scalability
requirement is fulfilled as well.

6.2.5. Event Manager and Registry

The Event Manager tracks events and saves these in the Event Registry. The
tracking includes the start and end of a replicated execution. Thereby, the
HAWKS Controller can identify started and not finished executions. Moreover,
the tracking can be easily extended for further monitoring.
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FOR showing the applicability of the HAWKS system to current work-
flow technology, we implemented a proof of concept in an existing
open-source workflow engine. In the following, we present the proof of

concept implementation. Subsequently, we evaluate our replication schemes –
first our majority-based replication schemes and then our flexible failover replica-
tion scheme – with regard to availability, replication overhead, and performance.
Finally, we will evaluate the scalability of our HAWKS proof of concept imple-
mentation.

7.1. Prototype

We show the applicability of the HAWKS system to existing workflow tech-
nology by extending the open-source workflow engine Apache ODE1 and the
pluggable framework for extended BPEL (ODE-PGF)2, which is able to orches-
trate workflows based on the Web Service Business Process Execution Language
(WS-BPEL). WS-BPEL is standardized by OASIS3 and widely used in industry.
The Apache ODE is itself running in an Apache Tomcat4 servlet container.

For realizing the communication between the engines, we use Apache Ac-
tiveMQ5. The Synchronization Unit that is attached to Apache ODE is reading
from and writing to a message queue for controlling the ODE such that the
replicas are synchronized. For routing the synchronization messages, we use
Apache Camel6. Furthermore, we also use it for routing messages sent from

1http://ode.apache.org
2http://www.iaas.uni-stuttgart.de/forschung/projects/ODE-PGF/
3http://docs.oasis-open.org/wsbpel/2.0/
4http://tomcat.apache.org
5http://activemq.apache.org
6http://camel.apache.org
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Figure 7.1.: Overview of the prototypical implementation and used technology

interaction partners to the replicas. The realization of the HAWKS system with
the discussed technologies is depicted in Figure 7.1.

For reducing the synchronization overhead, we do not include the complete
internal state of the workflows in the execution state updates messages. Instead,
we use incremental updates, i.e., we track which variables are modified during
activity executions and only send these modifications to the backups. In turn,
the backups check that they received and applied all preceding execution state
update messages. They can easily check this because the state number of the
execution states is incremented with every update. We do not apply the update if
a preceding update is missing.

7.2. Evaluation Setup

We evaluate our workflow replication system with regard to availability, replica-
tion overhead, performance, and scalability. Therefore, we evaluate the system
on two different platforms: OpenStack and PlanetLab Europe. On Open Stack,
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we use VMs with 1 vCPUs and 2 GB RAM. In PlanetLab, the nodes are hetero-
geneous because they are provided and shared among users. Consequently, we
cannot specify the used hardware.

We generate random workflow models consisting of 100 activities, which is in
the range of typical workflow lengths [DDGB09]. We assume the compensation
cost to be monetary, where the compensation cost of the activities is set using a
uniform distribution between $0 and $100. Deterministic, read-only activities
occur with a probability of 1

4 . Each activity might either perform a local com-
putation or call a prototypical service, where all service calls are synchronous.
In specific, all read-only activities perform local computations, while all other
activities call services.

When stabilizing the state or when performing an election, a primary has
to receive a response from a majority of replicas to be able to continue the
execution. The primary resends the message when not receiving the required
responses within 150ms. During the workflow execution, the primary sends a
heartbeat message to each replica every 100ms. The timeout for detecting a
primary failure is 400ms. The values have been determined experimentally and
ensure low execution times while only triggering elections when the primary is
actually failed.

We compare our replication schemes to a non-replicated execution as well
as to pure active replication. When using active replication, the executions on
the different replicas are completely independent of each other. In the end, the
replicas perform a majority consensus to agree on one of the executions and
compensate all others. Overall, we performed more than 100,000 workflow
executions and averaged over these results.

7.3. Majority-based Replication Schemes

In the following, we will evaluate our basic and relaxed majority-based replication
scheme with regard to availability, execution time overhead, and compensation
overhead. Since our relaxed majority-based replication scheme requires the work-
flow to be divided into synchronization groups for supporting the switching be-
tween passive and active replication, we use our grouping guidelines for deciding
the grouping. In specific, we set the failover time threshold tt (cf. Section 5.1.2.2)
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to 500ms (Relaxed MBR 500) and 10000ms (Relaxed MBR 10000). We only
limit the failover time (but not the compensation cost) because the failover time
has a direct influence on the availability in case of failures. We will compare the
relaxed majority-based replication Relaxed MBR 500 and Relaxed MBR 10000
to the basic majority-based replication scheme (Basic MBR), where the state is
replicated synchronously after each activity execution. As already mentioned,
we additionally compare our replication schemes to a non-replicated execution
and pure active replication.

7.3.1. Availability

The main purpose of replication is to improve availability in the presence of
failures. In general, the availability is the probability (or percentage of time) that
a system is available (i.e., providing the intended functionality) [Woo95,CDK05].
In other words, the availability α is the uptime of the system tup (i.e., the time
the system is available) divided by the uptime plus the downtime te [Woo95]:

α =
tup

tup + tdown
(7.1)

For each workflow execution, we measure the downtime tdown and the overall
execution time texec. The downtime is the time that the workflow execution does
not make progress due to failures. The execution time is the time from initiating
the workflow execution until receiving the result of the workflow execution.
Because texec = tup + tdown, we can reformulate Equation 7.1 as follows:

α =
(texec− tdown)

texec
(7.2)

For evaluating the availability in the presence of failures, we randomly inject
failures during the workflow execution. With a mean time to recovery of 10s,
failures are short lived because typical failures even last up to multiple days
[BFF+14]. However, replication is obviously beneficial for long lived failures.
Instead, we show our replication scheme to be worth its overhead even when
failures are short lived. Moreover, we assume that a failed engine can resume
any started workflow execution after recovering from the failure.
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Figure 7.2.: Plotting the availability α (cf. Equation 7.2) against the number of
injected failures for our majority-based replication schemes running
on OpenStack. [Higher is better]
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The Open Stack measurements of Figure 7.2 show the availability plotted
against the number of injected failures. We can observe that the availability of the
availability of the non-replicated execution steeply decreases with an increasing
number of failures. Since the execution is not replicated, each failure causes
an outage lasting for the mean time to recovery leading to the steep decrease
of availability. Here, the non-replicated execution performs significantly worse
than any replicated execution. This shows that workflow replication is a valid
approach for increasing the availability. In the following, we will compare the
different replication schemes.

In terms of availability, active replication outperforms all other replication
strategies. The workflow execution provides over 99.5% availability with up to
f failures. With more than f failures, the majority consensus during termination
might be delayed causing a linear decrease in availability. However, active
replication is anyway not desirable because of its compensation overhead as we
will see in Section 7.3.3.

Now, we compare the basic majority-based replication scheme to our relaxed
majority-based replication scheme, which uses both active and passive replication.
The basic majority-based replication scheme provides the best availability, fol-
lowed by Relaxed MBR 500 and, finally, Relaxed MBR 10000. This is due to the
grouping of the activities. In case of a primary failure, the basic majority-based
replication scheme has to re-execute at most one activity, while Relaxed MBR 500
and Relaxed MBR 10000 might need to re-execute the complete synchronization
group in the worst case (cf. Section 5.1.2). When increasing the threshold from
tt = 500ms to tt = 10000ms, the passively replicated synchronization groups
contain more activities and the re-execution might take even longer. Thus, the
average failover time is increased causing longer times of downtime. This can
especially be observed for replication degree 9 in Figure 7.2.

In general, we observe that replication significantly improves availability.
Higher replication degrees tolerate more failures and, thus, improve availability
further. Our relaxed majority-based replication schemes Relaxed MBR 500 and
especially Relaxed MBR 10000 reduce availability compared to active replication
and our basic majority-based replication scheme. We, however, have to put these
results into context because replication always implies overhead. Thus, we will
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evaluate the execution time overhead of the replication strategies in the next
section.

7.3.2. Execution Time Overhead

The replication implies execution time overhead for stabilizing an execution state
at the end of a synchronization group as well as for electing a new primary. In
Figure 7.3, we depict the overhead of stabilizing the state and of performing an
election in Open Stack as well as in PlanetLab.

Figure 7.3 shows that the time overhead for a stabilization increases linearly
on Open Stack and PlanetLab from the replication degrees 3 to 9. On Open Stack,
the overhead stays below 10ms even for up to 9 replicas, while in PlanetLab the
overhead is around 100ms for 9 replicas. Electing a new primary takes around
45ms with 3 replicas and linearly increases to around 60ms for 9 replicas on
Open Stack. On PlanetLab, the election time increases linearly, taking 140ms
for replication degree 3 and 170ms for replication degree 9. Even though the
overhead in PlanetLab is higher, it is still relatively low when considering the
distances between the geo-distributed replicas in PlanetLab compared to the
Open Stack setup, where all replicas are placed in one server rack.

For evaluating the impact of the different replication degrees on the perfor-
mance on a complete workflow execution, we execute the workflows in Planet-
Lab. This setting imposes the highest execution time overhead for stabilizations.
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Additionally, we use our basic majority-based replication scheme forcing a stabi-
lization after each activity. In conclusion, we use the worst case configuration
with respect to execution time for making the differences between the replication
degrees obvious. In this measurement, we depict the absolute execution time
of the workflow executions. Hence, we generate a single workflow used for all
executions to make the execution times comparable. Again, we randomly inject
failures with a mean time to recovery of 10s.

Figure 7.4 depicts the number of failures plotted against the execution time
for different replication degrees. For a non-replicated execution, the execution
time increases linearly with the number of failures. Intuitively, each failure stops
the execution until recovery. Because the non-replicated execution does not
replicate state and, hence, has no stabilization overhead, it performs better in the
failure-free case. However, even with a single failure, the replicated executions
perform better. A replication degree of 3 (RD3) can already tolerate one failure.
For more failures, the execution time linearly increases. However, less steep than
the non-replicated. The behavior of an increasing failure tolerance for increasing
numbers of replicas can be observed across all replication degrees. However,
higher replication degrees also imply a higher execution time overhead, where
the replication degree 9 (RD9) takes almost 2s longer than RD3. On the other
hand, replication degree 9 remains unaffected with up to 5 failures.
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In summary, we lose performance in the failure free case in terms of execu-
tion time when increasing the availability by using higher replication degrees.
However, the execution time overhead of stabilizing the state is negligible when
a single failure occurs – even in a geo-distributed setting like PlanetLab when
forcing a stabilization after each activity.

Now, we will evaluate the execution time overhead in Open Stack, which
mirrors a datacenter setup, where the different replicas are executed closely
together, e.g., in the same server rack. Here, we will also inspect how our
synchronization groups can be used to reduce the stabilization overhead.

Figure 7.5 depicts the different replication approaches with respect to their
execution time overhead. Note that the generated workflows have different
execution times, where each activity is assigned a random execution time (using
the absolute values returned from a random generator based on a Gaussian
distribution with a mean of 0ms and a standard deviation of 500ms). To make
different workflow models comparable, we normalize the measured execution
time by the minimum time for executing the whole workflow. Thus, the best
possible execution time is 100%. An execution time above 100% in the failure
free case is caused by the overhead for stabilizing the state. The increase of the
execution time with an increasing number of failures shows the time that the
execution is delayed through the injected failures. This allows to compare the
overall performance of the replication schemes and puts the availability of the
different replication schemes (cf. Figure 7.2) into context.

As depicted in Figure 7.5, active replication does imply almost no time over-
head compared to a non-replicated execution in the failure free case. The basic
majority-based replication scheme implies significant execution time overhead
through the stabilization that is required after each activity execution. The work-
flow is delayed by around 6% compared to a non-replicated execution, no matter
how many replicas are being used. In other words, the replication degree has ba-
sically no impact on the execution time overhead when all replicas are located in
one server rack. The overhead of the basic majority-based replication scheme is,
however, still significant. Our relaxed majority-based replication scheme reduces
the overhead considerably, i.e., tt = 500ms saves around 1

2 and tt = 10000ms
saves more than 2

3 for failure free executions.
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Figure 7.5.: Plotting the execution time texec of our majority-based replication
schemes against the number of injected failures. [Lower is better]
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This, however, means that in the worst case we need to re-execute a complete
synchronization group when a primary fails. As a consequence, Relaxed MBR

10000 quickly loses the execution time advantage that it has over Relaxed MBR

500 because the groups contain more activities. In specific, when using 3 replicas
and there are at least 3 failures, both Relaxed MBR 500 and Relaxed MBR 10000
perform basically identical in terms of the execution time. With 5 replicas,
Relaxed MBR 500 and Relaxed MBR 10000 perform identical when there oc-
cur more at least 4 failures. With 9 replicas, this point is even delayed to at
least 7 failures. Additionally, we can observe that the execution time advantage
that the relaxed majority-based replication scheme, i.e., Relaxed MBR 500 and
Relaxed MBR 10000, has over the basic majority-based replication scheme re-
duces with an increasing number of failures. This trend is especially noticeable
for replication degree 9.

Surprisingly, the execution times of the relaxed majority-based replication do
not increase beyond the basic majority-based replication – even for tt = 10000ms.
In other words, it is mostly more efficient to tolerate longer downtime by increas-
ing tt for reducing the overall execution time. This, however, is also due to our
grouping guidelines, where all deterministic, read-only activities are grouped for
using active replication (independent of tt). With these synchronization groups
already given, it is then more efficient (in terms of execution time) to choose a
high value for tt , i.e., to tolerate higher failover times than to stabilize more often.

In conclusion, our relaxed majority-based replication scheme increases the
performance of workflow replication significantly compared to the basic majority-
based replication scheme. We save more than 2

3 of the execution time overhead
that the basic majority-based replication scheme implies. However, this means
a complete synchronization group might be re-executed in case of a primary
failures, which also increases the compensation cost. Thus, we will now evaluate
the compensation overhead implied by the different replication schemes.

7.3.3. Compensation Cost

We measured the number of compensated activities as well as the compensation
cost in the presence of failures, which is depicted in Figure 7.6 and Figure 7.7.
Remember that each activity of our generated workflow models has a random
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compensation cost between $0 and $100. To make the different workflow models
comparable, we normalize the compensation cost. A compensation cost of 100%
is equal to compensating all activities of the workflow model once. The optimal
value is 0%.

The basic majority-based replication scheme implies the smallest compensa-
tion cost because at most one activity has to be re-executed and, hence, compen-
sated in case of a primary failure. While the number of compensated activities
increases mostly linearly with the number of failures for all replication schemes
(cf. Figure 7.6), the relaxed majority-based approach Relaxed MBR 500 com-
pensates around twice as many activities compared to the basic majority-based
replication scheme. Relaxed MBR 10000 even compensates around four times
as many activities as the basic majority-based replication scheme.

In Figure 7.7, we can observe that active replication is no feasible solution.
In the failure free case, it implies 200% compensation cost with replication
degree 3, 400% with 5 replicas, and 800% with 9 replicas. The compensation
cost gets smaller with an increasing amount of failures because crashed replicas
do not execute activities and, thus, reduce the compensation cost.

The observations of Figure 7.6 are also reflected by the compensation cost
in Figure 7.7. For example, with 10 failures and replication degree 3, the basic
majority-based replication scheme implies around 3% compensation cost, while
Relaxed MBR 500 implies 6%, and Relaxed MBR 10000 incurs 12%. With
the higher replication degrees of 5 and 9 replicas, the number of compensated
activities and the compensation cost grows slower. The reason is that a higher
replication degree decreases the probability that a failure affects the current
primary. The workflow designer might directly set a maximum compensation
cost that is allowed per failure by setting ct . This provides a finer control over
the absolute compensation cost. The principle of setting ct is similar to setting
tt : Lower values for ct decrease the size of the groups and, thereby, increase the
number of required stabilizations.

7.3.4. Communication Cost

The primary coordinates the execution by sending and receiving messages. The
main communication cost is imposed by the messages that contain the inter-
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Figure 7.6.: Plotting the number of compensated activities of our majority-based
replication schemes against the number of injected failures. [Lower
is better]
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Figure 7.7.: Plotting the compensation cost of our majority-based replication
schemes against the number of injected failures. [Lower is better]
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nal state of the workflow, i.e., the UPDATE and STABILIZE messages. The
actual cost depends on the size of the internal state and how state information
is transferred (e.g., incremental versus complete). Within a synchronization
group, the primary sends exactly one UPDATE message per activity and backup.
STABILIZE messages might be sent more than once in case the primary times
out when waiting for a majority of replicas to respond. In our experiments, the
primary sends approximately 1.1 STABILIZE messages per passively replicated
synchronization group and backup – independent of the used replication degree
(i.e., 3, 5, or 9).

7.4. Flexible Failover Replication Scheme

In the previous section, we have evaluated our majority-based replication schemes.
The measurements have revealed that there is an obvious gap between active
replication and our majority-based replication in terms of availability and ex-
ecution time overhead (cf. Figure 7.2 and Figure 7.5). Our flexible failover
replication scheme strives to close this gap. Additionally, flexible failover repli-
cation tolerates partitioning failures that partition the replicas such that none of
the partitions contain a majority of replicas. Thus, each injected failure now
either partitions the network or crashes one replica. The ratio of partition to
crash failures is 1 to 4 reflecting that partitioning failures occur less frequently
than multi-crash failures [Bre17]. Both partition and crash failures have again a
mean-time to recovery of 10s.

For comparison, we again evaluate an active replication strategy and a non-
replicated execution. Additionally, when setting the vote threshold tv to b |R|2 c+1,
our flexible failover replication scheme is identical to the majority-based replica-
tion scheme with the complete workflow encapsulated in one synchronization
group. Since this is the configuration, where the majority-based replication has
the fewest execution time overhead, this is the best benchmark for comparing it
to our flexible failover replication scheme.
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7.4.1. Availability

In Figure 7.8, we evaluate the replicated workflow executions with 3, 5 and
9 replicas as well as a non-replicated execution. The availability α (cf. Equa-
tion 7.2) of the non-replicated execution is steeply decreasing with failures.
Actually, each failure delays the non-replicated execution by the mean time
to recovery. Any replicated execution clearly outperforms the non-replicated
execution.

With only one failure, the availability of active replication and the flexible
failover replication scheme (with the different settings of the vote threshold)
remains almost unaffected. This is not surprising because all approaches can
tolerate one partitioning or crash failure. Only short failover times for (possibly)
electing new primary after a failure impact the availability. With more than one
failure, the approaches start to diverge. In specific, one partitioning plus one
crash failure can create two partitions, where no partition contains a majority of
replicas. This means that majority-based replication (i.e., tv = 2 for 3 replicas,
tv = 3 for 5 replicas, and tv = 5 for 9 replicas) cannot elect a primary. Here, our
flexible failover replication with tv = 1 performs substantially better because
it continues the execution even if all but one replica fail – similar to active
replication. With replication degree 3, our flexible failover replication scheme
with tv = 1 even outperforms active replication for more than 4 failures. The
reason for this behavior is that active replication executes the workflows on all
replicas independently. Thus, when all replicas fail during the execution, each
execution is delayed by the mean time to recovery. In contrast, our flexible
failover replication scheme sends asynchronous updates to all other replicas.
Thus, when a replica recovers from a failure it might receive an execution state
from another replica which it will use for continuing its execution – in case it
becomes primary later. With higher replication degrees, our flexible failover
replication scheme cannot outperform active replication anymore. It becomes
very unlikely that the randomly injected failures delay all the replicas of the
active replication. Thus, on average, the effects of this failure scenario cannot be
observed anymore.

The advantage of the flexible failover replication scheme – no matter which
value was chosen for the vote threshold – over the majority-based replication
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scheme gets smaller when comparing replication degree 5 to replication degree 3.
This is due to the increased failure tolerance of higher replication degrees. This
trend continues for replication degree 9, where all replication schemes almost
behave identical.

In conclusion, when striving for availability, setting low values for tv allows
to reach near active replication performance. Especially, with a low replica-
tion degree, such as replication degree 3, setting tv = 1 increases availability
significantly compared to our majority-based replication scheme.

7.4.2. Execution Time Overhead

In Figure 7.9, we depict the execution time of the flexible failover replication
scheme. Since we are still using the randomly generated workflows as described
in Section 7.3.2, we again normalize the measured execution time by the mini-
mum time for executing the whole workflow. Thus, the best possible execution
time is 100%. An execution time above 100% in the failure free case is the
overhead of the replication scheme. The increase of the execution time with
an increasing number of failures shows the time that the execution is delayed
through the injected failures. This allows to compare the overall performance
of the different replication schemes and put the availability (cf. Figure 7.8) into
context.

We can observe that basically all of the replication strategies have the same
overhead for failure free executions. Compared to a non-replicated execution,
the replication strategies need 1% longer. This is the time required for the
termination, where the replicas perform a majority consensus to agree on one
workflow execution. Thus, we match the execution time overhead of the active
replication scheme.

The increased amount of execution time with an increasing number of failures
depicts the downtime. Since all replication schemes have the same execution
time overhead, a discussion about the execution time in the presence of failures
is congruent to discussing the availability (cf. Section 7.4.1).
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Figure 7.9.: Plotting the execution time texec of our flexible failover replication
scheme against the number of injected failures. [Lower is better]
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7.4.3. Compensation Cost

The increased availability through our flexible failover replication scheme, of
course, comes at a cost. In the worst case, when setting tv = 1, all replicas
are partitioned from each other and execute the workflow independently like
active replication. Even though this scenario is unlikely, it shows that the flexible
failover replication scheme increases availability at the cost of compensation.

Figure 7.10 shows the number of compensated activities plotted against the
number of failures, while Figure 7.11 shows the cost. Like in Section 7.3.3, we
again normalize the compensation cost to make the different workflow models
comparable. A compensation cost of 100% is equal to compensating all activities
of the workflow model once. Here, the optimal value is 0%.

The compensation cost again shows that active replication is no feasible
solution because it implies 200% compensation cost with replication degree 3,
400% with 5 replicas, and 800% with 9 replicas. All other replication schemes,
i.e., our majority-based and our flexible failover replication scheme, do not cause
any compensation cost in the failure free case. With more than one failure, flexible
failover replication incurs higher compensation cost when the vote threshold
tv is decreased. As decreasing tv allows smaller partitions to elect a primary,
partitioning failures lead to more competing workflow executions and, eventually,
to more compensations. However, compared to our majority-based replication
scheme, the compensation cost in the failure case is tremendous – especially
when considering that with smaller synchronization groups the compensation cost
can be reduced further. With replication degree 3, reducing the vote threshold
from tv = 2 (i.e., our majority-based replication scheme, where all activities are
encapsulated in a single synchronization group) to tv = 1 doubles the number of
compensated activities when failures occur. With 5 and 9 replicas, the amount of
compensated activities is also doubled when setting the vote threshold to tv = 1
compared to the majority-based replication scheme. Here, setting intermediate
values for the vote threshold allows to exploit the space in between.

In conclusion, flexible failover replication allows to reach near active replica-
tion performance while inducing no compensation cost in the failure free case like
passive replication. This is especially useful with low replication degrees, such as
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Figure 7.10.: Plotting the number of compensated activities of our flexible
failover replication scheme against the number of injected failures.
[Lower is better]
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Figure 7.11.: Plotting the compensation cost of our flexible failover replication
scheme against the number of injected failures. [Lower is better]
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replication degree 3, where setting tv = 1 and tolerating the higher compensation
cost in failure cases increases availability significantly.

7.4.4. Communication Cost

The flexible failover replication scheme shares the properties of the majority-
based replication scheme with regard to communication cost. The main commu-
nication cost is imposed by the messages that contain the internal state of the
workflow, i.e., the UPDATE. The actual cost depends on the size of the internal
state and how state information is transferred (e.g., incremental versus complete).
The primary sends exactly one UPDATE message per activity and backup.

7.5. Scalability of the HAWKS System

So far, we reserved the engines exclusively for the execution of a single (repli-
cated) workflow execution. This ensured that the execution times were not
influenced through overloaded engines. However, the engines are capable of
executing multiple workflows concurrently. Now, we investigate our HAWKS
system regarding high workloads without injecting failures in OpenStack, using
VMs with 4 vCPUs and 8 GB RAM. Because the basic majority-based replication
implies the highest message overhead because every state update requires replies
from the backups, we use this replication scheme for evaluating the scalability.

We double the workload every 300s until the point when the workflow engines
become overloaded. Initially, we start one workflow execution every 60s, then
every 30s, and so on. For evaluating the scalability, we add more computing
nodes running workflow engines. Then, for each replicated execution, we select
some of the computing nodes to participate in the specific replicated execution.
We first evaluate the replication degree 3 with 3 engines (RD3E3), i.e., all engines
host one replica per workflow execution. We also evaluate the setup of replication
degree 3 with 6 engines (RD3E6) and with 12 engines (RD3E12). In these cases,
the workload can be distributed to the different engines. Figure 7.12 shows that
adding more engines improves the performance by delaying the point where
the system becomes overloaded. While RD3E3 becomes overloaded at 700s
(starting a workflow every 15s), RD3E6 becomes overloaded at 1000s (starting
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a workflow every 7.5s) and RD3E12 even delays the point to 1200s (starting a
workflow every 3.75s).

For making the effects of this clear, we show the accumulated number of
finished workflow executions in Figure 7.13. RD3E3 is overloaded after execut-
ing around 70 workflow executions, RD3E6 after around 150 workflows, while
RD3E12 finishes around 340 workflows before being overloaded. This clearly
shows the scalability of the HAWKS system.
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THERE is a huge body of work on replication in the field of transaction-
oriented systems [BDF+13]. Those replication schemes are based on
the assumption that groups of activities are performed as atomic units

of work. There is also an extensive literature on active and passive replication
of services [CBPS10, OO14, LC12, Lam98] performing (non-atomic) activities
as we already described in Chapter 2. We borrow ideas from those approaches
like the structure of the election, consensus, and recovery procedure. However,
those approaches are based on the assumption that activities cannot be undone or
compensated once they are performed. In contrast, we exploit the possibility of
compensation to relax normal processing: Rather than performing consensus for
every activity, we only require consensus during termination, primary election,
and state stabilization.

There are a few other approaches aiming at fault-tolerant workflow engines
[LLdSFV08, SS13]. These approaches assume a fail-stop model [CBPS10],
where each engine that is detected as failed is actually failed. However, such a
perfect failure detector cannot be achieved in practice because an engine might
simply be slow to respond [FLP85, CBPS10]. Our scheme assumes the crash-
recovery model [CBPS10], meaning that we detect every failure eventually
but we might falsely assume an operational engine to be failed. We precisely
defined a correctness criteria for workflow replication. To fulfill the criteria,
old primaries have to compensate activities that are re-executed by the new
primary. In contrast, the fail-stop model implies that an engine that fails stays
failed indefinitely [CBPS10]. Hence, old primaries cannot compensate any of
its activities. Instead, the approaches focus on the new primary correctly taking
over the execution from the last received execution state. Other approaches
propose active replication for workflows consisting solely of read-only activities
[AGK04, BHR08, BHR09a, BHR09b, GEST09, ZRXS10, CB14]. This limits the
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workflow to only use activities that do not change a service’s state. Hence, our
replication schemes are more general.

There exist many approaches to increase the availability of services (cf. Chap-
ter 2), such as replicating the servers of a service [OO14,LC12,Lam98], or using
alternative services in case of failures [BTKR15, SPJ11, KHC+05]. However, as
mentioned above, those schemes are complementary to our proposed replication
schemes for workflow engines.
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9. System and Declarative
Workflow Model

THE concepts presented in Part A increase the availability of workflows
that are defined in an imperative workflow language (cf. Chapter 3).
Imperative workflow languages define the order in which the activities

of the workflow must be executed through an ordering relation. Thus, there is
a predefined execution order for the activities. There, however, exist workflow
languages that allow greater flexibility with regard to the execution order of the
activities: declarative workflow languages. These languages define constraints on
the execution order, where any execution order that does not violate a constraint
is allowed.

Of course, this greater flexibility raises the question of how much of the
previously defined concepts for imperative workflow languages can be applied
to declarative workflows. In order to answer this question, we first define the
declarative workflow model and introduce a scenario. Based on this scenario, we
can discuss the differences to our previous concepts in the following Chapter 10.

As in Part A, we consider a system that consists of a collection of nodes,
connected by a communication network. The nodes and the communication
links might experience crash failures at any point in time. According to the
crash recovery model, we assume that every failed node or communication link
eventually recovers from the failure [CBPS10].

Each node of the network might run a workflow engine, a service, or both.
The engines execute workflows, which call the available services. The workflows
are modeled in a declarative workflow language based on linear temporal logic

(LTL), such as Declare [PSvdA07, Pes08]. The declarative workflow language
allows us to constrain the order in which the activities of a workflow are allowed
to execute by constructing an LTL formula on the activities from a defined set of
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Figure 9.1.: A drone picks up parcels and delivers them to the next post office
and vice versa

linear time operators [EH86, Pes08]. All other activity sequences, which are not
explicitly forbidden by the LTL formula, are allowed. In the following, the term
workflow specification (or W for short) is used for the LTL formula that specifies
a workflow.

To clarify our contributions, we constructed a scenario in the context of drone
parcel delivery services (cf. Figure 9.1). Drone delivery has gained an enormous
attention lately. DHL already successfully tested a drone delivery and companies
like Amazon have shown great interest in the technology.1 The parcel delivery
companies usually compete for delivery times. Drones are especially interesting
to these companies because drones are not hindered by traffic jams and can
deliver parcels around the clock without much human involvement. In particular,
drones can be used to pick up (one or more) parcels from customers and deliver
them to the nearest post office (or warehouse) and vice versa. However, between
post offices (or warehouses), it still will be more efficient to use large trucks
because of the amount of parcels to be transported. The whole parcel delivery
process chain can be automated and modeled as a workflow.

Figure 9.2 shows an exemplary workflow for picking up one parcel. To keep
delivery times low, the execution of the workflow should be finished latest when
the drone reaches the post office. The LTL formulas in Figure 9.2 depict that all
activities in the workflow specification need to be executed. This is specified by
the � (finally) operator. For example, �a1 specifies that activity a1 has to happen

1http://www.cbsnews.com/news/dhl-testing-delivery-drones/
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Figure 9.2.: Workflow specification of a drone picking up one parcel. An arrow
means that the activity at the end of the arrow is only allowed to
execute after the activity at the root of the arrow has terminated
(inspired by Declare [Pes08]). The boxes show the LTL formulas
that model the specific behavior.
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finally, i.e., it needs to be executed at least once. Also, a4 can only be executed
after a1 has finished because a picture can only be analyzed after it has been
taken. The respective LTL formula ¬a4 U a1 specifies that a4 must not execute
until a1 was executed and that a1 finally has to be executed. Combining all the
LTL constraints depicted in Figure 9.2 leads to the workflow specification, which
is shown at the bottom of the figure.

Activity a7 should be executed only once because otherwise the system assigns
one parcel multiple times. This leads to trucks that reject other parcels because
the system falsely assumes the capacity limit of the truck is already reached.
Hence, activity a7 is non-idempotent. In contrast, activity a2, checking the truck
availability, can be executed arbitrarily often without any harm. Thus, this is an
idempotent activity. We assume that the workflow designer defines a cardinality

θ(a) for every activity a that specifies how many times the activity can be
executed maximally. We consider the cardinality to be part of the workflow
specification because it can be specified within LTL. Returning to our previous
example, we specify the cardinality of the non-idempotent activities a6 and a7 to
be θ(a6) = 1 and θ(a7) = 1, whereas all other activities are idempotent.

The workflow engines require a sequence of activities as input for executing
the workflow. This means that a sequence of activities that does not violate
the workflow specification needs to be generated and send to the workflow
engine. For example, [a1,a2,a3,a4,a5,a6,a7] is a valid sequence of the workflow
specification of Figure 9.2.

To execute the activity sequence, the engine instantiates the sequence, which
initializes the internal state of the workflow. Like in Part A, the internal state is a
set of variables needed for the execution. To execute an activity, the workflow
engine invokes a service that implements the functionality required by that activ-
ity. The service can be either available locally on the device that is running the
workflow engine or offered by a service provider. For example, when executing
activity a4, the workflow engine calls an image analysis and address validation
service. This service returns if the address is valid or not.

We assume that the constraints that enforce an activity execution order, specify
the data flow. Hence, the dashed arrows also define the data flow in our example
of Figure 9.2. For example, the output internal state produced by activity a2 (i.e.,
the variables of the internal state that the execution of activity a2 changes) is
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used as input for activity a7. However, no other activity uses the output state of
activity a2. Hence, the execution of activity a2 is completely decoupled from
activities a1, a3, a4, a5, and a6.

We assume that each workflow engine is using logging, which is typical for
workflow engines [BDH+12]. This allows the engine to continue the workflow
execution after a crash failure. However, without using replication, this does not
solve availability concerns because the workflow executions of that engine still
will not make progress while the engine is failed.

The goal is to ensure the availability of the workflow execution in the presence
of failures. For instance, in the drone delivery scenario, the workflow that needs
to be executed for every picked up parcel should be finished before reaching the
post office such that the parcels can be dropped directly to their allocated trucks
and the shipment of the parcels proceeds without delays.
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THE basic idea for ensuring availability is same as in Part A. We replicate
the workflow execution, where each workflow engine participates in the
replicated execution. Hence, we call the workflow engines replicas.

When assuming that each activity has a compensation handler (as we did
in Part A), we can generate one valid activity sequence from the declarative
workflow model. This activity sequence has a defined activity execution order
and can be specified in an imperative workflow language. Then, we can use our
replication schemes from Part A to ensure the availability during the workflow
execution. Moreover, we could even decide the next activity to execute at run-
time (after each activity execution) and announce the decided activity as part of
the update messages.

However, declarative workflows typically do not consider activities to have
compensation handlers, e.g., Declare [Pes08]. This might be due to the ability to
specify these as part of the workflow, e.g., by specifying that an activity might
only be executed a second time if another activity (that realizes the compensation)
is executed before. As a consequence, a non-idempotent activity is similar to
a non-compensable activity of Part A because we might execute it only once
and compensation is not available (cf. Section 5.3.3). When assuming non-
compensable activities, our replication schemes only improve availability when
assuming that a middleware makes the replication transparent such that every
replica might receive the reply from the already called service (cf. Section 5.3.3).
Even though this allows to tolerate replica crash failures, it requires a great
overhead because then we need to perform a consensus before the execution of
each activity to agree on the called service, an UIID, and the workflow execution
that is allowed to call the service.

So far, we, however, disregarded that declarative workflows are more flexible
than imperative workflows in the sense that the execution order of the activities
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Figure 10.1.: Showing the impact of the temporal failure of the service that
activity a6 calls on the execution of three replicas.

can be changed without violating the workflow specification. When executing a
differently ordered activity sequence on each replica, we can increase availability
without requiring the synchronization overhead that we described above. In order
to exploit this flexibility, we, however, need to make an additional assumption on
the workflow. In the following, we will first describe how reordering improves the
availability before describing why we need to make this additional assumption.

We will show the increased availability based on the drone delivery scenario
in the following. Figure 10.1 depicts the replicated execution of our drone exam-
ple workflow, where the replicas r1 and r2 execute the same activity sequence
– [a1,a4,a6,a5,a3,a2,a7] – while r3 executes a reordered activity sequence –
[a2,a1,a3,a4,a5,a6,a7]. The replicas r1 and r2 both cannot continue the execu-
tion upon executing activity a6 because the service that activity a6 has to access
is unavailable, e.g., due to the smartphone of the parcel receiver currently having
no connectivity. To overcome this limitation, we use reordered activity sequences
on the participating replicas, where every used activity sequence has to conform
to the workflow specification. In our example, the activity sequence of r3 is not
delayed because it executes a6 at a different point in time, where the service
is available again. In other words, the different activity sequences reduce the
impact of transient service failures.
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If the service is, however, permanently unavailable, all replicas will be unable
to finish the workflow execution. Permanent failures of services can be masked
by exploiting the possibility of defining alternative activities in the workflow spec-
ification. Consider that activity a4 in Figure 10.1 has the alternative to execute
activities a8 and a9 instead, such that ¬a9 U a8. Instead of using a service that di-
rectly analyzes and validates the address (as required by activity a4), a8 analyzes
the picture and a9 validates the address. Thus, these activities rely on different
services. If the service required for the execution of activity a4 permanently
fails, another replica executing the activity sequence [a2,a1,a3,a8,a9,a5,a6,a7]

can still execute. In conclusion, the structure of the activity sequences on the
different replicas has a significant influence on the availability of a workflow
execution. In the subsequent chapter, we address the problem of efficiently
creating k structurally different activity sequences, which ensure high availability
during execution.

In the presence of cardinality constrained activities, such as non-idempotent
activities, it is necessary to synchronize the replicas to ensure that the respective
activity is only executed as often as allowed by its cardinality constraint. This,
however, is a problem because that means if a replica, for example, executes
activity a6, no other replica can re-execute the activity. Other replicas can, then,
only continue their workflow execution if they reuse the result produced by the
single execution of a6. However, the outcome of a6 is dependent on the input
meaning that if another replica reuses the result of a6, it has to be ensured that it
would have provided the same input to a6. However, since the different replicas
might execute different activities before the execution of a6, the internal state
might differ.

We can overcome this limitation with the following assumption: every activity
a for which θ(a)> 1 is deterministic. In order to make that assumption applicable
to any declarative workflow in general, each activity that is non-deterministic
is considered and handled as a non-idempotent activity. With this assumption,
any execution of an activity, which is allowed to be executed multiple times, will
produce the same output for the same input.1 Additionally, remember that all
activities which have a causal relationship also have a constraint defining their

1Note that this requires that also the called service returns the same reply when sending identical
requests.
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execution order and, thereby, the data flow (cf. Chapter 9). Now, consider that a
workflow consists solely of idempotent (and, thus, deterministic) activities. Then,
any activity sequence that does not violate the workflow specification (i.e., the
ordering constraints) will generate identical results.

However, a workflow usually includes non-idempotent/non-deterministic activ-
ities. These have to be executed by only one replica for ensuring the correctness.
The result of this activity execution is then shared with all other replicas such
that these can reuse the result of that execution. As discussed above, we can,
however, only reuse the result if the respective replica would have used the same
input internal state for executing the non-idempotent activity.

The first non-idempotent (and possibly non-deterministic) activity has the
same input internal state regardless on which replica and in which order the
activities are executed2 because all preceding activities are deterministic. Hence,
the other replicas can reuse the shared result. Basically, this reusing of the result
makes any non-deterministic activity a deterministic activity. By induction, all
replicas will produce the same result for the complete workflow execution no
matter which activity execution order is used.

For imperative workflow languages, we defined Single-Execution-Equivalence,
which specifies when a replicated workflow execution is equivalent to a non-
replicated execution, where any replicated execution that fulfills Single-Execution-
Equivalence is correct (cf. Chapter 4). We can still apply the definition, which
however, is fulfilled rather obviously under our current assumptions.

Each activity sequence executed by a replica is allowed by the workflow
specification. Because the data flow is expressed as part of the constraints,
each write activity that causally succeeds another write must only be executed
after that activity. Every activity sequence of that workflow will enforce this
order. The causally succeeding write activity might only be executed if the
replica received a result of the preceding write or the replica executed the first
write itself. Hence, the writes are carried out in the same partial order as some
non-replicated execution. By induction, this holds for all causally related write
activities. Any write activity has the same input internal state as some non-

2Of course, this is only true if the workflow specification is not violated by the execution order
of the activities.
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replicated execution because all causally preceding activities are deterministic
(or behave deterministically through the reusing of results).

As a consequence, our replication scheme for declarative workflow execu-
tions only has to fulfill the following conditions to ensure Single-Execution-
Equivalence: (1) any replica might only execute activity sequences that are
allowed by the workflow specification and (2) every activity might only be
executed as often as allowed by its cardinality constraint.

Since we already need a mechanism for sharing results of non-idempotent
activities, we can reuse the mechanism for also sharing the results of all other
activities. These activities are required to be deterministic and, thus, the re-
execution will produce the same result. However, the replicas will execute the
activities at different points in time because each replica has a reordered activity
sequence. If a replica already received a result of an idempotent activity, it can
reuse the result instead of re-executing the activity speeding up the workflow
execution. If the replica did not receive the result yet, the replica re-executes the
activity and produces the result again.

In the following chapters, we will present a replication scheme for declarative
workflows, which consists of two parts. In Chapter 11, we present algorithms
for generating activity sequences that comply to the workflow specification. In
Chapter 12, we present a protocol that coordinates the replicated execution of
these activity sequences such that every cardinality constrained activity is only
executed as often as allowed by the constraint.
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11. Generating Activity
Sequences

SO far, we motivated that using structurally different activity sequences
increases the availability of a replicated workflow execution and showed
the challenges that arise with it. In this chapter, we present a metric

that rates a set of activity sequences depending on their structure to predict the
availability during a replicated execution. Then, we show how to generate the
activity sequences from a workflow specification. Afterwards, we analyze the
complexity of the generation process and present more efficient techniques.

11.1. Availability Metric

Our goal is to select a set of activity sequences S that provides high availability
when executing the activity sequences concurrently on different replicas. We
first define a metric that rates a sequence set according to the expected avail-
ability during the concurrent execution of the sequences s ∈ S. As explained in
Chapter 10, a sequence set S provides higher availability during execution, the
more the sequences s ∈ S structurally differ. Therefore, the proposed availability
metric rates sequence sets according to the requirements that

1. the time offset between two executions of one activity in different sequences
should be as big as possible,

2. alternative activities should be used as much as possible, and

3. sequences with few activities should be preferred.

The first requirement decreases the impact of transient failures of a service that
has to be accessed by one activity. The second requirement ensures that alternate
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activities are used whenever possible to reduce the dependency on a specific
service accessed by one activity. Finally, the third requirement prefers sequences
with few activities because every activity might possibly incur a failure.

In the following, we first define the availability rating of a set of two activity
sequences s1 and s2 denoted as D(s1,s2). Let cmax be the number of activities of
the longest possible activity sequence that complies with the workflow specifi-
cation. Likewise, let cmin be the number of activities of the sequence with the
fewest activities.

To account for the above mentioned first requirement, we calculate the offset
between the two executions of one activity a in the two sequences s1 and s2. The
offset of an activity a is denoted as O(a,s1,s2) and its calculation is based on the
position of the activity a in sequence s1 and the position in sequence s2.

To incorporate the second requirement, we need to consider the cases where an
activity a might not occur in one of the activity sequences because of alternatives.
For these activities, O(a,s1,s2) returns the maximum possible offset cmax.

To calculate the rating, we add the offsets of all activities occurring in the
two sequences. This gives a metric on how much these two sequences differ.
In general, the offset based rating increases with the number of activities in a
sequence. However, if a sequence has more activities, more failures can occur. To
fulfill the third requirement, the rating of sequences with many activities should be
decreased. Let function L(s1) calculate how many activities the sequence s1 has
more than cmin, i.e., L(s1) = |s1|− cmin. The rating is reduced by cmax for every
additional activity, i.e., it is reduced by L(s1) · cmax. Thus, the availability rating
D(s1,s2) is calculated by adding the offset of all activities in the two sequences
and, then, reducing the rating for the additional activities (cf. Equation 11.1).

D(s1,s2) =

(
∑

a∈s1∪s2

O(a,s1,s2)

)
− (L(s1)+L(s2)) · cmax (11.1)

Now, we generalize Equation 11.1 to rate a sequence set S of k sequences. We
simply sum up the availability rating of all pairs of sequences (Equation 11.2).

FAR(S) = ∑
(si∈S)

∑
(s j∈S\si)

D(si,s j) (11.2)
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Note that we defined the offsets based on the positions of the activities in the
activity sequences. This means that the availability metric is only accurately
representing the time offset between activities if all activities have the same
execution time. In reality, the activities may have varying execution times.
However, in our evaluations, we show that even if we vary activity execution
times, the sequence availability is not effected (cf. Chapter 13).

11.2. Generation and Selection of Activity
Sequences

In this section, we first present a method to generate differently structured activity
sequences from a workflow specification. Afterwards, we select the highest rated
set of sequences with respect to the availability metric.

To generate the sequences, we use model checking methods to translate the
LTL formula that represents the workflow specification into an automaton by
expanding the LTL formula step-by-step. The automaton provides the informa-
tion to deduce all activity sequences that conform to the workflow specification.
First, the LTL formula is associated with the entry node of the automaton (cf.
Figure 11.1 node X). Then, the automaton node is expanded according to a set of
rules [Cou99, DLP04] to simplify the formula into three parts (cf. Figure 11.1):

I) Activities that need to be executed directly,

II) promises (P) that need to be fulfilled eventually, and

III) a formula that defines what needs to hold next (◦), i.e., what needs to hold
after the activities of part I) have been executed [DLP04].

Part I is associated with the label of the edge to the next node, i.e., the activities
need to be executed to reach the next node. In our example of Figure 11.1 the
activity a1 needs to be executed to reach automaton node Y from node X . Part
II – the promises – is used to check if the current activity sequence fulfills the
workflow specification. If there are promises, then the workflow specification
is not yet fulfilled, i.e., the automaton node after this transition needs to be
expanded further. This information is stored in the edge between the respective
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Applying tableau rules

Applying tableau rules

Figure 11.1.: One step of an exemplary expansion of the LTL formula �a2∧¬a2
U a1∧¬� (a1∧a2) according to [DLP04]

nodes. In Figure 11.1, there is the promise to eventually execute a2, which means
that the next automaton node Y needs to be expanded further. Finally, part III is
attached to the next node of the automaton because it specifies what has to hold
after the activities of the part I have been executed. In Figure 11.1, the formula
of part III is associated with node Y . Applying the tableau techniques to this new
automaton node, i.e., to the associated LTL formula, will expand this node to the
following ones. This procedure of expansion repeats until the formula is fully
expanded to the complete automaton. From the labels of the edges, all n activity
sequences can be constructed by strategically going through the transitions of
the automaton. This solves the generation problem.

Out of all n generated activity sequences, we need to select the set of size k

that will achieve the highest availability during a concurrent execution of the
selected sequences. We solve this by rating all activity sequences sets of size k

using the availability metric and select the one with the highest rating.

Complexity

The proposed generation technique has a high complexity. In fact, LTL satisfia-
bility is a PSPACE-complete problem [SC85] and, therefore, finding satisfying
traces, i.e., activity sequences that conform to the workflow specification, is a
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PSPACE-complete problem. As a consequence, the generation process might
produce a large number of activity sequences.

The generated activity sequences are the input of the selection problem, which
is to find the best rated set of size k from n activity sequences. The selection prob-
lem can be mapped to the maximum edge-weighted clique problem (MEWCP),
which is NP-hard [AGKW07]. The MEWCP is a generalization of the maximum
clique problem [AGKW07]: Given a graph G = (V,E, f ), where f is a function
that assigns a weight to every edge, i.e., f : E → R, find the clique in which
the sum of all of its edges is maximal and the number of nodes of the clique
≤ k|k ∈ N.

Lemma 1. Selecting the best rated set of k activity sequences out of n activity

sequences can be mapped to the maximum edge-weighted clique problem.

Proof sketch. Given all n activity sequences, compute the availability ratings for
every pair of activity sequences and write them into a 2D-matrix. Using this as
an adjacency matrix, a complete graph with n vertices (representing the activity
sequences) can be created, where the availability ratings are the edge weights
between the vertices. The problem of finding the best rated set of size k is equal
to solving the MEWCP with a clique of size k in the graph.

11.3. Heuristics for the Generation and
Selection Problems

In the following, we propose two techniques to tackle the high run-time and
memory complexity of the presented generation and selection approach. Our first
technique significantly reduces the run-time of the selection process. The second
technique omits the generation of all activity sequences and, thereby, reduces the
memory consumption of the generation problem.

11.3.1. Improving the Performance of the Selection
Problem

As already described above, the selection problem is equal to solving the MEWCP.
To solve the MEWCP, we use a binary quadratic programming formulation of
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the problem [AGKW07]: Given a symmetric n× n-matrix Q composed of all
availability ratings (as presented above), find the vector v ∈ {0,1}n, such that the
outcome of Equation 11.3 is maximal, where the sum of all elements of vector v

must be k, i.e., |v|= k.

f (v) =
1
2

vT Qv (11.3)

If the element i of vector v is equal to 1, the sequence of column i in the matrix
is part of the set. If it is 0, it is not. To maximize the outcome of Equation 11.3,
we apply simulated annealing, as it is an established strategy to produce almost
optimal results within a short amount of time for binary quadratic programming
problems [KN01, MF02].

11.3.2. Improving the Performance of the Generation
Problem

Our evaluations show that simulated annealing drastically reduces the run-time
of the selection problem, while producing almost optimal activity sequences with
respect to availability (cf. Chapter 13). However, if the workflow specification
has many activities, the generation of all activity sequences easily becomes
unfeasible due to the run-time and the memory consumption. Thus, for formulas
that lead to huge automata, the full generation has to be omitted and a different
strategy has to be applied. To tackle this problem, we introduce the availability

prediction metric (APM). The idea is to prune the automaton during expansion by
only expanding those paths of the automaton that might lead to activity sequences
that are part of sets with high availability ratings. The activity sequences that are
created during the expansion and still have to fulfill promises (cf. Section 11.2),
i.e., that do not satisfy the workflow specification yet, are called intermediate

activity sequences.

In the following, we describe how to perform pruning during the expansion
of the automaton. We expand all automaton nodes that currently need further
expansion. This step is referred to as an iteration (cf. Figure 11.2 and Figure 11.3).
After each iteration, all newly created (intermediate) activity sequences generated
by the iteration are rated by the availability prediction metric. The difference
between the availability prediction metric and the availability metric is twofold.
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Firstly, we do not know the activity sequence with the fewest and most activities
during the expansion of the automaton. Therefore, to determine the ratings of
the (intermediate) activity sequences, the availability prediction metric estimates
cmax and cmin based on the currently available satisfying and intermediate activity
sequences. Secondly, to omit the selection problem, the availability prediction
metric only calculates the rating for every pair of sequences (i.e., only sets of
two sequences) and ranks the current (intermediate) activity sequences according
to the pairwise ratings. Then, we select the fFlows best rated sequences, where
fFlows ≥ k| fFlows ∈ N. For instance, in Figure 11.2, the second iteration leads to
eight intermediate activity sequences. Figure 11.3 depicts that all but three of the
intermediate sequences are pruned before the third iteration. Only the paths that
produce the selected intermediate sequences are expanded further.

Note that it is possible that a branch of the automaton is fully expanded but
does not include an activity sequence that satisfies the workflow specification.
These paths are called dead ends. If a selected activity sequence leads to a dead
end through expansion, the dead end branch is replaced by another branch. In
order to do so, the expansion algorithm goes backwards from the dead end to find
a node that was not expanded due to pruning. This node, then, will be expanded
compensating for the dead end.

In our evaluation, we show that the pruning strategy significantly improves
the run-time, however, compared to simulated annealing, it produces results that
have a lower but reasonable availability during execution (cf. Chapter 13).

151



11. Generating Activity Sequences

1. First Iteration

2. Second Iteration

Figure 11.2.: This is an example that shows how pruning is applied while expand-
ing the workflow specification of Figure 9.2. After each iteration,
three activity sequences are selected, i.e., fFlows = 3. The example
is continued in Figure 11.3.
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4. Third Iteration

3. Pruning

Figure 11.3.: Continuation of the example from Figure 11.2.
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IN the previous chapter, we presented methods to efficiently generate and
select a set of activity sequences that provide high availability when being
executed concurrently on different replicas. However, how the concurrent

execution of these activity sequences needs to be coordinated such that the
execution preserves the workflow specification has not been described so far. In
specific, each activity shall only be executed as often as allowed by the cardinality
constraint of this activity.

For preserving the cardinality constraints, we elect a coordinator that is respon-
sible for managing the activity executions on the different replicas accordingly.
Thus, when a workflow client application sends a request for executing a declar-
ative workflow, the replicas elect one replica to be coordinator. If the elected
coordinator fails, a new coordinator is elected out of the remaining replicas. We
use majority election [vEVS02] meaning that (1) at any point in time there is at
most one valid coordinator and (2) out of a majority always one replica knows
the valid (i.e., most recently elected) coordinator. For being able to identify the
most recent coordinator, we reuse the concept of views [LC12], where each view
has at most one coordinator elected (cf. Chapter 5).

The coordinator basically is responsible for permitting replicas to execute
activities. It only permits a replica the execution of the activity if an additional
execution of that activity does not violate the cardinality constraint of that activity.
However, the information on which replicas are allowed to execute the activities
must not be lost through the failure of the coordinator. Thus, the information
needs to be replicated on the other replicas.

When a replica has executed an activity, the result of that activity execution
is provided to the other replicas. Thus, when a replica reaches the point in
its activity sequence where it would also need to execute the activity, it can
simply reuse the result that it received instead of executing the activity itself.
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Consequently, the execution speeds up since any activity of which the result is
already available can be skipped.

The execution of a workflow terminates when a replica has executed the last
activity of its activity sequence. Since we coordinate the replicated execution such
that no activity needs to be compensated (which is anyway not possible according
to our declarative workflow model described in Chapter 9), the termination is
rather simple. A finished replica sends the result of its workflow execution
to the coordinator. The coordinator forwards the first result that it receives to
the workflow client application that initiated this workflow execution. This
prevents that the workflow client application receives duplicates. Afterwards, the
coordinator interacts with all replicas to forget the workflow execution. Note that
this forget phase requires all replicas to be available. However, this is no problem
in terms of availability since this phase is totally decoupled from the workflow
client application.

12.1. Data Structures

A replica r that participates in the replicated execution keeps a workflow record
in the volatile memory. The workflow record contains the following data:

• eIDr: the unique execution identifier of the workflow execution.

• Wr: the declarative workflow specification.

• vr: the current view.

• nextr: the next activity to execute within the activity sequence.

• σr: internal state of the workflow execution.

• Er: the activity execution table. Each activity a of the workflow specifi-
cation has an entry (a,Ra) ∈ Er that specifies the set of replicas Ra that
have been permitted to execute a so far. For example, the entry (a1,{r1})
specifies that the replica r1 is permitted to execute the activity a1. Initially,
all sets Ra of the entries (a,Ra) ∈ Er are empty because no replica has the
permission to execute any activity yet. We define the norm of E to be
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|E| = ∑(a,Ra)∈E |Ra|, where the norm basically counts how many activity
execution permissions were given to replicas so far.

• Ωr: the set that contains all activity execution results that are received from
other replicas. Each item (a,ω) in the set comprises the activity a that was
executed as well as the result ω of that activity execution.

Note that the execution identifier eID and the workflow specification W are
identical on all replicas. All other data might be different on each replica. The
activity sequence sr that a replica executes is saved on stable storage together with
the execution identifier eID, i.e., (eID,s). This prevents that the sequence is lost
through crash failures. Since the generation of the sequences is time intensive, it
is more efficient to save the sequence on stable storage than to regenerate it after
a crash failure (as described in Chapter 11).

12.2. Normal Operation

The execution is initiated when a workflow client application sends an execution
request to the replicas. In specific, the execution request message EXEC(eID,W )

is sent to all replicas and contains the unique workflow execution identifier and
the workflow specification.

The replicas elect a coordinator using a majority election, e.g., as described
in Section 5.1.1.3. The coordinator then generates the activity sequences as
described in Chapter 11. Afterwards, the coordinator sends one activity sequence
s to each replica with an ACT_SEQ(eID,s) message.

Upon receiving an ACT_SEQ message, a replica starts the execution of the
received activity sequence (cf. Algorithm 16 line 1-10). Here, we differentiate
between idempotent and cardinality constraint activities. If the activity that the
replica strives to execute next is idempotent, the replica can directly start the
execution. If the activity is cardinality constraint, the replica has to request
the permission to execute the activity from the coordinator. The replica sends
an ACT_REQ message to the coordinator, which contains the activity that the
replica strives to execute. Figure 12.1 depicts an example, where the replica r1
requests the permission to execute the cardinality constrained activity a1.
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Algorithm 16: Executing an activity sequence
// Replica – normal operation

1 while nextr 6= null do
2 if ∃(a,ωa) ∈Ωr, where a = nextr then
3 apply ωa to σr;
4 nextr := succ(nextr,sr);
5 else if nextr is idempotent then
6 ω := execute(nextr);
7 apply ω to σr;
8 nextr := succ(nextR,sr);
9 else

10 send ACT_REQ(eID,nextr) to coordinator;

11 upon receive ACT_PERMIT(eID,ax) from coordinator do
12 if ax = nextr then
13 ω := execute(nextr);
14 apply ω to σr;
15 async send RESULT(eID,nextr,ω) to all replicas;
16 nextr := succ(nextr,sr);

17 upon receive RESULT(eID,ax,ωx) from x do
18 add (ax,ωx) to Ωr;
19 send ACK_RESULT(eID,ax) to x;

// Coordination – normal operation
20 upon receive ACT_REQ(eID,ax) from x do
21 if (a,Ra) ∈ Er, where a = ax AND (|Ra|< θ(a) OR x ∈ Ra) then
22 add x to Ra;
23 send TABLE_UPDATE(eID,Er,vr) to all replicas;
24 wait for majority of replicas to send TABLE_ACK for Er, vx;
25 send ACT_PERMIT(eID,a) to x;

26 upon receive TABLE_UPDATE(eID,Ex,vx) from x do
27 if vx ≥ vr AND |Ex| ≥ |Er| then
28 Er := Ex;
29 send TABLE_ACK(eID,Ex,vx) to x;
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𝑟1

𝑟2

𝑟3

exec(𝑎1)

𝐴𝐶𝑇_𝑅𝐸𝑄
(𝑒𝐼𝐷, 𝑎1)

Coordinator

𝑛𝑒𝑥𝑡𝑟1 = 𝑎1

𝑇𝐴𝐵𝐿𝐸_𝑈𝑃𝐷𝐴𝑇𝐸
(𝑒𝐼𝐷, 𝐸𝑟3

′ , 𝑣𝑟3)
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 set (𝑎1, 𝑟1 )
 𝐸𝑟3

′

Figure 12.1.: Example of the coordination protocol, where r1 receives the per-
mission to execute the cardinality constrained activity a1.

Upon receiving an ACT_REQ message, the coordinator checks whether the
activity can be executed without violating the cardinality constraints (cf. Algo-
rithm 16 line 20-25). If the constraint is not violated, the coordinator adds the
requestor to the replicas that are permitted to execute the activity and broadcasts
the new activity execution table to all replicas by sending a TABLE_UPDATE
message, which contains the new table and the current view of the coordinator.
A TABLE_UPDATE message receiver (cf. Algorithm 16 line 26-29) only ac-
cepts the update if the update was sent by the current coordinator, which the
receiver checks based on the view number. Only after a majority of replicas
has acknowledged that they have received the new table with a TABLE_ACK
message, it is ensured that the permission is not lost through failures. Requiring
the coordinator to wait for the majority also prevents an old coordinator (which,
for example, has been partitioned) from giving activity execution permissions
because out of majority of replicas at least one replica will know about the
newer view (and current coordinator). Thus, an old coordinator can never receive
TABLE_ACK messages from a majority. In contrast, the current primary sends
an ACT_PERMIT to the requestor, which includes the activity for which the
coordinator gives the execution permission, after the current coordinator has
received the TABLE_ACK message from a majority of replicas.

Upon receiving the ACT_PERMIT message (cf. Algorithm 16 line 11-16),
the replica executes the activity for which it received the execution permission.
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After executing the activity, the replica propagates the result of the activity
execution with a RESULT message. Note that the result is sent asynchronously
to the replicas, meaning that the workflow execution continues while the RESULT
messages are being sent. However, the replica still repeats each RESULT message
until the receiver has acknowledged the reception (cf. Algorithm 16 line 17-19).
This ensures that for a non-idempotent activity, i.e., an activity which cannot be
executed arbitrarily often, the result is made available to all replicas.

12.3. Election

The replicas monitor the coordinator by means of a heartbeat mechanism. Upon
detecting the coordinator as failed, the remaining replicas start a new view, where
they elect a new coordinator. As an election procedure was already described
extensively in Section 5.1.1.3, we omit the description here and only focus on
the aspects that are unique to our coordination protocol.

As the activity execution table is only guaranteed to be replicated on a majority
of replicas, a newly elected coordinator might not have the most recent activity
execution table. However, in order to preserve the cardinality constraints, the
new coordinator must use the most recent activity execution table for checking
new activity execution requests. Thus, all participants of an election include their
activity execution table in the vote messages. The new coordinator will select the
activity execution table that has permitted the most activity executions so far, i.e.,
the table E, where |E| is maximal. Since a table is replicated on a majority before
the according activity execution is permitted and a new coordinator needs a vote
from a majority of replicas, it is ensured that no activity execution permission is
lost through a failover.

12.4. Termination

When a replica has executed the last activity of its activity sequence, the workflow
execution is finished. The replica sends a FINISHED message to the coordinator,
where the message includes the result of the workflow execution. The coordi-
nator forwards the result to the workflow client application. The coordinator
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only forwards the first result that it receives to ensure that the workflow client
application does not receive duplicates.

Basically, the workflow execution is now finished. However, some replicas
might still be executing their activity sequence. To stop these replicas and to
forget the workflow execution (i.e., remove all data from the volatile memory),
the coordinator starts a 2PC protocol. In the first phase, the coordinator sends
PREPARE(eID) messages. Upon receiving a PREPARE message, the replica
stops any ongoing executions of eID and replies with an PREPARE_OK(eID)

message. When the coordinator has received a PREPARE_OK from all replicas,
it sends a FORGET(eID) message to all replicas and forgets the workflow exe-
cution. Upon receiving a FORGET message, a replica also forgets the execution,
i.e., it deletes all data from volatile memory and also the activity sequence s from
stable storage.

12.5. Recovery

When a replica recovers from a crash failure, all data of the workflow execution
that was stored in volatile memory is lost. The data saved on stable storage
is available, i.e., the execution identifier eID and the activity sequence of that
replica. However, since we assume logging to be used by each workflow engine
(cf. Chapter 9), the workflow execution could continue after recovery. Before
continuing the execution, the replica has to receive data for the volatile memory
from the other replicas. Thus, the recovering replica sends a RECOV_REQ
message to all replicas, which contains the execution identifier.

Upon receiving a RECOV_REQ message, the replicas reply by sending a
RECOV_REPLY message, which contains, the workflow specification W , the
current view v, the activity execution table E, and the results of the activity
executions Ω. Upon receiving a RECOV_REPLY message from a majority of
replicas, it saves the workflow specification and the highest view number it
receives. Moreover, it saves the most recent activity execution table, i.e., the table
E, where |E| is maximal, and the Ω that has saved the most activity execution
results. Afterwards, the recovering replica returns to normal operation.
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IN this chapter, we evaluate our replication scheme for declarative work-
flows. We evaluate the speed up in terms of execution time when using
the reordered activity sequences on the different replicas. In specific, we

investigate the impact of cardinality constraints on the speed up. Afterwards,
we evaluate the techniques for generating activity sequences from the workflow
specification with respect to availability and run-time of the generation. Here, we
compare the simulated annealing approach (SA) and the pruning-based availabil-
ity prediction metric (APM) to finding the optimal solution. Finally, we evaluate
the accuracy of our availability metric by comparing the predicted values to
the actual availability when executing the activity sequences in the presence of
failures using our coordination protocol.

13.1. Implementation

To evaluate our activity sequence generation techniques, we use the SPOT li-
brary [DLP04, DL17] for translating the LTL-based workflow specifications into
automata. From the automata, we derive all activity sequences that fulfill the
workflow specification. For evaluating our availability prediction metric, we have
integrated the availability prediction metric in SPOT.

The coordination protocol is implemented in the peer to peer simulator, Peer-
Sim1, where each peer represents a replica that executes an individual activity
sequence. Any type of failure delays the execution on a replica until the recovery
from the failure. Since we assume logging (cf. Chapter 9), this leads to the
delay of the execution on this replica. Thus, we model all failures as activity
failures, where each activity has a failure probability of 5%. For the evaluation,

1http://peersim.sourceforge.net/
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we generate activity failure traces, to expose the replicas, generated by the dif-
ferent techniques, to the same failure patterns. We also repeated all experiments
with a varying execution speed of the replicas, where the execution speed was
varied by ±10%. We discovered that such variances do not influence the average
availability.

13.2. Speed Up

In this evaluation, we use 10 replicas that execute activity sequences of the
same workflow specification. In Figure 13.1a, we can observe that no replica
is idle when all replicas execute identical activity sequences that contain only
idempotent activities. All activities can be executed arbitrarily often without
violating the workflow specification. Thus, all replicas execute all activities,
where all activities are executed in the same order meaning that no activity
execution result can be reused by other replicas. Thus, the execution time is same
as it would be when using a non-replicated execution of this activity sequence.
In other words, there is no speed up of the execution in this scenario.

When using identical activity sequences with cardinality constrained activities
as shown in Figure 13.1c, the replicas are mostly idle because only one replica
is allowed to execute the workflow – basically realizing a passive replication
scheme. Moreover, since there is an execution time overhead for receiving the
allowance to execute an activity, the workflow execution is even slowed down
compared to a workflow consisting only of idempotent activities.

When using reordered activity sequences that consist only of idempotent
activities (cf. Figure 13.1b), the replicas are never idle similar to the identical
activity sequences of Figure 13.1a. However, here the replicas can reuse the
activity execution results of the other replicas. The speed up that is achieved
through reusing is significant. The execution of a workflow with 5 activities is
reduced from 18 cycles to 6. For a workflow with 25 activities, the execution
time is even reduced from 80 cycles to 16. The reduction is of course related
to how freely the activities might be reordered and how many replica there are.
With 5 activities, we cannot use the parallelism fully, while with 25 activities
the 10 replicas can often execute different activities. Still due to the workflow

164



13.2. Speed Up

 0

 20

 40

 60

 80

 100
Ti

m
e 

[c
yc

le
s]

Reordered Act. SequencesIdentical Act. Sequences

C
ar

di
na

li
ty

 C
on

st
ra

in
ed

Id
em

po
te

nt

Idle waiting Execution time

 0

 20

 40

 60

 80

 100

Id
le

 T
im

e 
[%

]

 0

 20

 40

 60

 80

 100

 5  10  15  20  25

Ti
m

e 
[c

yc
le

s]

No. of activities
 5  10  15  20  25 0

 20

 40

 60

 80

 100

Id
le

 T
im

e 
[%

]

No. of activities

a) b)

c) d)

Figure 13.1.: Comparison of using reordered versus identical activity sequences
running on 10 replicas. The activity sequences contain either only
idempotent or only cardinality constrained activities. Here, we plot
the number of cycles required for executing the activity sequences
against the number of activities contained in that activity sequence.
[Lower is better]

specification, we do not achieve a reduction down to 8 cycles, which would be
the optimal case with 10 replicas.

When having a workflow that only contains cardinality constrained activities,
reordering still achieves a tremendous speed up (cf. Figure 13.1d). However,
due the overhead of receiving a permission for being allowed to execute an
activity, the execution time is a bit increased in comparison to workflows that
only contain idempotent activities. For example, workflows with 5 activities
take 7 cycles, while 25 activities take 20 cycles. We also can observe that
the number of replicas that are idle is drastically reduced when comparing the
reordered activity sequences to the identical activity sequences of Figure 13.1c.
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In specific, now through the reordering, many replicas can execute the activities
such that the workflow is exploiting parallelism. Also, the number of idle
replicas is linearly decreasing when the workflows contain more activities because
with more activities in a specification, there are typically more allowed activity
sequences allowing more parallelization.

In conclusion, we can observe that the speed up that is achieved through
reordering is significant. Moreover, it does not matter whether the activities are
idempotent or cardinality constrained, reordering always is beneficial in terms of
execution time.

13.3. Activity Sequence Generation

We compare the strategies for generating the activity sequences from a workflow
specification and selecting a set of sequences for the replicated execution. We
use workflow specifications with eight activities by randomly combining LTL
constraints [Pes08]. We select activity sequence sets of size k = 3.

We compare the following strategies: the optimal solution, the simulated
annealing approach (SA), and the availability prediction metric (APM). The
strategies are compared based on the availability rating (cf. Equation 11.2) of
the selected set of activity sequences and the run-time needed for generating and
selecting this set. However, since the rating might heavily deviate between the
randomly generated workflow specifications, we normalize the ratings found by
simulated annealing and the availability prediction metric by the rating of the
optimal solution.2 Similarly, we normalize the run-time for finding the activity
sequence sets by the time needed to find the optimal solution. Note that both for
finding the optimal solution and for simulated annealing the complete automaton
is expanded from the workflow specification. We depict the shared intermediate
step called the full expansion (FE), which the availability prediction metric avoids
by pruning the automaton during expansion.

2The availability prediction metric estimates cmin and cmax (cf. Chapter 11). To make the
availability rating of the set that the availability prediction metric generated and selected
comparable, we use the correct values of cmin and cmax, determined when generating the
optimal solution, for evaluating the selected set.
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Figure 13.2.: Plotting the availability rating that the produced activity sequences
have according to our availability metric (cf. Section 11.1) against
fFlows. Additionally, we plot the run-time for producing the activity
sequences against fFlows. Figure a shows the results of workflow
specifications that produce 3 to 500 activity sequences, Figure b the
results of workflow specifications that produce 200 to 500 activity
sequences, and Figure c the results of workflow specifications that
produce 500 and 2000 activity sequences. [Availability Rating:
higher is better, Run-time: lower is better]
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The results and the run-time of our availability prediction metric depend on
the parameter fFlows. Thus, we depict the results and run-time of the availability
prediction metric in dependence of fFlows, where we evaluate the range from
fFlows = k up to fFlows = 22. In the following, we grouped our measurements by
the number of activity sequences produced by the full expansion of the automata.

In Figure 13.2a, we depict workflow specifications resulting in 3 to 500 activity
sequences: simulated annealing on average needs only 85% time compared to
finding the optimal solution. The availability prediction metric is very fast
for small fFlows, however, always selects sets with a lower availability rating
compared to the optimal solution and simulated annealing. For fFlows < 4, the
availability prediction metric is even a bit faster than only expanding the full
automaton (FE) without starting any selection process. In contrast to that, for
fFlows ≥ 22 the availability prediction metric is even slower than generating
the optimal solution because of the overhead of deciding the pruning during
the automaton expansion. However, we consider workflow specifications that
have many constraints on the execution order and, thus, only few valid activity
sequences. For example, when there are only 3 allowed sequences, we need to
find all of these making a full expansion of the automaton necessary. In this case,
pruning only adds overhead during the automaton expansion.

For filtering out these highly restrictive workflow specifications, we only
depict specifications that result in 200 to 500 activity sequences in Figure 13.2b.
In comparison to Figure 13.2a, simulated annealing is now significantly faster
because we have to choose from at least 200 sequences making the speed up
rather obvious. Simulated annealing finds an activity sequence set with an
availability rating of ∼ 98% while taking only about 2% of the time of finding
the optimal solution. The availability prediction metric only generates results
with ∼ 38% of availability when fFlows = k. When, however, increasing fFlows

to follow more than 10 branches, the availability reaches between 70% and 80%
percent of the optimal solution. However, the availability prediction metric needs
only a fraction of computation time even when compared to simulated annealing.

Figure 13.2c depicts the results, where the full expansion of the automaton
produced between 500 and 2000 activity sequences. Because of the high com-
plexity of the selecting the optimal set (cf. Chapter 11), determining the optimal
solution is simply unfeasible. Instead, we only use simulated annealing and the
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availability prediction metric for finding a solution. Thus, we normalize the
availability and run-time by the time needed for finding a set with simulated
annealing. In other words, 100% of availability is equal to the availability rating
of the set found by simulated annealing. Similarly, 100% of run-time is the
time that simulated annealing needed for selecting the activity sequence set.
The availability prediction metric again reaches an availability above 70% for
fFlows > 10. It, however, is clearly faster than only the full expansion of the
automaton without even starting simulated annealing for selecting the set.

In conclusion, we have shown that both simulated annealing and the availability
prediction metric realize reasonable trade-offs between the time required for
generating and selecting activity sequences and the availability achieved by the
selected activity sequences. Moreover, for workflow specifications with more
than 10 activities, our availability prediction metric might be the only feasibly
strategy in terms of execution time.

13.4. Accuracy of the Availability Rating

So far, we only showed that the set of activity sequences that we generate and
select have a good theoretical availability since we used our availability rating
(cf. Equation 11.2) for evaluating the generated sets. Now, we will execute
the selected activity sequences in the presence of failures for showing that our
availability metric correctly predicts the actual availability during execution. The
availability is represented by the execution time because a faster execution is
congruent to a highly available execution. In other words, when the execution
is unavailable, it does not proceed. For this evaluation, we use the activity
sequences generated in Section 13.3. We normalized the execution time of these
activity sequences sets with the concurrent execution of a set of identical activity
sequences, i.e., 100% of execution time represents the execution with identical
activity sequences. As described in Section 13.1, we inject failures based on the
failure traces such that the sets, selected by the different approaches, are exposed
to the same failures.

Figure 13.3 shows the execution time of the activity sequence sets generated
in Section 13.3. In specific, Figure 13.3a shows the execution of the sequence
sets from Figure 13.2a, where 3 to 500 activity sequences are generated by the
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Figure 13.3.: Plotting the execution time against fFlows. Here, we compare the
execution time of the optimal solution, the simulated annealing
approach (SA), and the availability prediction metric (APM), where
all execution times are normalized by the execution time of using
identical activity sequences on all replicas. [Lower is better]

full automaton expansion. Figure 13.3b shows the execution of the sets that are
selected in Figure 13.2c, where the workflow specifications resulted 500 to 2000
activity sequences.

We can observe that the optimal solution has the highest availability, followed
by simulated annealing, the availability prediction metric, and, finally, the set
of identical activity sequences (represented by 100%). Also the execution time
decreases when fFlows is increased, which reflects the increased rating of our
availability metric. The graph verifies the correctness of our availability rating.
The replicated execution of the optimal solution sets take around 55% of execu-
tion time compared to identical replicas. Simulated annealing results take around
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56% of the time, followed by the availability prediction metric with around 65%
( fFlows = 5). When increasing fFlows, the availability prediction metric can even
reach 60% showing its usefulness for efficiently generating and selecting replicas,
accepting a slightly decreased availability. It, however, should only be used with
a small or minimal fFlows. If availability is very critical, simulated annealing can
be used, which, on the downside, implies a higher generation overhead.

In addition, we generated sets of activity sequences using the availability
prediction metric for large workflows, where simulated annealing is too time
consuming due to the full generation of the automaton. We generated activity
sequences sets of size k = 5 for workflows with 15 different activities. The
generation of those sequences (with fFlows = 5) took an average time of 75s. The
execution took around 83% of the execution time of sets with identical replicas.
This shows the benefits of the availability prediction metric for cases where the
full generation is no longer practical.
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Service invocation as described in Section 2.4 decouples the availability of a
workflow execution from the availability of a specific service. Here, multiple
alternative services are called simultaneously or staggered over time [Dob06,
SJP06,SF07,LV07,GHL+07,SPJ07,ZL08a,ZL08c,ZL08b,ZL09,TLHL09,SPJ11,
MSM15, BTKR15]. The result of the service that replies first is used while all
other service executions are stopped or compensated. With our structurally
different activity sequences, we can mask transient service failures without
requiring the compensation. Moreover, the service invocation techniques cannot
tolerate failures of a workflow engine.

Other approaches automatically compose a service orchestration with a desired
functionality – described in a declarative languague – from existing web services
using QoS values [LPC+11, LHG+16, EKEF16]. This requires the QoS values
to be available in order to compose a highly reliable activity sequence. In
contrast, we do not require such information. Moreover, when executing such a
automatically composed service orchestration without replication, a single failure
will still lead to outages. To overcome this problem, some work proposes to
automatically re-compose the orchestration at run time when a failure occurs
[LPC+11, EKEF16]. However, both the techniques with and without automatic
re-composition only work if the workflow engine can detect the failures. When
the engine in which the workflow is running fails, the techniques do not provide
availability.
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THE automation of business operations through workflows is of major
importance not only to save costs and optimize the underlying processes,
but also to enable paradigms that are impossible without automation,

such as on-demand cloud resource allocation. Businesses nowadays often have
multiple business locations and business partners scattered across the globe. For
automating the interactions between the locations and partners, the workflows are
required to run in a heterogeneous and distributed environment, where failures
occur frequently. Such a failure can delay or stop the workflow executions, which,
in turn, might also degrade or stop the business operations.

For ensuring availability in the presence of failures, we presented mechanisms
for replicating workflow executions. The key idea is to ensure that the outcome
of a replicated execution is identical to a non-replicated execution. We formally
defined this property called Single-Execution-Equivalence. We presented a
majority-based replication scheme that adheres to this definition, which elects
one replica as primary that executes the workflow. The other replicas are backups
that receive and save execution state updates sent by the primary. In case that
the primary fails, the backups elect a new primary that continues the workflow
execution using a majority election.

However, since any replication incurs overhead, there are trade-offs to consider.
The basic majority-based replication scheme is based on a strict synchronous
update mechanism, which keeps the compensation overhead at a minimum. In
specific, the primary has to verify after each activity execution that it still is
primary. In other words, an old primary executes at most one activity after a new
primary was elected. Since the new primary is responsible for the execution of
the activity, the old primary has to compensate its activity execution.

In terms of execution time, this strict synchronous update mechanism is very
costly because the primary is paused after each activity execution until a majority
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of replicas has acknowledged that it is still primary. For this reason, we have
developed the relaxed majority-based replication scheme for controlling the
implied overhead. Here, we introduced synchronization groups, where a primary
sends only asynchronous updates for all activities within the groups. Only after
the complete groups has been executed, the primary has to send a synchronous
update, where the primary verifies that it is still primary. When containing
many activities in one synchronization group, this saves a lot of execution time
overhead, where our evaluations have shown to save up to 2

3 of the overhead
of the basic majority-based replication scheme. In turn, an old primary might
– in the worst case – notice that it is not primary anymore after executing the
complete synchronization group, which increases the compensation cost up to
four times of the basic majority-based replication scheme. However, without
any failures there is no need for electing a new primary and, thus, none of the
approaches require any compensation. As a consequence, large synchronization
groups are preferable when failures are rare.

When, however, comparing the majority-based replication schemes to active
replication, there is still room for improvement in terms of availability. When
a majority of replicas is failed, the replicas are unable to elect a new primary.
Thus, we proposed a flexible failover replication scheme, where the workflow
designer or user can set the threshold on how many replicas are required for
electing a new primary. This allows to tolerate temporal failures of more than
a majority of replicas. Of course, this also allows multiple partitions to elect a
primary when the threshold is set low, e.g., to only one required vote. Since all
but one workflow execution have to be compensated, flexible failover replication
increases the induced compensation cost compared to majority-based replication.
However, we reach nearly the availability of active replication while inducing no
compensation cost in the failure free case – like our majority-based replication
scheme. Thus, flexible failover replication is the mechanism of choice for
workflows, where availability is the main concern and failures are rare. However,
in case that a failure occurs, the user or provider of the workflow should be
willing to pay the high compensation cost.

Declarative workflow languages provide the possibility to reorder the activities
of the workflow at run-time. We exploited this property to increase availabil-
ity further and speed up replicated executions by executing different activity
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sequences of the same workflow on the different replicas. For generating the
sequences, we developed a metric that allows to select the best activity sequences
of a workflow in terms of availability. To reduce the time and space requirements
of the generation of the sequences, we presented a pruning strategy that gener-
ates activity sequences that have up to 80% of the availability (according to our
metric) compared to the optimal solution while requiring only a fraction of the
time that the generation of the optimal solution requires. In some cases pruning
saves over 99% of the generation time. Due to the speed up, the reordered repli-
cas execute within 55% of the time required for executing structurally identical
replicas – even in the presence of failures.

In conclusion, we provided the means for ensuring the availability of work-
flows specified in imperative or declarative workflow languages. The workflow
replication schemes allow a user, workflow designer, or workflow provider to
choose exactly the replication scheme that conforms to their requirements.

15.1. Outlook

As we have shown that workflow replication ensures availability in the presence
of failures. When increasing the replication degree, i.e., the number of used
replicas, the execution can tolerate more failures. In other words, increasing the
replication degree also increases availability. However, using more replicas also
increases the replication overhead, e.g., in terms of the compensation cost or
execution time. Additionally, more replicas require the workflow provider or
user to deploy and operate more computing nodes. It might not be obvious to a
workflow designer and especially to a user, which replication degree should be
chosen in a specific environment.

For overcoming this limitation, an in-depth study on the required parameters,
such as the failure rates of the computing nodes and the communication links,
for making the decision on the replication degree might be necessary. From this
study, a utility formula for choosing the replication degree under user specified
constraints should be developed.

Furthermore, our workflow replication schemes for imperative workflow lan-
guages support AND- and XOR-gateways as well as synchronous and asyn-
chronous service calls. Even though these are probably the most widely used

179



15. Summary

patterns for modeling workflows, there exist many control flow and exception
patterns (e.g., [RvdAtH06]). When implementing an industry-grade workflow
replication system, each pattern has to be considered individually in order to
ensure that Single-Execution-Equivalence is always ensured before supporting
the replicated execution of this pattern.
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